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Abstract. In this paper, we study weak bisimulation congruences for
the χ-calculus, a symmetric variant of the π-calculus. We distinguish two
styles of such bisimulation definitions, i.e. “open” and “closed” bisimu-
lation, the difference between which lies in that in open style the equiva-
lence is closed under context in every bisimulation step whereas in closed
style the equivalence is closed under context only at the very beginning.
As a result, we show that both in labelled and barbed congruence, the
open and closed style definitions coincide. Thus all bisimulation congru-
ences collapse into two equivalences, that is, the well-known open con-
gruence and open barbed congruence, which are the same in the strong
case, while in the weak case their difference can be reflected by one ax-
iom. The results of this paper close some conjectures in the literatures
and shed light on the algebraic theory of a large class of mobile process
calculi.

1 Introduction

Over the last decade, various calculi of mobile processes, notably the π-calculus
[11], have been the focus of research in concurrency theory. Since 1997, several
publications have focused on a class of new calculi of mobile process. These
models include χ-calculus [5] due to Fu, update calculus [13] and fusion calculus
[14] due to Parrow and Victor with its variants, such as explicit fusion [8], due
to Gardner and Wischik. Roughly speaking, in a uniform terminology they are
respectively χ-calculus, asymmetric χ-calculus and polyadic χ-calculus.

In the research of algebraic theory for mobile process, bisimulation equiv-
alence is the standard paradigm for behavioral comparison. Comparing to the
traditional process calculi, e.g. CCS [10], for mobile processes, there are often
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many natural definitions of bisimilarity, which makes the theory much more in-
volved. For example, in the π-calculus, the most well-known of them include
late/early bisimulation [11], open bisimulation [15], barbed bisimulation [12],
etc. It is widely recognized that a bisimulation equivalence is most useful when
it is a congruence, i.e. is preserved by the syntactic constructions of the calcu-
lus. Unfortunately, in mobile process calculi, most of bisimulation equivalences
are not congruences themselves! This gives rise to the problem on how to refine
the bisimulation definition and thus obtain a congruence. It is well-known that
congruence relations on mobile processes should be closed under substitution on
names, which gives rise to a choice of whether the requirement of closure under
substitution is placed on the first step of a bisimulation or on each step of the
bisimulation. For example, open equivalence [15] is closed under substitution in
each bisimulation step, while early, late [11] and barbed equivalences [12] are
closed under substitution only in the first step of bisimulation. This distinction
makes open bisimulation strictly stronger than the other three (please note that
this is only the case in the π-calculus, as the results of this paper will suggest,
in the χ-calculus, the situation is quite different).

In the light of the above discussion, we argue that “open” is indeed a general
definition style while it is not only a single or ad hoc definition. Let us generalize
the above mentioned “substitution” to a broader notion of context. Remarkably,
there are at least two reasonable ways of ensuring the congruence property:

– Either take the largest congruence that is a bisimulation; this is the “re-
duction based” equivalence chosen for the ν-calculus in [9] and Abadi and
Fournet’s work, e.g. [1]. In this paper, we will call it “open” style, following
Sangiorgi [15]. This models the situation where environments change during
execution (the norm in distributed computation).

– Or take the largest congruence included in the bisimulation; this is the two-
stage definition traditionally chosen for CCS and the π-calculus; for symme-
try, in this paper, we will call it “closed” style. This models the situation
where a sub-program’s context is fixed at compile time. They are generally
just called “congruence” in the literature on π-calculus, e.g. [11].

We also can study the bisimulation relations in mobile process calculi from
another perspective, that is, we can distinguish the labelled and the barbed
style. Since we believe this distinction is much more familiar to the readers,
we will not explain it further. To summarize, in our opinion, there are actually
four key ways to define behavioral equivalences in mobile process calculi: de-
pending on whether the relation is closed under initial contexts (“closed” style)
or under subsequently-changing contexts as well (reduction-closed congruence,
open style); and orthogonally whether we just observe the channels over which
messages are sent (barbed style) or also record the message and the resulting
state (labelled style). Clearly, the combinations give rise to (at least) four sen-
sible bisimulation equivalences. Three of them are familiar in the community
and have been mentioned above. The remaining one, that is, the combination
of “open” and “barbed”, is open barbed bisimulation, which is also extensively
studied by Sangiorgi and Walker [16] and the first author in [2] in recent days.
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So far, most of the bisimulation congruences for χ-calculus, notably [6], are
defined in the open style, while in the research on mobile process calculi, the
closed style definitions seem to be more standard. In our opinion, this is not very
ideal for our understanding of the χ-calculus, the representative of a large class
of mobile process calculi. Under such a situation, one of the contributions of this
paper is to show how the four standard definitions of bisimulation congruence,
familiar from the π-calculus, can be applied to the χ-calculus. Based on it, we
study the relationships of these bisimulation equivalences. Intuitively, one might
expect the closed and open congruences to generate the same relation, since one
could presumably write an initial environment sophisticated enough to model a
subsequently-changing environment. Unfortunately, this result does not hold for
the (synchronous) π-calculus. Interestingly, if we restrict to the asynchronous
π-calculus, the analogous results hold! See Fournet and Gonthier’s work [4] for
more details and we will discuss it further in Section 5. Now, a natural question
is: What’s the situation in the χ-calculus? The main contribution of this paper is
to provide a systematic investigation on this. We compare the open and closed
style bisimulations in the setting of χ-calculus, and study both labelled and
barbed versions. Moreover, we focus on the weak version of bisimulation, since
it is much more general and difficult. Our results show that for both labelled
and barbed bisimulation, the closed and open style definitions coincide. This is
mainly, in our point of view, due to the fact that in χ-calculus, we can simulate
the notion of substitution through the parallel operator. It is worth pointing
out that Fu says ([6], pp. 225): “Our intuition strongly suggests that the barbed
bisimilarity and the barbed equivalence, which Parrow and Victor have studied,
coincide in the absence of the mismatch operator. But so far we have not been
able to formally prove this conjecture.” One of the results in this paper confirms
Fu’s conjecture (see Theorem 2 in Section 4), thus we close this open problem.
Moreover, our results also support Fu, Parrow, Victor’s general arguments that
in χ-like process algebra, open bisimulation is more natural.

We note that in [18] Wischik and Gardner have performed closely related re-
search. However, modulo the differences on the underlying process calculi, there
are some dramatic differences: (1) We discuss the weak case of bisimulation, while
[18] only considers the strong case. They claim that weak bisimulation congru-
ences have been studied by Fu for the χ-calculus. However, as we have pointed
out, this is not the case, since Fu only considers the “open” style relations. Under
such a situation, our results can be regarded as the weak counterpart of [18].
Moreover, [18] mentions that “An interesting open problem is to explore such
congruences3 for the explicit fusion calculus ...”. We believe the results of the
current paper will, at least, shed light on such issues, due to the similarity of
χ-calculus and explicit fusion. (2) [18] only proves the coincide of “open” and
“closed” (they call them reduction-based and shaped) style for labelled bisimu-
lation. As for the barbed case, they apply Sangiorgi’s “stratification” technique
[17] to show the coincidence of ground equivalence and barbed equivalence, then
they show (trivially) the coincidence of open barbed congruence and open con-

3 Here, they are essentially referring to the weak open congruences studied by Fu.
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gruence, thus the result is obtained. This is feasible in the strong case. However,
in the weak case, as we will see, labelled bisimulation and barbed bisimulation
do not coincide at all! To deal with this, we give a direct proof for the coin-
cide of “open” and “closed” style for barbed bisimulation, which is much more
complicated.

We should point out that the bisimulation congruences studied in this pa-
per are all “partial” congruences since they are not closed under summation
(technically speaking, they are closed under context but fail under full context,
see Definition 1). Since this problem is common and Milner [10] has provided
an elegant way to deal with this, it is not a true drawback. We also note that
this is only an extended abstract, since due to space restriction, all the proofs
have to be omitted. For more detailed proofs, explanations, remarks, we refer
the interested readers to our technical report [3].

The structure of this paper is as follows: Section 2 summarizes some back-
ground material on χ-calculus. Section 3 presents the results on label style bisim-
ulation while Section 4 discusses barbed style bisimulations. This paper is con-
cluded in Section 5, where some remarks are also given.

2 Background

In this section, we will review some background material for χ-calculus, we refer
the reader to [5] [6] for more details. Let N be a set of names, ranged over by
lower case letters. N̄ , the set of conames, denotes {x̄ | x ∈ N}. The set N ∪ N̄
will be ranged over by α. Let ᾱ be a if α = ā and ā if α = a.

We will write C for the set of χ-processes defined by the following grammar:

P := 0 | αx.P | P |P | (νx)P | [x = y]P | P + P |!P
The intuitional sense is standard. The name x in (νx)P is bound. A name

is free in P if it is not bound in P . The free names, the bound names and
names of P , as well as the notations fn(P ), bn(P ) and n(P ), are used in their
standard meanings. In the sequel we will use the functions fn(-),bn(-) and n(-)
without explanation. We will adopt the α-convention saying that a bound name
in a process can be replaced by a fresh name without changing the syntax of the
process. And in any discussion we assume that the bound names of any processes
or actions under consideration are chosen to be different from the names free in
any other entities under consideration, such as processes, actions, substitutions,
and set of names. As a convention, we often abbreviate αx.0 simply as αx.
Moreover, sometimes a communication needs to carry no parameter when the
passed names are unimportant. To model this, we will usually write α.P for
αx.P where x /∈ fn(P ).

A context is a process with a hole. Now, we give a formal definition as follows.

Definition 1. Contexts are defined inductively as follows:

(i) [] is a context.
(ii) If C[] is a context then αx.C[], P |C[], C[]|P, (νx)C[], [x = y]C[] are contexts.
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Full contexts are those contexts that satisfy additionally:
(iii) If C[] is a context then P + C[], C[] + P are contexts.

The operational semantics is defined by the following labelled transition sys-
tem:

Sqn
αx.P

αx→ P
Sum

P
λ→ P ′

P + Q
λ→ P ′

Cmp0
P

γ→ P ′ bn(γ) ∩ fn(Q) = ∅
P |Q γ→ P ′|Q

Cmp1
P

y/x→ P
′

P |Q y/x→ P ′ |Q{y/x}

Cmm0
P

α(x)→ P ′ Q
ᾱy→ Q′

P |Q τ→ P ′{y/x}|Q′ Cmm1
P

α(x)→ P ′ Q
ᾱ(x)→ Q′

P |Q τ→ (νx)(P ′|Q′)

Cmm2
P

αx→ P ′ Q
ᾱy→ Q′ x �= y

P |Q y/x→ P ′{y/x}|Q′{y/x}
Cmm3

P
αx→ P ′ Q

ᾱx→ Q′

P |Q τ→ P ′|Q′

Loc0
P

λ→ P ′ x /∈ n(λ)

(νx)P λ→ (νx)P ′
Loc1

P
αx→ P ′ x /∈ {α, ᾱ}
(νx)P

α(x)→ P ′

Loc2
P

y/x→ P ′

(νx)P τ→ P ′ Match
P

λ→ P ′

[x = x]P λ→ P ′

Rep
!P |P λ→ P ′

!P λ→ P ′

Note that we have omitted all the symmetric rules. In the above rules the
letter γ ranges over the set {α(x), αx | α ∈ N ∪ N̄ , x ∈ N}∪ {τ} of non-update
actions and the letter λ over the set {α(x), αx, y/x | α ∈ N ∪ N̄ , x ∈ N} ∪ {τ}
of all actions. The symbols α(x), αx, y/x represent restricted action, free action
and update action respectively. The x in α(x) is bounded whereas the other
names are all free. We refer to [6] for more detailed explanations.

The process P{y/x} appearing in the above structured operational semantics
is obtained by substituting y for x throughout P . The notion {y/x} is an atomic
substitution of y for x. A general substitution denoted by σ, σ′ etc, is the com-
position of atomic substitutions. The composition of zero atomic substitutions
is an empty substitution, written as {} whose effect on a process is vacuous. The
result of applying σ to P is denoted by Pσ.

As usual, let ⇒ be the reflexive and transitive closure of τ→, and τ⇒ be

the composition ⇒ τ→⇒. The relation λ̂⇒ is the same as λ⇒ if λ �= τ and is
⇒ otherwise. A sequence of names x1, . . . , xn will be abbreviated as x̃; and
consequently (νx1) . . . (νxn)P will be abbreviated to (νx̃)P . Moreover, we will
abuse the notation a little since for a finite name set N = {x1, . . . , xn}, we will
write (νÑ )P for (νx̃)P .

In the rest of this section we state some technical lemmas whose proofs are
by simple induction on derivation.
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Lemma 1. The following two properties hold:

(i) If P
λ→ P ′, then fn(P ′) ⊆ fn(P ) ∪ bn(λ).

(ii) If P
y/x→ P ′, then x /∈ fn(P ′).

(iii) If P ⇒ P ′, then Pσ ⇒ P ′σ.

(iv) If P
y/x⇒ P ′, then P

x/y⇒ P ′{x/y}.

3 Labelled Bisimulation

In this section, we discuss bisimulation for χ-calculus in the labelled semantics.

3.1 Closed Style Definitions

First, let us see how late bisimulation in π-calculus can be adapted to χ-calculus.

Definition 2. Let R be a binary symmetric relation on C. It is called a late
bisimulation if whenever PRQ then the following properties hold:

(i) If P
λ→ P ′, where λ = y/x, τ then Q′ exists such that Q

λ̂⇒ Q′ with P ′RQ′.
(ii) If P

αx→ P ′ then Q′, Q′′ exist such that Q ⇒αx→ Q′′, and for every y,
Q′′{y/x} ⇒ Q′ with P ′{y/x}RQ′.

(iii) If P
α(x)→ P ′ then Q′, Q′′ exist such that Q ⇒α(x)→ Q′′, and for every y,

Q′′{y/x} ⇒ Q′ with P ′{y/x}RQ′.

Late bisimilarity ≈̇l is the largest late bisimulation.

Since we are interested in bisimulation congruence, we consider the finer
equivalence obtained as bisimilarity.

Definition 3. P and Q are late equivalent, written P ≈cl Q, if for any context
C[], C[P ] ≈̇l C[Q].

In a similar way, we also can adapt early bisimulation to χ-calculus.

Definition 4. Let R be a binary symmetric relation on C. It is called an early
bisimulation if whenever PRQ then the following properties hold:

(i) If P
λ→ P ′, where λ = y/x, τ then Q′ exists such that Q

λ̂⇒ Q′ with P ′RQ′.
(ii) If P

αx→ P ′ then for every y, Q′, Q′′ exist such that Q ⇒αx→ Q′′, and
Q′′{y/x} ⇒ Q′ with P ′{y/x}RQ′.

(iv) If P
α(x)→ P ′ then for every y, Q′, Q′′ exist such that Q ⇒α(x)→ Q′′, and

Q′′{y/x} ⇒ Q′ with P ′{y/x}RQ′.

Early bisimilarity ≈̇e is the largest early bisimulation.
P and Q are early equivalent, written P ≈ce Q, if for any context C[],

C[P ] ≈̇e C[Q].
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Definition 5. Let R be a binary symmetric relation on C. It is called a ground

bisimulation if whenever PRQ and P
λ→ P ′ then Q′ exists such that Q

λ̂⇒ Q′

with P ′RQ′.
Ground bisimilarity ≈̇g is the largest ground bisimulation.

Definition 6. P and Q are ground equivalent, written P ≈cg Q, if for any
context C[], C[P ] ≈̇g C[Q].

Remark 1. In the π-calculus, late and early bisimulation, which appeared in
the original paper [11], are well-known. In order to obtain a congruence, it is
often required that bisimulation should be closed under substitutions, see the
corresponding definitions in [11]. Here, in order to reflect our understanding on
the “closed” style equivalence, we choose to present it by the notion of context.
However, this can be simplified in the sense that we provide the following Context
Lemma. Note that ground bisimulation is not common in research on π-calculus.
The main reason is that it is not even closed under the parallel operator (thus it
can not be refined to congruence only by requiring closure under substitution), so
that is of little sense. Therefore, to obtain a congruence, one has to require closure
both under substitution and the parallel operator, which actually will lead to
early congruence. Moreover, it is worth pointing out that in the setting of χ-
calculus, only requiring closure under substitution is not sufficient! We provide a
counterexample to illustrate this. Suppose P = ā.ā+ā+ā.[x = y]ā, and Q = ā.ā+
ā. It is not difficult to observe that for any substitution σ, Pσ ≈̇l Qσ. However, if
R = 〈x|y〉, then P |R ā→ [x = y]τ |R. How can Q|R match this transition? Clearly
we have only two choices, Q|R ā→ 0|〈x|y〉 or Q|R ā→ τ |〈x|y〉, but in both cases,
the bisimulation game fails. Thus, we can conclude that P |R ˙�≈l Q|R, so P �≈l Q!
That is, if only requiring closure under substitution is required, we would obtain
an ill-defined bisimulation relation, since it would not be closed under the parallel
operator. Instead, it is interesting and surprising that to require closure under
the parallel operator is enough to give rise to a (partial) congruence, since it
turns out that the parallel operator can exert a similar effect as substitution.

Lemma 2. For any processes P and Q, substitution σ, if P ≈� Q, then
Pσ ≈� Qσ, where � ∈ {cg, cl, ce}.
Lemma 3. (Context Lemma for Labelled Bisimulation) P ≈c� Q, iff for any
process R ∈ C, P |R ≈̇� Q|R, where � ∈ {g, l, e}.
Lemma 4. ≈cl⊆≈ce⊆≈cg.

3.2 Open Style Definitions

Definition 7. Let R be a binary symmetric relation on C. It is called an open
congruence if the following two properties hold:

(i) R is a ground bisimulation.
(ii) For any context C[], (P, Q) ∈ R implies (C[P ], C[Q]) ∈ R.
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P and Q are open congruent, notation P ≈o Q, if there exists some open
congruence R such that (P, Q) ∈ R.

We present a different form of open congruence.

Definition 8. ([6], Definition 17) Let R be a binary symmetric relation on C.
It is called an open bisimulation if whenever PRQ and Pσ

λ→ P ′, then Q′ exists

such that Qσ
λ̂⇒ Q′ and (P ′, Q′) ∈ R.

Open bisimilarity ≈open is the largest open bisimulation.

Clearly, according to Theorem 19 and Theorem 21 of [6], the above definition
(≈open) is a rephrase of open bisimulation defined in Definition 7. Precisely, it
can be regarded as a characterization of Definition 7, which will smooth the
proofs of the results presented in the next section.

3.3 Relationships

As in [6], we first establish a technical lemma about the following general prop-
erty, which will simplify the proof greatly, though it is very simple and obvious
itself.

A weak bisimulation ≈ is said to satisfy the *-property if P ⇒ P1 ≈ Q and
Q ⇒ Q1 ≈ P implies P ≈ Q.

Lemma 5. ≈̇g satisfies the *-property.

Lemma 6. ≈o⊆≈cl.

The following lemma is devoted to stating that ground equivalent is not
weaker than open congruence. The main proof idea is to construct a bisimulation
relation S such that ≈cg⊆ S, and prove that S is an open congruence. To this
end, we need to construct a sophisticated context. Unfortunately, its proof is
rather long and can not be presented here because of the space restriction. For
more details, see [3].

Lemma 7. ≈cg⊆≈o.

Theorem 1. ≈cl=≈ce=≈cg=≈o.

4 Barbed Bisimulation

In this section, we turn to reduction semantics and barbed style bisimulation
whose idea lies in that two processes are regarded as equal if they can simulate
each other’s communication while maintaining the same ability to communicate
through any particular name. As in the previous section, we start from the closed
style definition, and then treat the open style one.
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Definition 9. (Barb) A process P is strongly barbed at a, notion P ↓a, if

P
α(x)→ P ′ or P

αx→ P ′ for some P ′ such that a ∈ {α, ᾱ}. P is barbed at a,
written P ⇓a, if some P ′ exists such that P ⇒ P ′ ↓a.

Definition 10. Let R be a binary symmetric relation on C. It is called a barbed
bisimulation if whenever PRQ then the following two properties hold:

– For any name a, if P ↓a, then Q ⇓a.
– If P

τ→ P ′ then Q′ exists such that Q ⇒ Q′ with P ′RQ′.

The barbed bisimilarity ≈̇b is the largest barbed bisimulation.

For barbed bisimilarity, we have the following properties.

Lemma 8. ≈̇b satisfies the *-property.

Lemma 9. For any processes P, Q, R, and name s /∈ fn(P, Q, R), if P |(R +
s) ≈̇b Q|(R + s), then P |R ≈̇b Q|R.

Definition 11. P and Q are barbed equivalent, written P ≈cb Q, if for any
context C[], C[P ] ≈̇cb C[Q].

We also provide a Context Lemma to simplify “any context” in the above
definition.

Lemma 10. (Context Lemma for Barbed Bisimulation)

P ≈cb Q iff (νx̃)(P |R) ≈̇b (νx̃)(Q|R) for any x̃ ∈ N , process R ∈ C.

Remark 2. The context in Lemma 10 is essential. We can not only require that it
is closed by the parallel operator as in Lemma 3, because this is not discriminate
enough. The following is a counterexample. Suppose P = ax|āy and Q = ax.āy+
āy.ax. We can prove that for any process R, P |R ≈̇b Q|R (here please note that
in our semantics, ax|āy has no interaction, i.e. ax|āy � τ→). However, P �≈b Q,
because when they are put the context (νx)[], we can distinguish them.

Now, we turn to the “open” style definition.

Definition 12. Let R be a binary symmetric relation on C. It is called an open
barbed congruence if the following two properties hold:

(i) R is a barbed bisimulation.
(ii) For any context C, (P, Q) ∈ R implies (C[P ], C[Q]) ∈ R.

P and Q are open barbed congruent, notation P ≈ob Q, if there exists some
barbed congruence R such that (P, Q) ∈ R.
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Note 1. Barbed equivalence is studied in [12], and open barbed congruence here
is essentially the barbed congruence in [6]. Here for a uniform terminology, we
follow Sangiorgi and Walker [16].

To characterize open barbed congruence, we borrow an alternative definition
from [6].

Definition 13. ([6], Definition 20) Let R be a binary symmetric relation on C.
It is called an open ba-bisimulation if whenever PRQ then for any substitution
σ it holds that:

(i) If Pσ
λ→ P ′, where λ = y/x, τ, α(x) then Q′ exists such that Qσ

λ̂⇒ Q′ and
P ′RQ′.

(ii) If Pσ
αx→ P ′ then Q′ exists such that P ′RQ′ and either Qσ ⇒αx→ Q′, or

Qσ
α(z)⇒ x/z⇒ Q′ for some fresh z.

Open ba-bisimilarity, denoted ≈ba
open, is the largest open ba-bisimulation.

Actually, we have the following lemma. And in the sequel, when we mention
open barbed congruence, we will use the form in Definition 13.

Lemma 11. ([6], Theorem 21 (iii)) ≈ba
open=≈o.

Now, we sketch the proof of the main result of this section, that is, the
relationship of barbed equivalent and open barbed congruence. First we present
a simple result.

Lemma 12. ≈ob⊆≈cb.

The following lemma is the most important result of this paper. The main
idea of proof is similar to Lemma 7. For more details, see [3].

Lemma 13. ≈cb⊆≈ob.

Now, we have the following theorem:

Theorem 2. ≈cb=≈ob.

Naturally, this raises the following problem: does ground congruence (≈cg)
coincide with barbed equivalence (≈cb)? This question has also been studied
extensively in π-calculus and it turned out to be a very difficult problem. Please
see [2][3], among others, for more detailed discussion. Fortunately, now we can
solve this problem easily in the setting of χ-calculus. Thanks to Theorem 1 and
Theorem 2, clearly we can reduce this problem to the similar problem of open
congruence and open barbed congruence, which is much simpler. As [6] shows:

– For the strong case, the two bisimulation equivalences coincide.
– For the weak case, the differences can be characterized by the following ax-

iom, which holds for open barbed congruence while not for open congruence.

Prefix Law: α(z).(P + 〈x|z〉.Q) = α(z).(P + 〈x|z〉.Q) + αx.Q{x/z} x �= z

Now, we can claim that we solve this problem in the χ-calculus completely: In
the strong case, barbed equivalence and late equivalence (thus early and ground
equivalence) coincide while in the weak case barbed equivalence is strictly weaker
than the other three.
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5 Conclusion

In this paper, we study the bisimilation congruences in χ-calculus. The main
contributions and results are as follows:

– We adapt the bisimulation definitions for π-calculus to χ-calculus in a natural
way. We find that in χ-calculus, the “open” and “closed” distinction common
in π-calculus disappears. Thus we close the conjecture proposed by Fu in [6].

– We show that there are essentially two different bisimulation congruences,
i.e. open congruence and open barbed congruence. In the weak case, the
difference can be characterized by one axiom. Moreover, if we only consider
the strong case, all sensible bisimulation equivalences collapse to just one.

– As a byproduct, we solve the problem of characterizing weak barbed equiva-
lent in χ-calculus. It is essentially Definition 13. Moreover, according to our
results, [6] actually gives an axiomatization for this relation.

In short, the key results of this paper can be reflected by the following diagram.

≈cl=≈ce= ≈cg⊂ ≈cb

‖ ‖
≈o⊂ ≈ob

We now present some concluding remarks.

– In this paper, we only consider χ-calculus without mismatch operator [7].
This is not a very serious disadvantage, since besides some technical details,
the main results of this paper can be adapted. Here, we would like to men-
tion Fu and Yang’s paper [7]. In their paper, open barbed congruence is
also studied, and they also mention barbed equivalence ([7], Definition 34).
However, they argue that open barbed congruence is contained in barbed
equivalence and the inclusion is strict. To support this, they invite an ex-
ample: P1 = [x �= y]τ.(P + τ.[x �= y]τ.(P + τ)) and P2 = [x �= y]τ.(P + τ),
for which they “show” that they are open barbed congruent but not barbed
equivalent. In our point of view, this is definitely incorrect since P1|〈x|y〉 and
P2|〈x|y〉 are not open barbed congruent. Thus P1 and P2 are also not open
barbed congruent! Currently we are performing a similar systematic study
of χ-calculus with mismatch.

– It is worth emphasizing that the results in this paper have strong implications
to other calculi falling into the family of fusion-style mobile calculi. Since all
of these calculi share a similar communication mechanism, we believe the
results in this paper generally also hold in, among others, update-calculus,
fusion calculus, explicit fusion calculus.

– As we have said in Section 1, [4] discusses a similar problem in the setting
of asynchronous π-calculus. To prove the analogous result for weak barbed
congruences, Fournet and Gonthier actually have to use a Universal Pi-
calculus Machine for their initial environment, and they use it to simulate
the execution of a Gödelized version of a program. This leads to a very long
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technical proof. Our proof technique, like that of Fournet and Gonthier, also
involves creating an initial sophisticated environment. However, thanks to
the mechanism of χ-calculus, our environment is much simpler.
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