
Available online at www.sciencedirect.com

Information and Computation 206 (2008) 492–519

www.elsevier.com/locate/ic

On finite alphabets and infinite bases

Taolue Chen a,1, Wan Fokkink a,b,*, Bas Luttik a,c, Sumit Nain d

aCWI, Department of Software Engineering, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
bVrije Universiteit Amsterdam, Department of Computer Science, De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands
cEindhoven University of Technology, Department of Computer Science, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

dRice University, Department of Computer Science, 6100 S. Main Street, Houston, TX 77005-1892, USA

Received 15 December 2006; revised 15 January 2007
Available online 15 December 2007

Abstract

Van Glabbeek presented the linear time–branching time spectrum of behavioral semantics. He studied these semantics
in the setting of the basic process algebra BCCSP, and gave finite, sound and ground-complete, axiomatizations for most
of these semantics. Groote proved for some of van Glabbeek’s axiomatizations that they are ω-complete, meaning that an
equation can be derived if (and only if) all of its closed instantiations can be derived. In this paper, we settle the remaining
open questions for all the semantics in the linear time–branching time spectrum, either positively by giving a finite sound
and ground-complete axiomatization that is ω-complete, or negatively by proving that such a finite basis for the equational
theory does not exist. We prove that in case of a finite alphabet with at least two actions, failure semantics affords a finite
basis, while for ready simulation, completed simulation, simulation, possible worlds, ready trace, failure trace and ready
semantics, such a finite basis does not exist. Completed simulation semantics also lacks a finite basis in case of an infinite
alphabet of actions.
© 2007 Elsevier Inc. All rights reserved.

Keywords: Concurrency; Process algebra; Equational theory; ω-Completeness

1. Introduction

Labeled transition systems constitute a fundamental model of concurrent computation which is widely used
in light of its flexibility and applicability. They model processes by explicitly describing their states and their
transitions from state to state, together with the actions that produce them. Several notions of behavioral

∗ Corresponding author. Address: Vrije Universiteit Amsterdam, Department of Computer Science, De Boelelaan 1081a, 1081 HV Ams-
terdam, The Netherlands. Fax: +31 20 598 7728.

E-mail addresses: chen@cwi.nl (T. Chen), wanf@cs.vu.nl (W. Fokkink), s.p.luttik@tue.nl (B. Luttik), sumitnain@yahoo.com (S. Nain).
1 Supported by the Dutch Bsik project BRICKS (Basic Research in Informatics for Creating the Knowledge Society).

0890-5401/$ - see front matter © 2007 Elsevier Inc. All rights reserved.
doi:10.1016/j.ic.2007.09.003

T. Chen et al. / Information and Computation 206 (2008) 492–519 493

Fig. 1. The linear time–branching time spectrum.

semantics have been proposed, with the aim to identify those states of labeled transition systems that afford the
same observations. The lack of consensus on what constitutes an appropriate notion of observable behavior for
reactive systems has led to a large number of proposals for behavioral semantics for concurrent processes.

Van Glabbeek [11, 12] presented the linear time–branching time spectrum of behavioral semantics for finitely
branching, concrete, sequential processes. These semantics are based on simulation notions or on decorated
traces. Fig. 1 depicts the linear time–branching time spectrum, where an arrow from one semantics to another
means that the source of the arrow is finer than the target.

To give further insight into the identifications made by the respective behavioral equivalences in his spectrum,
van Glabbeek [11, 12] studied them in the setting of the process algebra BCCSP, which contains only the basic
process algebraic operators from CCS and CSP, but is sufficiently powerful to express all finite synchronization
trees. In particular, he associated with every behavioral equivalence in his spectrum a sound equational axiom-
atization, a collection of equations of behaviorally equivalent BCCSP terms. Most of the axiomatizations were
also shown to be complete in the sense that whenever two closed BCCSP terms are behaviorally equivalent, then
the axiomatization admits a derivation in equational logic of the corresponding equation.

In this paper, we shall consider a more general form of completeness. We call an axiomatization complete
if any two behaviorally equivalent BCCSP terms (not just the closed ones) can be equated; completeness for
closed terms only we shall henceforth refer to as ground-completeness. A complete axiomatization of a behavioral
semantics yields a purely syntactic characterization, independent of the underlying labeled transition system and
of the actual details of the definition of the behavioral semantics. Such a bridge between syntax and semantics
plays an important role in both the theory and practice of process algebras. From the point of view of theory, it
gives insight in the semantic relationships between the syntactic constructions. From the point of view of practice,
a complete axiomatization can be used to perform system verifications in a purely syntactic way using general
purpose theorem provers or proof checkers, and form the foundation of purpose-built axiomatic verification
tools like, e.g., PAM [17].

A complete axiomatization enjoys the property that whenever all closed instances of an equation can be
derived from it, then the equation itself can also be derived from it; this property is generally referred to as ω-
completeness. For theorem proving applications, it is particularly convenient if an axiomatization isω-complete,
because it means that proofs by (structural) induction can be avoided in favor of purely equational reasoning;
see [18]. In [15], it was argued that ω-completeness is desirable for the partial evaluation of programs. Notable
examples of ω-incomplete axiomatizations in the literature are the �K��-calculus (see [28]) and the equational
theory of CCS [25]. Therefore, laws such as commutativity of parallelism, which are valid in the initial model but

494 T. Chen et al. / Information and Computation 206 (2008) 492–519

which cannot be derived, are often added to the latter equational theory. For such extended equational theories,
ω-completeness results were presented in the setting of CCS [24,4] and ACP [8].

In universal algebra, a complete axiomatization is referred to as a basis for the equational theory of the algebra
it axiomatizes. The existence of a finite basis for an equational theory is a classic topic of study in universal
algebra (see, e.g., [21]), dating back to Lyndon [19]. Murskiĭ [27] proved that “almost all” finite algebras (namely
all quasi-primal ones) are finitely based, while in [26] he presented an example of a three-element algebra that has
no finite basis. Henkin [16] showed that the algebra of naturals with addition and multiplication is finitely based,
while Gurevic̆ [14] showed that after adding exponentiation the algebra is no longer finitely based. McKenzie
[20] settled Tarski’s finite basis problem in the negative, by showing that the general question whether a finite
algebra is finitely based is undecidable.

Given a finite ground-complete axiomatization, to prove that it is a finite basis, it suffices to establish that it is
ω-complete. Groote [13] proposed a general technique to prove that an axiomatization isω-complete. He applied
his technique to establish ω-completeness of several of van Glabbeek’s ground-complete axiomatizations. In
practice, Groote’s technique only works in case of an infinite alphabet of actions.2 On the other hand, in case of
a singleton alphabet, most of the semantics in the linear time–branching time spectrum collapse to either trace
or completed trace semantics, in which case the equational theory of BCCSP is known to have a finite basis.
However, in case of a finite alphabet with at least two actions, for most semantics in the linear time–branching
time spectrum it remained unknown whether the equational theory of BCCSP has a finite basis. In this paper,
we settle all remaining open questions.

We give a summary of what was known up to now, and which open questions remained. Moller [24] proved
that the sound and ground-complete axiomatization for BCCSP modulo bisimulation equivalence isω-complete,
independent of the cardinality of the alphabet A. Groote [13] presented ω-completeness proofs for completed
trace equivalence (again independent of the cardinality of A), for trace equivalence (if |A| > 1), and for ready
and failure equivalence (if |A| = ∞). Van Glabbeek [12, p. 78] noted (without proof) that Groote’s technique of
inverted substitutions can also be used to prove that the ground-complete axiomatizations for BCCSP modulo
simulation, ready simulation and failure trace equivalence are ω-complete if |A| = ∞. The same observation
can be made regarding possible worlds semantics. Blom et al. [5] proved that BCCSP modulo ready trace
equivalence does not have a finite sound and ground-complete axiomatization if |A| = ∞. Aceto et al. [1] proved
such a negative result for two-nested simulation and possible futures equivalence, for any A. If |A| = 1, then
all semantics from completed traces up to ready simulation coincide with completed trace semantics, while
simulation coincides with trace semantics. And there exists a finite basis for the equational theories of BCCSP
modulo completed trace and trace equivalence if |A| = 1.

In this paper, we prove that there is a finite basis for the equational theory of BCCSP modulo failure semantics,
in case 1 < |A| < ∞. For all the other question marks in Table 1 we prove that such a finite basis does not exist.
This paper combines results that were presented in [6,7,9,10]. Only the negative result on failure traces, in Section
4, was not published before.

The semantics considered in this paper have a natural formulation as a preorder relation �, where p � q if
p is in some way simulated by q, or if the decorated traces of p are included in those of q. The corresponding
equivalence relation � is defined as: p � q if and only if both p � q and q � p . Recently, Aceto et al. [2]
gave an algorithm that, given a sound and ground-complete axiomatization for BCCSP modulo a preorder no
finer than ready simulation, produces a sound and ground-complete axiomatization for BCCSP modulo the
corresponding equivalence. Moreover, if the original axiomatization for the preorder is ω-complete, then so
is the resulting axiomatization for the equivalence. So for the positive result regarding failure semantics, the
stronger result is obtained by considering failure preorder. On the other hand, the negative results become more
general if they are proved for the equivalence relations.

This paper is set up as follows. Section 2 presents basic definitions regarding the linear time–branching
time spectrum, the process algebra BCCSP and equational logic. Section 3 contains a positive result for failure
preorder. The remainder of the paper presents negative results: Section 4 for failure trace equivalence, Section
5 for any equivalence from possible worlds up to ready pairs, Section 6 for simulation equivalence, Section 7

2 In case of an infinite alphabet, occurrences of action names in axioms are interpreted as variables, as otherwise most of the axiomatizations
mentioned in this introduction would be infinite.

T. Chen et al. / Information and Computation 206 (2008) 492–519 495

for completed simulation equivalence and Section 8 for ready simulation equivalence. We conclude in Section
9 with an overview of the positive and negative results pertaining to the existence of finite bases for BCCSP
modulo the equivalences in the linear time–branching time spectrum.

2. Preliminaries

2.1. The linear time–branching time spectrum

Van Glabbeek presented in [11, 12] the linear time–branching time spectrum of behavioral semantics for finitely
branching, concrete processes. In this section, we define the preorder and equivalence relations in this spectrum
(except for two-nested simulation and possible futures, which will not play a role in our paper).

A labeled transition system consists of a set of states S , with typical element s, and a transition relation
→ ⊆ S × L× S , where L is a set of labels ranged over by a. We write s a−→ s′ if the triple (s, a, s′) is an element of
→. The set I(s) consists of those labels a for which there exists s′ such that s a−→ s′. Let a1 · · · ak be a sequence
of labels; we write s a1···ak−−−−→ s′ if there are states s0, . . . , sk such that s = s0

a1−→ · · · ak−−→ sk = s′.
First we define six semantics based on decorated versions of execution traces.

Definition 1 (Decorated traces). Assume a labeled transition system.

• A sequence a1 · · · ak , with k ≥ 0, is a trace of a state s if there is a state s′ such that s a1···ak−−−−→ s′ . It is a completed
trace of s if moreover I(s′) = ∅.

• A pair (a1 · · · ak ,B), with k ≥ 0 and B ⊆ A, is a ready pair of a state s0 if there is a sequence of transitions
s0

a1−→ · · · ak−−→ sk with I(sk) = B. It is a failure pair of s0 if there is such a sequence with I(sk) ∩ B = ∅.
• sequence B0a1B1 . . . akBk , with k ≥ 0 and B0, . . . ,Bk ⊆ A, is a ready trace of a state s0 if there is a sequence

of transitions s0
a1−→ · · · ak−−→ sk with I(si) = Bi for i = 0, . . . , k . It is a failure trace of s0 if there is such a

sequence with I(si) ∩ Bi = ∅ for i = 0, . . . , k .

We write s�� s
′ with � ∈ {T, CT, R, F, RT, FT} if the traces, completed traces, ready pairs, failure pairs, ready

traces, or failure traces, respectively, of s are included in those of s′. We write s �� s′ if both s�� s
′ and s′ �� s.

Next we define five semantics based on simulation.

Definition 2 (Simulations). Assume a labeled transition system.

• A binary relation R on states is a simulation if s0 R s1 and s0
a−→ s′0 imply s1

a−→ s′1 for some state s′1 with
s′0 R s′1.• A simulation R is a completed simulation if s0 R s1 and I(s0) = ∅ imply I(s1) = ∅.

• A simulation R is a ready simulation if s0 R s1 and a �∈ I(s0) imply a �∈ I(s1).
• The set D of deterministic states is the largest set such that for each s ∈ D and a ∈ I(s) there is exactly one

state s′ such that s a−→ s′, and always s′ ∈ D. A state s0 is a possible world of a state s1 if s0 is deterministic
and s0 R s1 for some ready simulation R.

• A bisimulation is a symmetric simulation.

We write s�� s
′ with � ∈ {S, CS, RS} if there exists a simulation, completed simulation, or ready simulation R,

respectively, with s R s′, and we write s �PW s
′ if the possible worlds of s are included in those of s′. We write

s �� s′ if both s�� s
′ and s′ �� s.

2.2. BCCSP

BCCSP is a basic process algebra for expressing finite process behavior. Its signature consists of the constant
0, the binary operator _ + _, and unary prefix operators a_, where a ranges over a nonempty set A of actions,
called the alphabet, with typical elements a, b, c. Intuitively, closed BCCSP terms, denoted by p , q, r, represent

496 T. Chen et al. / Information and Computation 206 (2008) 492–519

finite process behaviors, where 0 does not exhibit any behavior, p + q offers a choice between the behaviors of
p and q, and ap executes action a to transform into p . This intuition is captured by the transition rules below,
in which a ranges over A. They give rise to A-labeled transitions between BCCSP terms.

ax
a−→ x

x
a−→ x′

x + y a−→ x′
y

a−→ y ′

x + y a−→ y ′ .

We also assume a countably infinite set V of variables; x, y , z denote elements of V , and X , Y ,Z denote finite
subsets of V . Open BCCSP terms, which may contain variables from V , are denoted by t, u, v,w. A term t is
called a prefix if t = at′ for some a ∈ A and for some term t′.

The preorders � in the linear time–branching time spectrum are all precongruences with respect to BCCSP,
meaning that p1 � q1 and p2 � q2 imply p1 + p2 � q1 + q2 and ap1 � aq1 for a ∈ A. Likewise, the equivalences
in the spectrum are all congruences with respect to BCCSP.

A (closed) substitution, denoted by �, �, �, maps variables in V to (closed) BCCSP terms. For open BCCSP
terms t and u, and a preorder � (or equivalence �) on closed BCCSP terms, we define t � u (or t � u) if
�(t)� �(u) (respectively, �(t) � �(u)) for all closed substitutions �.

It is technically convenient to extend the operational semantics to open BCCSP terms. We do not include
additional rules for variables, which effectively means that they do not exhibit any behavior. The depth of a
BCCSP term t, denoted by depth(t), is the length of the longest trace that t can exhibit, i.e.,

depth(t) = max{k | ∃a1 · · · ak , t′.t a1···ak−−−−→ t′}.

Let k ≥ 0. If t a1···ak−−−−→ t′ for some sequence of actions a1 · · · ak , and t′ has the variable x as a summand, then
we say that x occurs in t at depth k . The set of variables with an occurrence in t at depth k will be denoted by
vark(t); the set of all variables with an occurrence in t will be denoted by var(t). Similarly, if t a1···ak−−−−→ t′ for some
sequence of actions a1 · · · ak , and the action a is an element of I(t′), then we say that a occurs in t at depth k . The
set of actions with an occurrence in t at depth k will be denoted by actk(t).

We provide some basic facts.

Lemma 3

1. If t �T u, then depth(t) ≤ depth(u).

2. If t �T u, then actk(t) ⊆ actk(u) for all k ≥ 0.Moreover, if t �F u, then also act0(u) ⊆ act0(t), so I(t) = I(u).
3. Suppose |A| > 1. If t �T u, then, for all variables x, t a1···ak−−−−→ x + t′ for some term t′ implies u a1···ak−−−−→ x + u′ for

some term u′. Hence vark(t) ⊆ vark(u) for all k ≥ 0.

Proof

1. If depth(t) = k , then there exists a sequence of actions a1 · · · ak and a term t′ such that t a1···ak−−−−→ t′. Let � be the
closed substitution defined by �(x) = 0 for all x ∈ V . Then a1 · · · ak is a trace of �(t) and hence, since t �T u,
of �(u). From the definition of � it is then clear that there exists a term u′ such that u a1···ak−−−−→ u′. It follows
that depth(t) = k ≤ depth(u).

2. First suppose t �T u and let a ∈ actk(t) for some k ≥ 0. Then there exists a sequence of actions a1 · · · ak and
a term t′ such that t a1···ak−−−−→ t′ and a ∈ I(t′). Now, let � be the closed substitution defined by �(x) = 0 for all
x ∈ V . Then a1 · · · aka is a trace of �(t) and hence, since t �T u, of �(u). From the definition of � it is then
clear that there exists a term u′ such that u a1···ak−−−−→ u′ with a ∈ I(u′), so a ∈ actk(u).
Next, suppose t �F u and let � be the closed substitution defined by �(x) = 0 for all x ∈ V . Then (�,A \ I(t))
(with � denoting the empty sequence) is a failure pair of �(t), and hence of �(u), so I(u) ∩ (A \ I(t)) = ∅;
it follows that act0(u) ⊆ act0(t). Since t �F u implies t �T u, and hence act0(t) ⊆ act0(u), it immediately
follows that I(t) = act0(t) = act0(u) = I(u).

T. Chen et al. / Information and Computation 206 (2008) 492–519 497

3. Let x be a variable and suppose t a1···ak−−−−→ x + t′ for some term t′. Let m ≥ depth(u), let a and b be two distinct
elements of A, and let � be the closed substitution defined by �(x) = amb0 and �(y) = 0 for any variable y /= x.

Then �(t)
a1···ak+mb−−−−−−→ 0 (with ak+1 · · · ak+m = am). Since �(t)�T �(u), a1 · · · ak+mb is also a trace of �(u). Since

m ≥ depth(u), clearly u a1···ai−−−−→ z + u′ for some i < m, where �(z)
ai+1···ak+mb−−−−−−−→ p . By the definition of �, z = x

and i = k , so u a1···ak−−−−→ x + u′ for some term u′. Clearly it follows that x ∈ vark(t) implies x ∈ vark(u) for all
variables x, so vark(t) ⊆ vark(u). �

Note that Lemma 3(3) fails in case |A| = 1, for if A = {a}, then x �T ax. In the remainder of this paper we will
assume that |A| > 1.

An equational axiomatization is a collection of equations t ≈ u, and an inequational axiomatization is a
collection of inequations t � u. The (in)equations in an axiomatization E are referred to as axioms. If E is an
equational axiomatization, we write E � t ≈ u if the equation t ≈ u is derivable from the axioms in E using the
rules of equational logic (reflexivity, symmetry, transitivity, substitution and closure under BCCSP contexts):

t ≈ t

t ≈ u

u ≈ t

t ≈ uu ≈ v

t ≈ v

t ≈ u

�(t) ≈ �(u)

t ≈ u

at ≈ au

t1 ≈ u1t2 ≈ u2

t1 + t2 ≈ u1 + u2
.

For the derivation of an inequation t � u from an inequational axiomatization E of inequations, denoted by
E � t � u, the second rule, for symmetry, is omitted.

It is well known that whenever there exists a derivation of the equation t ≈ u from an equational axiomati-
zation E, then there exists a derivation in which

• every application of the symmetry rule has an axiom as its premise; and
• every application of the substitution rule has either an axiom or the conclusion of an application of the

symmetry rule as its premise.

This fact can be used to simplify proofs by induction on equational derivations. Let E′ be the collection of
equations that consists of all substitution instances of the axioms in E and their symmetric variants, i.e.,

E′ = {�(t) ≈ �(u) | (t ≈ u) ∈ E or (u ≈ t) ∈ E, � a substitution}.
By a normalized derivation of an equation t ≈ u from E we shall henceforth mean a derivation of the equation
t ≈ u from E′ by means of the rules of equational logic but not using the symmetry and substitution rules. Now
if E � t ≈ u, then there exists a normalized derivation of t ≈ u from E.

An axiomatizationE is sound modulo � (or �) if for any open BCCSP terms t, u, fromE � t� u (orE � t ≈ u)
it follows that �(t) �� (u) (or �(t) � �(u)) for all closed substitutions �. E is ground-complete modulo � (or
�) if p � q (or p � q) implies E � p � q (or E � p ≈ q), for all closed BCCSP terms p and q; it is complete
modulo � (or �) IF p � q (or p � q) implies E � p � q (or E � p ≈ q) for all BCCSP terms p and q. Finally,
E is ω-complete if for any open BCCSP terms t and u with E � �(t) � �(u) (or E � �(t) ≈ �(u)) for all closed
substitutions �, we have E � t � u (or E � t ≈ u). A preorder � or an equivalence � is said to be finitely based
if there exists a finite axiomatization E that is sound and complete modulo � or �.

The core axioms A1-4 [23] for BCCSP below are ω-complete, and sound and ground-complete modulo
bisimulation equivalence. Since every equivalence in the linear time–branching time spectrum (see Fig. 1) includes
bisimulation equivalence, it follows that the axioms A1-4 are sound modulo every equivalence in the spectrum.
Furthermore, each of the axioms A1-4 induces two inequations, obtained by replacing ≈ by � or �, that are
both sound modulo every preorder in the linear time–branching time spectrum.

A1 x + y ≈ y + x,
A2 (x + y)+ z ≈ x + (y + z),
A3 x + x ≈ x,
A4 x + 0 ≈ x.

We write t = u if terms t and u are equal modulo associativity, commutativity and idempotence of +,
and modulo absorption of 0 summands. For every preorder � and equivalence � in the linear time–branching

498 T. Chen et al. / Information and Computation 206 (2008) 492–519

time spectrum, soundness of the axioms A1-4 ensures that whenever we write t = u, then also t� u and t � u. Fur-
thermore, we will (tacitly) assume that the axioms A1-4 above are included in every axiomatization E considered
below, so that from t = u we may always conclude t � u and t ≈ u.

Let {t1, . . . , tn} be a finite set of terms; we use summation
∑{t1, . . . , tn} to denote t1 + · · · + tn, adopting the

convention that the summation of the empty set denotes 0. Furthermore, we write ant to denote the term obtained
from t by prefixing it n times with a, i.e., a0t = t and an+1t = a(ant). When writing terms, we adopt as binding
convention that _ + _ and summation bind weaker than a_. With abuse of notation, we often let a finite set X
denote the term

∑
x∈X x.

Note that, with the above notational conventions, for every term t there always exist a finite family of actions
{ai | i ∈ I}, a finite family of terms {ti | i ∈ I}, and a finite set of variables X ⊆ V such that

t =
∑
i∈I
aiti + X.

A term t is called a summand of u (notation: t � u) if it is a variable or a prefix and u = u+ t.

2.3. Two proof techniques

We give a short introduction to two proof techniques that will be exploited in the remainder of this paper.
The first technique is especially designed for BCCSP, while the second technique is more generally applicative.

2.3.1. Cover equations
This technique, which was introduced in [9], aims to obtain an explicit description of the equational theory

of BCCSP modulo some equivalence.
The central idea is that if an equation t ≈ u is sound for BCCSP modulo some equivalence in the linear

time–branching time spectrum, then u+ t ≈ t and t + u ≈ u are sound as well; and from the last two equations
one can derive t ≈ u. Therefore, to extend an axiomatization consisting of A1-4 to a complete axiomatization
of some equivalence in the linear time–branching time spectrum, it suffices to add sound equations of the form
x + u ≈ u and at + u ≈ u; such equations are called cover equations.

In order to further limit the form of the cover equations that need to be considered, one usually tries to
establish the following properties for the equivalence � at hand:

1. If at + u+ bv � u+ bv with a /= b, then at + u � u.
2. If t � u, then t and u contain the same variables, at the same depths.
3. If t + x � u+ x, and x is not a summand of t + u,3 then t � u.

If the properties above hold, then it suffices to only consider cover equations of the form at + au1 + · · · + aun ≈
au1 + · · · + aun.

By Lemma 3(3), the second property holds for all equivalences finer than or as fine as trace equivalence, in
case |A| > 1. The first and third properties have to be proved for each equivalence separately. Proving the first
property is generally easy, but proving the third property can be a challenge.

When the cover equations have been classified, one can proceed in two ways. Either one can determine a finite
basis among the cover equations, or one can determine an infinite family of cover equations that obstructs a
finite basis. We will follow the latter approach in Section 5, considering only equations of depth at most one, for
congruences that are finer than or as fine as ready equivalence and coarser than or as coarse as possible worlds
equivalence. Moreover, the cover equations technique turned out to be helpful in finding the infinite families of
equations that obstruct a finite basis in Sections 4, 6, 7 and 8.

3 To see that this side condition is needed, note that, in general, x + x � 0+ x but x �� 0.

T. Chen et al. / Information and Computation 206 (2008) 492–519 499

2.3.2. Proof-theoretic technique
To prove that no finite basis exists for an equivalence � it suffices to provide an infinite family of equations

tn ≈ un (n = 1, 2, 3, . . .) that are all sound modulo �, and to associate with every finite set of sound equations E
a property PE that holds for all equations derivable from E, but does not hold for at least one of the equations
tn ≈ un. It then follows that for every finite set of sound equations E there exists a sound equation tn ≈ un that
is not derivable from E. It follows that every finite set of sound equations is necessarily incomplete, and hence
� is not finitely based.

We shall apply this proof-theoretic technique in Section 4 and in Sections 6–8, and in each case we proceed
in three steps:

1. We provide an infinite family of sound equations tn ≈ un (n = 1, 2, 3, . . .) and a suitable family of properties
Pn (n = 1, 2, 3, . . .) such that the property Pn fails for all the equations ti ≈ ui with i ≥ n.

2. We establish that the property Pn holds for every substitution instance of any sound equation t ≈ u with
depth(t), depth(u) ≤ n.

3. We prove that Pn holds for every equation derivable from a collection E of sound equations t ≈ u with
depth(t), depth(u) ≤ n; the latter proof is by induction on normalized derivations, using (2) for the base case.

3. Failures

In this section, we consider the failures preorder �F. Van Glabbeek [12] presented a sound and ground-
complete axiomatization of the failures preorder consisting of the axioms A1-4, the axiom

F1 a(x + y) � ax + a(y + z)

and the axiom ax� ax + az. Note that the latter axiom is actually superfluous, since it can be obtained from F1
by substituting 0 for y and applying A3.

Below, we provide a basis for the equational theory of BCCSP modulo �F. We shall prove that A1-4+F1 is
a basis if |A| = ∞ (see Corollary 9). To get a basis for the case that 1 < |A| < ∞, it will be necessary to add the
following axiom:

F2A
∑
a∈A axa � ∑

a∈A axa + y ,

where {xa | a ∈ A} is a family of distinct variables and y �∈ {xa | a ∈ A}. To see that F2A is sound modulo �F, let �
be an arbitrary closed substitution and consider a failure pair (a1 · · · ak ,B) of �

(∑
a∈A axa

)
. If k > 0, then clearly

(a2 · · · ak ,B) is a failure pair of �(xa1), so (a1 · · · ak ,B) is a failure pair of �
(∑

a∈A axa + y). On the other hand, if
k = 0, then note that I (

�
(∑

a∈A axa
)) = A, soB = ∅, and hence (a1 · · · ak ,B) is a failure pair of �

(∑
a∈A axa + y).

To see that F2A′ is not sound modulo �F if A′ is a proper subset of A, let � be the closed substitution such that
�(y) = b0 for some b �∈ A′; then I (

�
(∑

a∈A′ axa
)) = A′ /= A′ ∪ {b} = I (

�
(∑

a∈A′ axa + y)). Since A1-4+F1 are
sound modulo �F independent of the alphabet, it also follows that F2A cannot be derived from A1-4+F1.

Axiom F2A expresses that additional variable summands may be added to a term t whenever I(t) = A. The
following lemma confirms that the proviso I(t) = A is necessary.

Lemma 4. If t �F u, then var0(t) ⊆ var0(u), and if moreover I(t) /= A, then var0(t) = var0(u).

Proof. Suppose t �F u.
That var0(t) ⊆ var0(u) follows immediately from Lemma 3(3).
To prove that I(t) /= A implies var0(t) = var0(u), suppose, towards a contradiction, that a �∈ I(t) for some

a ∈ A and that x ∈ var0(u) \ var0(t) for some x ∈ V . Define a closed substitution � by �(x) = a0 and �(y) = 0 for
y /= x. Since a �∈ I(t) and x �∈ var0(t), (�, {a}) (with � the empty trace) is a failure pair of �(t). Since x ∈ var0(u),
(�, {a}) is not a failure pair of �(u+ Y). This contradicts the assumption that t �F u. We conclude that I(t) /= A

implies var0(t) = var0(u). �

500 T. Chen et al. / Information and Computation 206 (2008) 492–519

According to Lemma 4, all the variable summands of t are also summands of u. Moreover, if u has a variable
summand x that t does not have, then I(t) = A, so we can derive t � t + x with an application of F2A. We
proceed to establish, for all a ∈ A, a relation between a prefix summand at′ of t and the sum of all similar prefix
summands au′ of u. To conveniently express this relation, we first introduce some further notation.

Let t be a term, and let A′ ⊆ A; we define the restriction t�A′ of t to A′ by

t�A′ =
∑

{at′ | a ∈ A′ & at′ � t}.

Recall that t �F u if, for all closed substitutions �, the failure pairs of �(t) are included in �(u). The preorder
�F fails to have certain structural properties with respect to the operations of BCCSP; in particular, we cannot
in general conclude from at �F au that t �F u. It will therefore be technically convenient to also have notation
for a preorder that is slightly coarser than �F. We define the length of a failure pair (a1 · · · ak ,B) as the length
of the sequence a1 · · · ak , and we write t �1

F u if, for all closed substitutions �, the failure pairs of length ≥ 1
of �(t) are included in those of �(u). We leave it to the reader to verify that t �F u if and only if t �1

F u and
I(u) ⊆ I(t), and that at �1

F au implies t �1
F u.

Lemma 5. If t �1
F
u, then, for every summand at′ of t, at′ �F u�{a}.

Proof. Suppose t �1
F u. Let at′ be a summand of t and let � be a closed substitution.

We first prove that the failure pairs of length ≥ 1 of �(at′) are included in those of �(u�{a}), and then we will
conclude that also the failure pairs of length 0 of �(at′) are included in those of �(u�{a}).

Consider a failure pair (a1 · · · ak ,B) of �(at′) with k ≥ 1. Then (a1 · · · ak ,B) is a failure pair of �(t). By our
assumption that t Fprecplusu, it follows that (a1 · · · ak ,B) is a failure pair of �(u). From this we cannot directly
conclude that u has a summand au′ such that (a1 · · · ak ,B) is a failure pair of �(au′), as u may have a variable
summand x such that (a1 · · · ak ,B) is a failure pair of �(x). To ascertain that u nevertheless also has the desired
summand au′, we define a modification �′ of � such that for all 	 < k and for all terms v, �(v) and �′(v) have the
same failure pairs (b1 · · · b	,B), while (a1 · · · ak ,B) is not a failure pair of �′(x) for all x ∈ V .

We obtain �′(x) from �(x) by replacing subterms ap at depth k − 1 by 0 if a �∈ B and by aa0 if a ∈ B. That is

�′(x) = chopk−1(�(x))

with chopm for all m ≥ 0 inductively defined by

chopm(0) = 0,
chopm(p + q) = chopm(p)+ chopm(q),

chop0(ap) =
{

0 if a �∈ B
aa0 if a ∈ B,

chopm+1(ap) = a chopm(p).

We first prove two properties concerning the failure pairs of chopm(p), for m ≥ 0 and closed terms p .

I. For all 	 ≤ m, the closed terms p and chopm(p) have the same failure pairs (b1 · · · b	,B).
We apply induction on m.

Base case: Since the summandsof chop0(p)areaa0 for alla ∈ I(p) ∩ B,I(p) ∩ B = ∅ if andonly ifI(chop0(p)) ∩
B = ∅.

Inductive case: Let 	 ≤ m+ 1; we distinguish cases according to whether 	 = 0 or 	 > 0. If 	 = 0, then, since
I(p) = I(chopm+1(p)), it follows that I(p) ∩ B = ∅ if and only if I(chopm+1(p)) ∩ B = ∅, so (b1 · · · b	,B) is
a failure pair of p if and only if it is a failure pair of chopm+1(p). If 	 > 0, then, since p b1−→ p ′ if and only
if chopm+1(p)

b1−→ chopm(p ′) and, by the induction hypothesis, p ′ and chopm(p ′) have the same failure pairs
(b2 · · · b	,B), (b1 · · · b	,B) is a failure pair of p if and only if it is a failure pair of chopm+1(p).

T. Chen et al. / Information and Computation 206 (2008) 492–519 501

II. chopm(p) does not have any failure pair (b1 · · · bm+1,B).

We apply induction on m.

Base case: Since the summands of chop0(p) are aa0 with a ∈ I(p) ∩ B, chop0(p) does not have a failure pair
(b1,B).

Inductive case: By induction, for closed terms q, chopm(q) does not have failure pairs (b2 · · · bm+2,B). Since
the transitions of chopm+1(p) are chopm+1(p)

b1−→ chopm(p ′) for p b1−→ p ′, it follows that chopm+1(p) does not
have failure pairs (b1 · · · bm+2,B).

We proceed to prove that �′ has the desired properties mentioned above.

A. For all 	 < k and for all terms v, �(v) and �′(v) have the same failure pairs (b1 · · · b	,B),
We apply induction on 	.

Base case: From the definition of chopk−1 it follows that I(�′(x)) ∩ B = I(�(x)) ∩ B for all x ∈ V . Hence,
I(�(v)) ∩ B = ∅ if and only if I(�′(v)) ∩ B = ∅.

Inductive case: Let 	+ 1 < k . We prove for each summand of v that applying � or �′ gives rise to the same
failure pairs (b1 · · · b	+1,B). By property (I), �(x) and �′(x) = chopk−1(�(x)) have the same failure pairs
(b1 · · · b	+1,B). Furthermore, by induction, for each summand b1v

′ of v, �(v′) and �′(v′) have the same
failure pairs (b2 · · · b	+1,B); so �(b1v

′) and �′(b1v
′) have the same failure pairs (b1 · · · b	+1,B).

B. (a1 · · · ak ,B) is not a failure pair of �′(x) for all x ∈ V .

This is immediate from property (II).

Now, since (a1 · · · ak ,B) is a failure pair of �(at′), (a2 · · · ak ,B) is a failure pair of �(t′), and hence, by property
(A), of �′(t′). It follows that (a1 · · · ak ,B) is a failure pair of �′(t), and hence, by our assumption that t �1

F u, of
�′(u). Since, according to property (B), u does not have a variable summand x such that (a1 · · · ak ,B) is a failure
pair of �′(x), and since a1 = a, umust have a summand au′ such that (a1 · · · ak ,B) is a failure pair of �′(au′) of u.
Then, again by property (A), (a1 · · · ak ,B) is a failure pair of �(au′) and hence of �(u�{a}).
We have now established that the failure pairs of length ≥ 1 of �(at′) are included in those of �(u�{a}). In
particular, since �(at′) has the failure pair (a, ∅), so does �(u�{a}), and hence I(�(at′)) = {a} = I(�(u�{a})). As an
immediate consequence we get that also the failure pairs of length 0 of �(at′) are included in those of �(u�{a}).
We conclude that at′ �F u�{a}. �

We now proceed to establish that if the inequation at′�∑
j∈J auj is sound modulo the failures preorder, then

it can be derived from A1-4+F1+F2A. For the case that I(t) /= A, we need the following lemma.

Lemma 6. If at �F
∑
j∈J auj and I(t) /= A, then there exists j ∈ J such that I(uj) ⊆ I(t) and var0(uj) ⊆ var0(t).

Proof. Suppose at �F
∑
j∈J uj and I(t) /= A. Let b ∈ A \ I(t) and define the closed substitution � by �(x) = 0 if

x ∈ var0(t) and �(x) = b0 if x �∈ var0(t). Then (a,A \ I(t)) is a failure pair of �(at), so there exists j ∈ J such that
(a,A \ I(t)) is a failure pair of auj . From (A \ I(t)) ∩ I(�(uj)) = ∅ it follows that I(uj) ⊆ I(t) and var0(uj) ⊆
var0(t). �

The following lemma constitutes the crucial step in our completeness proof.

Lemma 7. If at �F
∑
j∈J auj , then A1-4+F1+F2A � at � ∑

j∈J auj.

Proof. We apply induction on the depth of t.
Note that from at �F

∑
j∈J auj it follows that t �1

F
∑
j∈J uj . Let t�I(t) = ∑

i∈I biti . Then, for all i ∈ I , by
Lemma 5 biti �F

∑
j∈J uj�{bi}, and hence by the induction hypothesis A1-4+F1+F2A � biti � ∑

j∈J uj�{bi}. It
follows that

A1-4+F1+F2A � t�I(t) =
∑
i∈I
biti �

∑
i∈I

∑
j∈J
uj�{bi} =

∑
j∈J
uj�I(t). (1)

502 T. Chen et al. / Information and Computation 206 (2008) 492–519

We distinguish two cases.

Case 1: I(t) /= A.

According to Lemma 6 that there exists j0 ∈ J such that I(uj0) ⊆ I(t) and var0(uj0) ⊆ var0(t), and hence

uj0�I(t) + var0(t) = uj0 + var0(t). (2)

We get the following derivation:

at = a
(
t�I(t) + var0(t)

)

�a

⎛
⎝∑
j∈J
uj�I(t) + var0(t)

⎞
⎠ (by (1))

= a

⎛
⎝uj0 +

∑
j∈J
uj�I(t) + var0(t)

⎞
⎠ (by (2))

�auj0 + a
⎛
⎝∑
j∈J
uj + var0(t)

⎞
⎠ (by F1)

= auj0 + a
∑
j∈J
uj (by Lemma 3(3))

�auj0 +
∑
j∈J
auj (by F1)

=
∑
j∈J
auj.

Case 2: I(t) = A.

If I(t) = A, then, since var0(t) ⊆ ⋃
j∈J var0(uj) by Lemma 3(3), with an application of F2A

t = t�I(t) + var0(t)�t�I(t) +
⋃
j∈J

var0(uj). (3)

We now get the following derivation:

at = a(t�I(t) + var0(t))

�a(t�I(t) +
⋃
j∈J

var0(uj)) (by (3))

�a

⎛
⎝∑
j∈J
uj�I(t) +

⋃
j∈J

var0(uj)

⎞
⎠ (by (1))

= a
∑
j∈J
uj (since I(t) = A)

�
∑
j∈J
auj (by F1)

Concluding, we have proved that A1-4+F1+F2A � at � ∑
j∈J auj . �

We are now in a position to establish that A1-4+F1+F2A constitutes a complete axiomatization of the failures
preorder.

T. Chen et al. / Information and Computation 206 (2008) 492–519 503

Theorem 8. If 0 < |A| < ∞, then A1-4+F1+F2A is a complete axiomatization of BCCSP modulo failures preorder,
i.e., for all terms t and u, if t �F u, then A1-4+F1+F2A � t � u.

Proof. Suppose t �F u, and suppose t = ∑
i∈I aiti + var0(t). Then, for all i ∈ I , by Lemma 5 aiti �F u�{ai}, so

by Lemma 7, A1-4+F1+F2A � aiti � �{ai}u. Clearly, since I(t) = I(u) by Lemma 3(3), it follows that

A1-4+F1+F2A � t�I(t) � u�I(u).

There are now two cases:

Case 1: I(t) /= A.

Then var0(t) = var0(u) by Lemma 4, so clearly

A1-4+F1+F2A � t = t�I(t) + var0(t) � u�I(u) + var0(u) = u.

Case 2: I(t) = A.

Then var0(t) ⊆ var0(u) by Lemma 4, so t = t�I(t) + var0(t)� t�I(t) + var0(u) by F2A, and hence

A1-4+F1+F2A � t = t�I(t) + var0(t) � u�I(u) + var0(u) = u.

The proof is now complete. �
Groote [13] proved that in case |A| = ∞, BCCSP modulo failures equivalence has a finite basis. Here, we can
obtain the same result for failure preorder, by copying the proofs of Lemma 7 and Theorem 8, but omitting in
both proofs “Case 2”, which is only relevant for finite alphabets.

Corollary 9. If |A| = ∞, then A1-4+F1 is a complete axiomatization of BCCSP modulo failures preorder.

4. Failure traces

In this section, we consider failure trace equivalence �FT. Blom et al. [5] gave a finite axiomatization that is
sound and ground-complete for BCCSP modulo �FT. It consists of axioms A1-4 together with

FT ax + ay ≈ ax + ay + a(x + y)
RS a(bx + by + z) ≈ a(bx + by + z)+ a(bx + z),

where a, b range over A. Groote [13] applied his technique of inverted substitutions to prove that this axiomati-
zation is ω-complete in case A is infinite.

In this section, we consider the case 1 < |A| < ∞. We prove that then there does not exist a finite sound and
ground-complete axiomatization for BCCSP modulo �FT that is ω-complete as well, and therefore failure trace
equivalence is not finitely based over BCCSP. The corner stone for this negative result is the following infinite
family of equations en (n ≥ 1):

an+1x + a(anx + x)+ a
∑

b∈A\{a}
an(b0 + x) ≈ a(anx + x)+ a

∑
b∈A\{a}

an(b0 + x).

These equations are sound modulo �FT. The idea is that, given a closed substitution �, either I(�(x)) ⊆ {a}, in
which case the failure traces of �(an+1x) are included in those of �(a(anx + x)). Or c ∈ I(�(x)) for some c /= a,
in which case the failure traces of �(an+1x) are included in those of �(a

∑
b∈A\{a} an(b0 + x)).

We shall use the proof-theoretic technique to show that �FT is not finitely based. The intuition behind our
proof is that if the axioms in E have depth at most n, then the summand an+1x at the left-hand side of en cannot

504 T. Chen et al. / Information and Computation 206 (2008) 492–519

be eliminated by means of a derivation from E. There is, however, one complication: the summand an+1x may
be “glued together” with other summands. For example, using the axioms FT and RS we can derive for n ≥ 1:

an+1x + a
∑

b∈A\{a}
an(b0 + x) ≈ a

⎛
⎝anx +

∑
b∈A\{a}

an(b0 + x)
⎞
⎠.

The right-hand side of the equation above does not have a summand an+1x, so the property of having a summand
an+1x is not preserved. Note that the right-hand side still does have a summand of the form av such that anx �FT v(
take v =

(
anx + ∑

b∈A\{a} an(b0 + x)
))

. We shall be able to show that if the equation t ≈ u is derivable from a

collection of sound equations of terms with a depth ≤ n, then it satisfies the following property P FT
n :

If t, u �FT a(a
nx + x)+ a∑

b∈A\{a} an(b0 + x), then t has a summand at′ such that anx �FT t
′, then

u has a summand au′ such that anx �FT u
′.

In Lemma 10, we shall first establish that a substitution instance of a sound equation of terms with a depth
≤ n satisfies PFT

n . Then, in Proposition 11, we prove that PFT
n is preserved in derivations from a collection of

sound equations of depth ≤ n. Finally, we shall conclude that the family of equations en (n ≥ 1) obstructs a finite
basis, because the left-hand side has the summand an+1x, while the right-hand side does not have a summand
au′ with an+1x �FT au

′.

Lemma 10. Suppose that t �FT u, let n ≥ 1 be a natural number greater than or equal to the depth of t and u, and
suppose

�(t), �(u) �FT a(a
nx + x)+ a

∑
b∈A\{a}

an(b0 + x). (4)

Then �(t) has a summand av such that anx �FT v if and only if �(u) has a summand aw such that anx �FT w.

Proof. Clearly, by symmetry, it suffices to only consider the implication from left to right. So suppose that �(t)
has a summand av such that anx �FT v; then there are two cases:

Case 1: t has a variable summand z and �(z) has av as a summand.

Since t �FT u, by Lemma 3(3), u also has z as summand. Therefore, since �(z) has av as a summand, so does
�(u).

Case 2: t has a summand at′ such that anx �FT �(t
′).

First, we establish that

�(t′) an−−→ x and varm(�(t′)) = ∅ for all 0 ≤ m < n. (5)

From the assumption 4 we conclude using Lemmas 3(3, 3) that I(�(t)) = {a}, var0(�(t
′)), varn(�(t′)) ⊆ {x}

and varm(�(t′)) = ∅ for all 0 < m < n. It follows that a�(t′) �FT �(t), and hence

a�(t′) �FT a(a
nx + x)+ a

∑
b∈A\{a}

an(b0 + x). (6)

Now, let �1 be a closed substitution with �1(x) = 0. Since an0 �FT �1(�(t
′)), we have �1(�(t

′)) an−−→ 0. Since

varn(�(t′)) ⊆ {x}, it follows that either �(t′) an−−→ x or �(t′) an−−→ 0.

Note that, to establish 5, it remains to prove �(t′) a
n

� 0 and x �∈ var0(�(t
′)). For this we consider �(t′) under

another closed substitution �2 that satisfies �2(x) = c0 with c an action distinct from a. Then, according to 6,
a�2(�(t

′)) �FT a(a
nc0 + c0)+ a∑

b∈A\{a} an(b0 + c0), and since the closed term at the right-hand side does
not exhibit the failure trace

∅ a · · · ∅ a︸ ︷︷ ︸
n+1 times

A,

T. Chen et al. / Information and Computation 206 (2008) 492–519 505

we have �2(�(t
′)) a

n

� 0, so �(t′) a
n

� 0. Furthermore, since anx �FT �(t
′), we have anc0 �FT �2(�(t

′)). So c �∈
I(�2(�(t

′))), and hence x �∈ var0(�(t
′)). This completes the proof of (5).

We proceed to prove that u has a summand au′ such that

�(u′) an−−→ x and var0(�(u
′)) = ∅. (7)

From (5) and the assumption that depth(�(t)) ≤ n it follows that there exist 	 < n, a variable y and a term t′′

such that t′ a	−−→ y + t′′ and �(y) an−	−−−→ x.

Define Z as the set of variables z such that �(z) has x as a summand, i.e.,

Z = {z ∈ V | x ∈ var0(�(z))}.

Since y has an occurrence in t′ at depth 	 < n, it follows from (5) that x �∈ var0(�(y)), so y �∈ Z . Therefore, we
can define a closed substitution �3 by

�3(z) =
⎧⎨
⎩
an+10 if z = y

c0 if z ∈ Z
0 otherwise.

where c is again an action distinct from a.

Since t a−→ t′ a	−−→ y + t′′, �3(y)
an+1−−−→ 0, c �∈ I(t′), and x �∈ var0(�(t

′)) implies var0(t
′) ∩ Z = ∅, �3(t) admits

the failure trace

∅ a {c} a∅ · · · a∅︸ ︷︷ ︸
	+n times

a {a},

which by the assumption t �FT u is then also a failure trace of �3(u). Since depth(u′) < n, and in view of the

definition of �3, this clearly means that u has a summand au′ such that c �∈ I(�3(u
′)) and u′ a	−−→ y + u′′ for

some term u′′. Since �(y) an−	−−−→ x, it follows that �(u′) an−−→ x. Moreover, from c �∈ I(�3(u
′)) it follows that

var0(u
′) ∩ Z = ∅, and hence x �∈ var0(�(u

′)). So we have now established (7).

From the assumption (4) we conclude, by Lemmas 3(3, 3), that actm(�(u′)) ⊆ {a} for all 0 ≤ m < n and that
varm(�(u′)) = ∅ for all 0 < m < n, and (7) adds that �(u′) an−−→ x, and var0(�(u

′)) = ∅. These facts together
easily imply anx �FT �(u

′). �
We shall now prove that the property PFT

n holds for every equation derivable from a collection of equations
between terms of depth less than or equal to n. By the preceding lemma, it suffices to prove that the transitivity
and congruence rules preserve PFT

n .

Proposition 11. Let E be a finite axiomatization over BCCSP that is sound modulo �FT, let n ≥ 1 be a natural
number greater than or equal to the depth of any term in E, and suppose E � t ≈ u and

t, u �FT a(a
nx + x)+ a

∑
b∈A\{a}

an(b0 + x).

Then t has a summand at′ such that anx �FT t
′ if and only if u has a summand au′ such that anx�FTu

′.

Proof. We prove the proposition by induction on the depth of a normalized derivation of the equation t ≈ u

from E.
To establish the base case, note that if the derivation of t ≈ u consists of an application of the reflexivity rule,

then the proposition is immediate, and if there exist terms v and w and a substitution � such that �(v) = t and

506 T. Chen et al. / Information and Computation 206 (2008) 492–519

�(w) = u and (v ≈ w) ∈ E or (w ≈ v) ∈ E, then v �FT w by the soundness of E, so the proposition follows by
Lemma 10.

For the inductive step we distinguish cases according to the last rule applied.

Case 1: the last rule applied is the transitivity rule.

Then there exist a term v and normalized derivations of t ≈ v and v ≈ u. By the soundness of E, v �FT
u�FT a(a

nx + x)+ a∑
b∈A\{a} an(b0 + x). Hence, by the induction hypothesis, v has a summand av′ such that

anx �FT v
′, and therefore, again by induction, u has a summand au′ such that anx�FTu

′.
Case 2: the last rule applied is the congruence rule for a.

Then t = at′ and u = au′ for some terms t′ and u′, and there exists a normal derivation of t′ ≈ u′. Since t
consists of a single summand at′, anx �FT t

′. So by the soundness of E, anx �FT u
′.

Case 3: the last rule applied is the congruence rule for +.

Then t = t1 + t2 and u = u1 + u2 for some terms t1, t2, u1 and u2, and there exist normal derivations of t1 ≈ u1
and t2 ≈ u2. Since t has a summand at′ with anx �FT t

′, so does either t1 or t2. Assume, without loss of
generality, that t1 has a summand at′ such that anx �FT t

′. Since I(u) = {a}, clearly u1 �FT u �FT a(a
nx +

x)+ a∑
b∈A\{a} an(b0 + x). So by the induction hypothesis u1, and hence u, has a summand au′ with anx�FT u

′.
�

Now we are in a position to prove the main theorem of this section.

Theorem 12. Let 1 < |A| < ∞. Then the equational theory of BCCSP modulo �FT is not finitely based.

Proof. Let E be a finite axiomatization over BCCSP that is sound modulo �FT. Let n ≥ 1 be greater than or
equal to the depth of any term in E.

Note that a(anx + x)+ a∑
b∈A\{a} an(b0 + x) does not contain a summand au′ such that anx �FT u

′. So
according to Proposition 11, the equation

an+1x + a(anx + x)+ a
∑

b∈A\{a}
an(b0 + x) ≈ a(anx + x)+ a

∑
b∈A\{a}

an(b0 + x),

which is sound modulo �FT, cannot be derived from E. It follows that every finite collection of equations that
are sound modulo �FT is necessarily incomplete, and hence the equational theory of BCCSP modulo �FT is
not finitely based. �

5. From ready pairs to possible worlds

In this section, we consider all congruences � that finer than or as fine as ready equivalence and coarser than
or coarse as possible worlds equivalence (i.e., �PW ⊆ � ⊆ �R). We prove that if 1 < |A| < ∞, then no finite
sound and ground-complete axiomatization for BCCSP modulo � is ω-complete.

In [11, 12], van Glabbeek gave a finite axiomatization that is sound and ground-complete for BCCSP modulo
�R. It consists of axioms A1-4 together with

R a(bx + z1)+ a(by + z2) ≈ a(bx + by + z1)+ a(by + z2),
where a, b range over A. In case A is infinite, Groote [13] proved with his technique of inverted substitutions that
this axiomatization is ω-complete. So in that case, ready equivalence is finitely based over BCCSP.

Note that �PW ⊆ �RT ⊆ �R. Blom et al. [5] proved that if |A| = ∞, then no finite axiomatization is sound
and ground-complete for BCCSP modulo �RT. They also proved that if |A| < ∞, then a finite sound and
ground-complete axiomatization for BCCSP modulo �RT is obtained by extending axioms A1-4 with

RT a
(∑|A|

i=1(bixi + biyi)+ z
)

≈ a
(∑|A|

i=1 bixi + z
)

+ a
(∑|A|

i=1 biyi + z
)

where a, b1, . . . , b|A| range over A.

T. Chen et al. / Information and Computation 206 (2008) 492–519 507

In [11, 12], van Glabbeek gave a finite axiomatization that is sound and ground-complete for BCCSP modulo
�PW. It consists of axioms A1-4 together with

PW a(bx + by + z) ≈ a(bx + z)+ a(by + z),

where a, b range over A. If A is infinite, then Groote’s technique of inverted substitutions can be applied in
a straightforward fashion to prove that this axiomatization is ω-complete. So in that case, possible worlds
equivalence is finitely based over BCCSP.

To prove the result mentioned above, originally we started out with the following infinite family of equations
en for n > |A|:

a(x1 + · · · + xn)+
n∑
i=1

a(x1 + · · · + xi−1 + xi+1 + · · · + xn) ≈
n∑
i=1

a(x1 + · · · + xi−1 + xi+1 + · · · + xn).

These equations are sound modulo �PW. Namely, it is not hard to see that for each closed substitution �, the
possible worlds of the summand �(a(x1 + · · · + xn)) at the left-hand side of �(en) are included in the possible
worlds of the right-hand side of �(en).

However, our expectation that the equations en for n > |A| would obstruct a finiteω-complete axiomatization
turned out to be false. Namely, en can be obtained by (1) applying to en−1 a substitution �with �(xi) = xi + xn for
i = 1, . . . , n− 1, and (2) adding the summand a(x1 + · · · + xn−1) at the left- and right-hand side of the resulting
equation. Hence, from e|A|+1 (together with A1-3) we can derive the en for n > |A|.

Therefore, we then moved to a more complicated family of equations (see Definition 19), similar in spirit to
the equations en. However, while cancellation of the summand a(x1 + · · · + xn−1) from en for n > |A| + 1 leads to
an equation that is again sound modulo �PW, such a cancellation is not possible for the new family of equations
(see Lemma 21). We prove that they do obstruct a finite ω-complete axiomatization (see Theorem 24).

5.1. Cover equations

We introduce a class of cover equations (cf. Section 2.3), and show that they are sound modulo �PW. We prove
that each equation that involves terms of depth ≤ 1 and that is sound modulo �R can be derived from the cover
equations. Moreover, if such an equation contains no more than k summands at its left- and right-hand side,
then it can be derived from cover equations containing no more than k summands at their left- and right-hand
sides (see Proposition 18).

Definition 13. A term
∑
i∈I aYi is a cover of a term aX if:

1. ∀Z ⊆ X with |Z | ≤ |A| − 1, ∃i∈I(Z ⊆ Yi ⊆ X); and

2. ∀Z ⊆ X with |Z | = |A|, ∃i∈I(Z ⊆ Yi).

This is denoted by
∑
i∈I aYi�aX . We say that aX + ∑

i∈I aYi ≈
∑
i∈I aYi is a cover equation.

Example.
∑n
i=1 a(x1 + · · · + xi−1 + xi+1 + · · · + xn)� a(x1 + · · · + xn) for n > |A|. Hence the equations that were

given at the start of this section are cover equations.

If |X | ≤ |A| − 1, then by Definition 13(1), t � aX implies that aX is a summand of t. So the only interesting cover
equations are the ones where |X | ≥ |A| (cf. Definition 19).

We proceed to prove that the cover equations are sound modulo �PW.

Lemma 14. If
∑
i∈I aYi � aX , then aX + ∑

i∈I aYi �PW
∑
i∈I aYi.

Proof. Let � be an arbitrary closed substitution. It suffices to show that the possible worlds of �(aX) are also
possible worlds of �(

∑
i∈I aYi). Let ap be a possible world of �(aX). Then p is a possible world of �(X). By

508 T. Chen et al. / Information and Computation 206 (2008) 492–519

the definition of possible worlds equivalence, p has exactly |I(�(X))| summands, one summand bpb for each
b ∈ I(�(X)); and for each b ∈ I(�(X)) there is an xb ∈ X such that �(xb)

b−→ qb and pb is a possible world
of qb. Let Z = {xb | b ∈ I(�(X))}. Then I(�(Z)) = I(�(X)). Clearly, p is a possible world of �(Z). Note that
|Z | ≤ |I(�(X))|. We distinguish two cases.

Case 1: |I(�(X))| ≤ |A| − 1.

By Definition 13(1), Z ⊆ Yi0 ⊆ X for some i0 ∈ I . Then clearly p is a possible world of �(Yi0). Thus ap is a
possible world of �

(∑
i∈I aYi

)
.

Case 2: |I(�(X))| = |A|.
By Definition 13(2), Z ⊆ Yi0 for some i0 ∈ I . Then I(�(Z)) ⊆ I(�(Yi0)), and hence, since I(�(Z)) = A, it follows
that I(�(Yi0)) = I(�(Z)). From Z ⊆ Yi0 and I(�(Yi0)) = I(�(Z)) we conclude that every possible world of Z
is a possible word of Yi0 . Since p is a possible world of �(Z), it follows that p is a possible world of �(Yi0).
Thus ap is a possible world of �

(∑
i∈I aYi

)
. �

We proceed to prove that each sound equation t ≈ u modulo �R where t and u have depth 1 and contain no
more than k summands, can be derived from the cover equations with |I | ≤ k (see Proposition 18). First we
present some notations.

Definition 15. Ck = {
aX + ∑

i∈I aYi ≈
∑
i∈I aYi |

∑
i∈I aYi�aX ∧ |I | ≤ k

}
for k ≥ 0.

Definition 16. R1 denotes the set of equations t ≈ u with depth(t) = depth(u) ≤ 1 that are sound modulo �R.
Let S(t) denote the number of distinct summands (modulo A1-4) unequal to 0 of term t. For k ≥ 0,

Rk1 = {t ≈ u ∈ R1 | S(t) ≤ k ∧ S(u) ≤ k}.

In the remainder of this section we assume that A = {a1, . . . , a|A|}.
We present part of the proof of Proposition 18 as a separate lemma, as this lemma will be reused in the proof

of Lemma 22.

Lemma 17. If t ≈ u ∈ R1, then t and u contain exactly the same summands aX with |X | ≤ |A| − 1.

Proof. Let aX be a summand of t where X = {x1, . . . , xk} with k ≤ |A| − 1. We define �(xi) = ai0 for i = 1, . . . , k
and �(y) = ak+10 for y �∈ X . Then (a, {a1, . . . , ak}) is a ready pair of �(t), so it must be a ready pair of �(u). Since
depth (u) ≤ 1, this implies that aX is a summand of u.

By symmetry, each summand aX with |X | ≤ |A| − 1 of u is also a summand of t. �
Proposition 18. Ck � Rk1 for k ≥ 0.

Proof. Let t ≈ u ∈ Rk1 . Consider a summand aX of t with |X | ≥ |A|. We prove that a subset of the summands of
u form a cover of aX .

Case 1: Z = {z1, . . . , zk} ⊆ X with k ≤ |A| − 1.

We define �(zi) = ai0 for i = 1, . . . , k , �(x) = 0 for x ∈ X \ Z , and �(y) = a|A|0 for y �∈ X . The ready pair
(a, {a1, . . . , ak}) of �(aX) must also be a ready pair of �(u). Since depth (u) ≤ 1, this implies that there is a
summand aY of u with Z ⊆ Y ⊆ X .

Case 2: Z = {z1, . . . , z|A|} ⊆ X .

We define �(zi) = ai0 for i = 1, . . . , |A| and �(y) = 0 for y �∈ Z . The ready pair (a,A) of �(aX) must also be a
ready pair of �(u). Since depth(u) ≤ 1, this implies that there is a summand aY of u with Z ⊆ Y .

Concluding, in view of Definition 13, u = u1 + u2 with u1 � aX . Since S(u1) ≤ S(u) ≤ k , we have aX + u1 ≈ u1 ∈
Ck . So Ck � aX + u ≈ u.

By Lemmas 3(3) and 17, each summand x ∈ V and aX with |X | ≤ |A| − 1 of t is a summand of u. Moreover,
Ck � aX + u ≈ u for each summand aX of t with |X | ≥ |A|. Hence, Ck � t + u ≈ u.

By symmetry, also Ck � t + u ≈ t. So Ck � t ≈ t + u ≈ u. �

T. Chen et al. / Information and Computation 206 (2008) 492–519 509

5.2. Cover equations a1Xn +
n ≈
n for n ≥ |A|

We now turn our attention to a special kind of cover equation a1Xn +
n ≈
n for n ≥ |A|, where
n contains
n+ 1 summands (see Definition 19 and Lemma 20). If a term u is obtained by eliminating one or more summands
from
n, then a1Xn + u ��R u (see Lemma 21); moreover, if a summand of a term u is not a summand of a1Xn +
n,
then
n ��R u (see Lemma 22). These two facts together imply that a1Xn +
n ≈
n cannot be derived from Cn

(see Proposition 23). Propositions 18 and 23 form the corner stones of the proof of Theorem 24, which contains
the main result of this section.

Definition 19. Let n ≥ |A|. Let x1, . . . , xn, x̂|A|, . . . , x̂n be distinct variables. Let X|A|−1 and Xn denote {x1, . . . , x|A|−1}
and {x1, . . . , xn}, respectively. We define that
n denotes the term

a1X|A|−1 +
|A|−1∑
i=1

a1(Xn \ {xi})+
n∑

i=|A|
a1(X|A|−1 ∪ {xi , x̂i}).

Lemma 20.
n � a1Xn for n ≥ |A|.
Proof. Let Z ⊆ Xn with |Z | ≤ |A| − 1. We need to find a summand a1Y of
n with Z ⊆ Y ⊆ Xn. We distinguish
two cases. On the one hand, if Z ⊆ X|A|−1, then Z ⊆ X|A|−1 ⊆ Xn. On the other hand, if Z �⊆ X|A|−1, then Z ⊆
Xn \ {xi} ⊆ Xn for some 1 ≤ i ≤ |A| − 1.

Let Z ⊆ Xn with |Z | = |A|. We need to find a summand a1Y of
n with Z ⊆ Y . Again there are two cases. On
the one hand, if X|A|−1 ⊂ Z , then Z ⊆ X|A|−1 ∪ {xi , x̂i} for some |A| ≤ i ≤ n. On the other hand, if X|A|−1 �⊂ Z , then
then Z ⊆ Xn \ {xi} for some 1 ≤ i ≤ |A| − 1. �
Lemma 21. Let n ≥ |A|. If the summands of u are a proper subset of the summands of
n, then a1Xn + u ��R u.

Proof. Suppose that all summands of u are summands of
n, but that some summand a1Y of
n is not a summand
of u. We consider the three possible forms of Y , and for each case give a closed substitution � such that some
ready pair of �(a1Xn) is not a ready pair of �(u).

Case 1: Y = X|A|−1.

We define �(xi) = ai0 for i = 1, . . . , |A| − 1, �(xi) = 0 for i = |A|, . . . , n, and �(y) = a|A|0 for y �∈ Xn. Then the
ready pair (a1, {a1, . . . , a|A|−1}) of �(a1Xn) is not a ready pair of �(u).

Case 2: Y = Xn \ {xi0} for some 1 ≤ i0 ≤ |A| − 1.

We define �(xi) = ai0 for i = 1, . . . , i0 − 1, i0 + 1, . . . , |A|, �(xi) = 0 for i = i0 and i = |A| + 1, . . . , n, and �(y) =
ai00 for y �∈ Xn. Then the ready pair (a1, {a1, . . . , ai0−1, ai0+1, . . . , a|A|}) of �(a1Xn) is not a ready pair of �(u).

Case 3: Y = X|A|−1 ∪ {xi0 , x̂i0} for some |A| ≤ i0 ≤ n.

We define �(xi) = ai0 for i = 1, . . . , |A| − 1, �(xi0) = a|A|0, and �(y) = 0 for y �∈ X|A|−1 ∪ {xi0}. Then the ready
pair (a1, {a1, . . . , a|A|}) of �(a1Xn) is not a ready pair of �(u). �

Lemma 22. Let n ≥ |A|. If
n �R u, then each summand of u is a summand of a1Xn +
n.
Proof. Let
n �R u. By Lemma 3(3), depth (u) = 1. By Lemma 3(3), u does not have summands x ∈ V , so clearly
each summand of u is of the form a1Y . If |Y | ≤ |A| − 1, then by Lemma 17, a1Y is a summand of
n. Let |Y | ≥ |A|;
we prove that a1Y is a summand of a1Xn +
n.

By Lemma 3(3), Y ⊆ Xn ∪ {x̂i | i=|A|, . . . , n}. We distinguish two cases.

Case 1: x̂i ∈ Y for some |A| ≤ i ≤ n.

Suppose, towards a contradiction, that there is a y ∈ Y \ (X|A|−1∪{xi , x̂i}). We define �(y) = a10, �(x̂i) = a20,
and �(z) = 0 for z �∈ {y , x̂i}. The ready pair (a1, {a1, a2}) of �(a1Y) is not a ready pair of �(
n), contradicting

n �R u.

510 T. Chen et al. / Information and Computation 206 (2008) 492–519

Suppose, towards a contradiction, that there is an x ∈ (X|A|−1∪{xi , x̂i}) \ Y . Note that x̂i ∈ Y implies x /= x̂i .
We define �(x) = a10, �(x̂i) = a20 and �(z) = 0 for z �∈ {x, x̂i}. The ready pair (a1, {a2}) of �(a1Y) is not a ready
pair of �(
n), contradicting
n �R u.
Hence, Y = X|A|−1 ∪ {xi , x̂i}.

Case 2: Y ⊆ Xn.

Since |Y | ≥ |A|, there is a Z = {z1, . . . , z|A|−1} ⊆ Y with Z �⊆ X|A|−1. We define �(zi) = ai0 for i = 1, . . . , |A| − 1,
�(y) = 0 for y ∈ Y \ Z , and �(z) = a|A|0 for z �∈ Y . The ready pair (a1, {a1, . . . , a|A|−1}) of �(a1Y) must be a
ready pair of �(
n), which implies that there is a summand a1Y

′ of
n with Z ⊆ Y ′ ⊆ Y . Since Z �⊆ X|A|−1
and Y ⊆ Xn, it follows that Y ′ = Xn \ {xi0} for some 1 ≤ i0 ≤ |A| − 1. Hence, either Y = Xn or Y = Xn \ {xi0}.

Concluding, each summand of u is a summand of a1Xn +
n. �
The following example shows that Lemma 22 would fail if |A| = 1.

Example. Let |A| = 1 and n = 1. Note that
1 = a10 + a1(x1 + x̂1) and a1X1 = a1x1. Since |A| = 1, a10 + a1(x1 +
x̂1) �R a1x̂1 + a10 + a1(x1 + x̂1). However, a1x̂1 is not a summand of a1x1 + a10 + a1(x1 + x̂1).
Proposition 23. Cn�a1Xn +
n ≈
n for n ≥ |A|.
Proof. Suppose, towards a contradiction, that there is a derivation of a1Xn +
n ≈
n using only equations
in Cn: a1Xn +
n = u0 ≈ u1 ≈ · · · ≈ uj =
n for some j ≥ 1. By Lemma 3(3), u1, . . . , uj have depth 1. Since
u0 = a1Xn +
n, uj =
n, and the equations in Cn are of the form aY + v ≈ v, there must be a 1 ≤ i ≤ j such
that ui−1 = a1Xn + ui and a1Xn is not a summand of ui . Since
n �R ui , Lemma 22 implies that all summands
of ui are summands of
n. Since a1Xn + ui �R ui , Lemma 21 implies that ui =
n. Hence, a1Xn +
n ≈
n can
be derived using a single application of an equation a1Y + v ≈ v ∈ Cn. Then �(Y) = Xn and �(v)+ w =
n for
some substitution� and termw. Since a1Xn + �(v) �R �(v) and�(v)+ w =
n, Lemma 21 implies that�(v) =
n.
However, a1Y + v ≈ v ∈ Cn implies S(v) ≤ n, and v does not contain summands from V , so clearly S(�(v)) ≤ n.
This contradicts the fact that S(�(v)) = S(
n) = n+ 1. Concluding, Cn�a1Xn +
n ≈
n. �
Theorem 24. Let 1 < |A| < ∞. Let � be a congruence that is included in ready equivalence and includes possible
worlds equivalence. Then the equational theory of BCCSP modulo � is not finitely based.

Proof. Let E be a finite axiomatization that is sound and ground-complete for BCCSP modulo a congruence �
that is included in ready equivalence and includes possible worlds equivalence. Suppose, towards a contradiction,
that E is ω-complete. By Lemmas 20 and 14, a1Xn +
n ≈
n for n ≥ |A| is sound modulo �PW, so also modulo
�. Then these equations can be derived from E. Let E1 denote the equations in E of depth ≤ 1. By Lemma 3(3),
E1 � a1Xn +
n ≈
n for n ≥ |A|.

Choose an n ≥ |A| such that S(t) ≤ n and S(u) ≤ n for each t ≈ u ∈ E1. Since E1 is sound modulo �, so also
modulo �R, it follows that E1 ⊆ Rn1 . By Proposition 18, Cn � E1. This implies that Cn � a1Xn +
n ≈
n, which
contradicts Proposition 23.

Concluding, E is not ω-complete. �

6. Simulation

In this section, we consider simulation equivalence �S. In [11, 12], van Glabbeek gave a finite axiomatization
that is sound and ground-complete for BCCSP modulo �S. It consists of axioms A1-4 together with

S a(x + y) ≈ a(x + y)+ ax,

where a ranges over A. In case A is infinite, Groote’s technique of inverted substitutions from [13] can be applied
in a straightforward fashion to prove that van Glabbeek’s axiomatization is ω-complete; see [6].

T. Chen et al. / Information and Computation 206 (2008) 492–519 511

An infinite supply of actions is crucial in this particular application of the inverted substitutions technique, for
we shall prove below that the equational theory of BCCSP modulo �S does not have a finite basis if 1 < |A| < ∞.
The corner stone for this negative result is the following infinite family of equations:

a(x +�n)+
∑
�∈An

a
(
x +��n

)
+ a
n ≈

∑
�∈An

a
(
x +��n

)
+ a
n (n ≥ 0).

Here, the
n are defined inductively as follows:{

0 = 0

n+1 = ∑

b∈A b
n.

Moreover, the �n and ��n are defined by:

�n = ∑
b1···bn∈An b1 · · · bn0

��n = ∑
b1···bn∈An\{�} b1 · · · bn0 for � ∈ An.

For any closed term p with depth(p) ≤ n, clearly p �S
n. So in particular, �n �S
n.
It is not hard to see that the equations above are sound modulo �S. The idea is that, given a closed substitution

�, either depth(�(x)) < n, in which case a(�(x)+�n) is simulated by a
n. Or some b1 · · · bn ∈ An is a trace of
�(x), in which case a(�(x)+�n) is simulated by a(�(x)+�b1···bn

n).
We shall prove below that �S is not finitely based, using the proof-theoretic technique, by showing that

whenever an equation t ≈ u is derivable from a set of sound axioms of depth ≤ n, then it satisfies the following
property P S

n :

if t, u �S
∑
�∈An a

(
x +��n

) + a
n, then t has a summand similar to a(x +�n) if and only if u has a
summand similar to a(x +�n).

We shall first establish in Lemma 26 that an equation satisfies P S
n if it is a substitution instance of a sound

equation of terms with a depth ≤ n. Then, in Proposition 27, we prove, using Lemma 26, that P S
n holds for every

equation derivable from a collection of sound equations E, provided that the depth of the terms in E does not
exceed n. From the proposition we can directly infer that the infinite family of equations above obstructs a finite
basis, because the left-hand side contains a summand similar to a(x +�n), while the right-hand side does not.

The following lemma constitutes an important step in the proof that P S
n is preserved by substitution instances

of sound equations of terms with a depth ≤ n.

Lemma 25. If a(x +�n) �S at �S
∑
�∈An a

(
x +��n

) + a
n, then at �S a(x +�n).

Proof. Since x +�n �S t, by Lemma 3(3), x is a summand of t. Clearly, there exists a term t′ that does not have
x as a summand such that t = x + t′ (modulo A3). Since a(x + t′) �S

∑
�∈An a(x +��n)+ a
n, by Lemma 3(3),

t′ is a closed term.
Weprove that t′ �S�n. Consider a closed substitution�with�(x)=an+10. Sincea(�(x)+t′)�S

∑
�∈An a(�(x)+

��n)+ a
n and clearly �(x)+ t′ ��S
n, it follows that �(x)+ t′ �S �(x)+��n for some � ∈ An. Hence t′ �S
an+10 +��n. Since at �S

∑
�∈An a

(
x +��n

) + a
n, by Lemma 3(3), depth(t′) ≤ depth (t) ≤ n. So t′ �S a
n0 +

��n �S �n.
Then at = a(x + t′)�S a(x +�n), and, by assumption, a(x +�n)�S at, so at �S a (x +�n). �
We shall now establish that substitution instances of sound equations of depth ≤ n satisfy P S

n .

Lemma 26. Suppose t �S u, let n > 1 be a natural number greater than or equal to the depth of t and u, and suppose

�(t), �(u) �S
∑
�∈An a(x +��n)+ a
n. Then �(t) has a summand similar to a(x +�n) if and only if �(u) has a

summand similar to a(x +�n).
Proof. Clearly, by symmetry, it suffices to only consider the implication from left to right. So suppose that �(t)
has a summand similar to a(x +�n); then there are two cases:

512 T. Chen et al. / Information and Computation 206 (2008) 492–519

Case 1: t has a variable summand z and �(z) has a summand similar to a(x +�n).
Since t �S u, by Lemma 3(3), u also has z as summand. Since �(z) has a summand similar to a(x +�n), the same
holds for �(u).

Case 2: t has a summand at′ and �(at′) �S a(x +�n).
Note that from �(t′) �S x +�n it follows by Lemma 3(3) that x is a summand of �(t′), and this means that t′
has a variable summand y with x a summand of �(y).

The following claim constitutes a crucial step in the remainder of the proof for this case.

Claim. The term u has a summand au′ such that, for every m ≥ 0 and for every variable z, if t′ a1···am−−−−→ z + v for
some term v, then u′ a1···am−−−−→ z + w for some term w.

Proof (Proof of Claim). We consider the terms t and u under a special closed substitution �, that we now proceed
to define. Let a and bbe distinct actions, and let �.	 : V → �>0 be an injection (which exists since V is countable);
then � is defined by

�(z) = a�z	·nb0 for all z ∈ V .

From the assumption that t �S u, it follows that �(t) �S �(u).
Since �(t) a−→ �(t′), there exists a closed term p such that �(u) a−→ p and �(t′) �S p .
To establish that u has a summand au′ such that �(t′) �S �(u

′), we argue that u cannot have a variable
summand z such that �(z) a−→ p . Recall that t′ has a variable summand y; since �(y) = a�y	·nb0 and �(t′) �S p ,
it follows that b has an occurrence at depth �y	 · n in p . Now assume towards a contradiction that z is a variable
summand of u such that �(z) a−→ p . Then p = a�z	·n−1b0, which, since clearly �y	 · n /= �z	 · n− 1, contradicts
that b occurs in p at depth �y	 · n in p . So u has a summand au′ such that �(t′) �S �(u

′).
Now suppose that t′ a1···am−−−−→ z + v for some term v. Then, since �(t′) �S �(u

′), there exists a closed term q

such that �(u′) a1···am−−−−→ q and �(z + v) �S q.
We shall now first prove that there exists u′′ such that u′ a1···am−−−−→ u′′ and �(u′′) = q. Assume towards a con-

tradiction that there is no such u′′. Then clearly there exist 	 < m, a variable z′, and a term u′′′ such that
u′ a1···a	−−−−→ z′ + u′′′ and �(z′) a	+1···am−−−−−−→ q. Since �(z′) = a�z′	·nb0, it follows that q = a�z′	·n−(m−)b0, and hence the
single occurrence of b in p is at depth �z′	 · n− (m−). Since 0 < m− 	 < n, it follows that b does not occur at
depth �z	 · n in q; this contradicts �(z + v) �S q.

So there exists u′′ such that u a1···am−−−−→ u′′ and �(u′′) = q. Since �(z + v) �S q = �(u′′) and �(z) = a�z	·nb0,

�(u′′) a�z	·n−−−→ b0. Hence, since depth(u′′) < n and �z	 > 0, there exists a variable z′, a term w, and 	 < n such

that u′′ a	−−→ z′ + w and �(z′) a�z	·n−	−−−−−→ b0. From the definition of � it is clear that �z	 · n− 	 = �z′	 · n. Since
	 ≤ depth(u′′) < n, it follows that 	 = 0, so �z′	 = �z	, and hence, since �.	 is an injection, z′ = z. We have
established that u′′ = z + w, and thereby the proof of the claim is complete. �

Now consider any a1 · · · an ∈ An. Since �n �S �(t
′) and depth(t′) < n, there exist 0 ≤ m < n, a variable z and a

term v such that t′ a1···am−−−−→ z + v and am+1 · · · an a trace of �(z). By our claim above, u′ a1···am−−−−→ z + w for some
termw. Since am+1 · · · an is a trace of �(z), it follows that a1 · · · an is a trace of �(u′). This holds for all a1 · · · an ∈ An,
so �n �S �(u

′).
Furthermore, recall that y is a summand of t′, and that x is a summand of �(y). Since t′ �−→ t′ (with � the

empty sequence of actions), by our claim it follows that u′ �−→ u+ w for some term w. So y is a summand of u′,
and hence x is a summand of �(u′).

We conclude that x +�n �S �(u
′), and hence a(x +�n) �S a�(u

′). From the assumption of the lemma that
�(u) �S

∑
�∈An a(x +��n)+ a
n it follows that a�(u′) �S

∑
�∈An a(x +��n)+ a
n. So, by Lemma 25, a�(u′) �S

a(x +�n). �
We shall now prove that P S

n holds for every equation derivable from a collection of equations between terms
of depth less than or equal to n. By the preceding lemma, it only remains to prove that the transitivity and
congruence rules preserve P S

n .

T. Chen et al. / Information and Computation 206 (2008) 492–519 513

Proposition 27. Let E be a finite axiomatization over BCCSP that is sound modulo �S, let n be a natural number

greater than the depth of any term in E, and suppose E � t ≈ u and t, u �S
∑
�∈An a(x +��n)+ a
n. Then t has a

summand similar to a(x +�n) if and only if u has a summand similar to a(x +�n).
Proof. We prove the proposition by induction on the depth of a normalized derivation of the equation t ≈ u

from E.
To establish the base case, note that if the derivation of t ≈ u consists of an application of the reflexivity

rule, then the proposition is immediate, and if there exist terms v and w and a substitution � such that �(v) = t,
�(w) = u, and (v ≈ w) ∈ E or (w ≈ v) ∈ E, then v �S w by the soundness of E, so the proposition follows from
Lemma 26.

For the inductive step we distinguish cases according to the last rule applied.
Case 1: the last rule applied is the transitivity rule.

Then there exist a term v and normalized derivations of t ≈ v and v ≈ u. By the soundness of E, v �S u �S∑
�∈An a

(
x +��n

) + a
n. So, by the induction hypothesis, v has a summand similar to a(x +�n), and hence,
again by the induction hypothesis, u has a summand similar to a(x +�n).

Case 2: the last rule applied is the congruence rule for a.

Then t = at′ and u = au′ for some terms t′ and u′, and there exists a normal derivation of t′ ≈ u′. Since t
consists of a single summand, at′ �S a(x +�n). So, by the soundness of E, u = au′ �S a(x +�n).

Case 3: the last rule applied is the congruence rule for +.

Then t = t1 + t2 and u = u1 + u2 for some terms t1, t2, u1 and u2, and there exist normal derivations of t1 ≈
u1 and t2 ≈ u2. Since t has a summand similar to a(x +�n), so does either t1 or t2. Assume, without loss
of generality, that t1 has a summand completed similar to a(x +�n). Then clearly I(t1) = I(u1) = {a}, so
t1, u1 �S t, u �S

∑
�∈An a(x +��n)+ a
n. By the induction hypothesis, it follows that u1, and hence u, has a

summand similar to a(x +�n). �
Now we are in a position to prove the main theorem of this section.

Theorem 28. Let 1 < |A| < ∞. Then the equational theory of BCCSP modulo �S is not finitely based.

Proof. Let E be a finite axiomatization over BCCSP that is sound modulo �S. Let n > 1 be greater than or equal
to the depth of any term in E.

Note that
∑
�∈An a

(
x +��n

) + a
n does not contain a summand similar to a(x +�n). So according to Propo-
sition 27, the equation

a(x +�n)+
∑
�∈An

a
(
x +��n

)
+ a
n ≈

∑
�∈An

a(x +��n)+ a
n ,

which is sound modulo �S, cannot be derived from E. It follows that every finite collection of equations that
are sound modulo �S is necessarily incomplete, and hence the equational theory of BCCSP modulo �S is not
finitely based. �

7. Completed simulation

In this section, we consider completed simulation equivalence �CS. In [11, 12], van Glabbeek gave a finite
axiomatization that is sound and ground-complete for BCCSP modulo �CS. It consists of axioms A1-4 together
with

CS a(bx + y + z) ≈ a(bx + y + z)+ a(bx + z),
where a, b range over A. We prove that the equational theory of BCCSP modulo �CS does not have a finite
basis if |A| > 1. (Note that our proof in this section also works in case |A| = ∞, whereas all the other proofs

514 T. Chen et al. / Information and Computation 206 (2008) 492–519

of negative results assume |A| < ∞.) The corner stone for this negative result is the following infinite family of
equations:

anx + an0 + an(x + y) ≈ an0 + an(x + y) (n ≥ 1).

It is not hard to see that these equations are sound modulo �CS. The idea is that, given a closed substitution
�, either �(x) cannot perform any action, in which case �(anx) is completed simulated by an0, or x can perform
some action, in which case �(anx) is completed simulated by �(an(x + y)).

We shall prove that there cannot be a finite sound axiomatization E for BCCSP modulo �CS from which
the equations above can all be derived. We apply the proof-theoretic technique, showing that if the axioms in
E have depth smaller than n and the equation t ≈ u is derivable from E, then it satisfies the following property
P CS
n :

if t, u �CS a
n0 + an(x + y), then t has a summand completed similar to anx if and only if u has a

summand completed similar to anx.

The crucial step is to prove that PCS
n holds for all substitution instances of sound equations of depth ≤ n (see

Lemma 29). The proof that the transitivity and congruence rules preserve PCS
n , in Proposition 31, will then be

analogous to our proof in the previous section that they preserve P S
n . We infer that the infinite family of equations

above obstructs a finite basis, by noting that the left-hand sides of the equations have a summand anx, while the
right-hand sides do not.

The following lemma constitutes an crucial step in the proof that substitution instance of sound equations
of depth ≤ n satisfy PCS

n .

Lemma 29. If at �CS a
n0 + an(x + y) and at an−−→ t′ with t′ = x, then at = anx.

Proof. We first prove by induction on n that if at �CS a
n0 + an(x + y), then at = an0 or at = anx or at = any or

at = an(x + y).
Suppose n = 1. Then I(t) = ∅ by Lemma 3(3) and var0(t) ⊆ {x, y} by Lemma 3(3), so t = 0 or t = x or t = y

or t = x + y .
Suppose n > 1. Then by Lemma 3(3) I(t) = {a} and by Lemma 3(3) var0(t) = ∅, so t = ∑

i∈I ati with I /= ∅.
Clearly, ati �CS a

n−10 + an−1(x + y), so by the induction hypothesis ati = an−10 or ati = an−1x or ati = an−1y or
ati = an−1(x + y), for all i ∈ I .

It remains to establish that ati = atj for all i, j ∈ I . Suppose, towards a contradiction, that ati /= atj for

some i, j ∈ I . Then clearly there exist t′i and t′j such that ati
an−1−−−→ t′i , atj

an−1−−−→ t′j and t′i /= t′j . Modulo symme-
try we can distinguish six cases, and in each of them it suffices to provide a closed substitution � such that
�(at) /�CS�(a

n0 + an(x + y)).
Cases 1,2,3: t′i = 0 and t′j = x or t′j = y or t′j = x + y .

Define � such that /� �(x) ��CS 0 and �(y) ��CS 0. Then �(t) /�CSa
n−10 (because �(t) an−1−−−→ �(t′j) ��CS 0), and

�(t) /�CSa
n−1�(x + y) (because �(t) an−1−−−→ �(ti) �CS 0 whereas �(x + y) ��CS 0). So �(at) /�CS�(a

n0 + an(x +
y)).

Cases 4,5: t′i = x and t′j = y or t′j = x + y .

Define � such that �(x) = 0 and �(y) ��CS 0. Then �(t) /�CS a
n−10 (because �(t) an−1−−−→ �(t′j) ��CS 0) and

�(t) /�CSa
n−1�(x + y) (because �(t) an−1−−−→ �(t′i) �CS 0 and �(x + y) ��CS 0). So �(at) /�CS�(a

n0 + an(x + y)).
Case 6: t′i = y and t′j = x + y .

Define � such that �(x) ��CS 0 and �(y) = 0. Then �(t) /�CS a
n−10 (because �(t) an−1−−−→ �(t′j) ��CS 0) and

�(t) /�CSa
n−1�(x + y) (because �(t) an−1−−−→ �(t′i) �CS 0 and �(x + y) ��CS 0). So �(at) /�CS �(a

n0 + an(x + y)).

T. Chen et al. / Information and Computation 206 (2008) 492–519 515

We have established that ati = atj for all i, j ∈ I , so we may conclude that if at �CS a
n0 + an(x + y), then

at = an0 or at = anx or at = any or at = an(x + y). If, moreover, at an−−→ t′ with t′ = x, then it is easy to de-
fine closed substitutions showing that at /= an0, at /= any and at /= an(x + y), so the proof of the lemma is
complete. �

In the following lemma we establish that substitution instances of sound equations of depth< n satisfy PCS
n .

Lemma 30. Suppose t �CS u, let n ≥ 1 be a natural number greater than the depth of t and u, and suppose
�(t), �(u)�CSa

n0 + an(x + y). Then �(t) has a summand anx if and only if �(u) has a summand anx.

Proof. Clearly, by symmetry, it suffices to establish the direction from left to right. So suppose�(t)has a summand
anx; then there are two cases:
Case 1: t has a variable summand z and �(z) has a summand anx.

Then, since t �CS u, by Lemma 3(3) u also has z as a summand, so clearly �(u) also has a summand anx.

Case 2: t has a summand at′ and �(at′) = anx.

Then, since depth(at′) < n, from �(at′) = anx it follows that there exist a variable z and a term t′′ such
that at′ am−−→ z + t′′ and �(z) = an−mx for some 1 ≤ m < n. Since t �CS u, by Lemma 3(3), u has a summand
au′ such that au′ am−−→ z + u′′ for some term u′′, and consequently a�(u′) an−−→ u′′′ with u′′′ = x. Since also
a�(u′) �CS �(u) �CS a

n0 + an(x + y), it follows by Lemma 29 that a�(u′) = anx. So �(u) has a summand
anx. �
We shall now prove that if an equation derivable from a collection of equations of depth< n, then it satisfies

PCS
n .

Proposition 31. Let E be a finite axiomatization over BCCSP that is sound modulo �CS, let n be a natural number
greater than the depth of any term in E, and suppose E � t ≈ u and t, u�CSa

n0 + an(x + y). Then t has a summand
completed similar to anx if and only if u has a summand completed similar to anx.

Proof. A straightforward adaptation of the proof of Proposition 27, using Lemma 30 instead of Lemma 26,
replacing �S by �CS, �S by �CS, “similar” by “completed similar” and

∑
�∈An a(x +��n)+ a
n by an0 + an(x +

y). �
Now we are in a position to prove the main theorem of this section.

Theorem 32. Let |A| > 1. Then the equational theory of BCCSP modulo �CS is not finitely based.

Proof. Let E be any finite axiomatization over BCCSP that is sound modulo �CS and let n ≥ 1 greater than the
depth of any term in E. Since an0 + an(x + y) does not have a summand completed similar to anx, by Proposition
31 the equation

anx + an0 + an(x + y) ≈ an0 + an(x + y),

which is sound modulo �CS, cannot be derived from E. It follows that every finite collection of equations that
are sound modulo �CS is necessarily incomplete, and hence the equational theory of BCCSP modulo �CS is
not finitely based. �

8. Ready Simulation

In this section, we consider ready simulation equivalence �RS. Blom et al. [5] gave a finite axiomatization
that is sound and ground-complete for BCCSP modulo �RS. It consists of axioms A1-4 together with the axiom
RS presented at the start of Section 4.

Note that the equations in the infinite family presented in the previous section to show that �CS is not finitely
based if |A| > 1, are not sound modulo �RS. To see this, let a and b be distinct actions, and let � be a closed

516 T. Chen et al. / Information and Computation 206 (2008) 492–519

substitution such that �(x) = a0 and �(y) = b0. Then �(anx) is not ready simulated by �(an0) because I(�(x)) =
{a} /= ∅ = I(0), and �(anx) is not ready simulated by �(an(x + y), because I(�(x)) = {a} /= {a, b} = �(x + y).

To obtain a negative result for �RS, we proceed to consider below the following adaptation of the infinite
family of equations of the previous section:

anx + an0 +
∑
b∈A

an(x + b0) ≈ an0 +
∑
b∈A

an(x + b0) (n ≥ 1).

These equations are sound modulo �RS. The idea is that, given a closed substitution�, either�(x) cannot perform
any action, in which case �(anx) is ready simulated by �(an0), or �(x) can perform some action b, in which case
�(anx) is ready simulated by �(an(x + b0)). Note, however, that the summations in the above equations only
abbreviate BCCSP terms if |A| < ∞. So we assume 1 < |A| < ∞ in the remainder of this section.

The condition |A| < ∞ is, in fact, necessary for the negative result that we are about to prove, for if A = ∞,
then Groote’s technique of inverted substitutions from [13] can be applied in a straightforward fashion to prove
that the axiomatization of Blom et al. [5] is ω-complete; see [7].

The proof that there cannot be a finite sound axiomatization E for BCCSP modulo �RS from which the
equations above can all be derived, is again with an application of the proof-theoretic technique. Let P RS

n be
the property

if t, u �RS a
n0 + ∑

b∈A an(x + b0), then t has a summand ready similar to anx if and only if u has a
summand ready similar to anx.

Note that this is essentially the same property as PCS
n of the previous section. Also the proof that PRS

n is satisfied
by every equation t ≈ u derivable from a collection of sound equations of depth < n is analogous to the proof
in the previous section. We only need to reconsider Lemma 29 in the light of the new family of equations.

Lemma 33. If at�RSa
n0 + ∑

b∈A an(x + b0) and at an−−→ t′ with t′ = x, then at = anx.

Proof. We first prove by induction on n that if at�CSa
n0 + ∑

b∈A an(x + b0), then at = an0 or at = anx or
at = an(x + b0) for some b ∈ A.

Suppose n = 1. Note that var0(t) ⊆ {x} by Lemma 3(3). Next, we establish that I(t) ⊆ {b} for some b ∈ A.
To this end, let � be a closed substitution such that �(x) = 0. Then I(�(t)) = I(�(0)) = ∅ or I(�(t)) = I(�(x +
b0)) = {b} for some b ∈ A, and hence I ⊆ {b} for some b ∈ A. Now it has been shown that t = 0 or t = x or
t = b0 or t = x + b0. To exclude the case that t = b0, suppose that I(t) = {b}, and consider a substitution � such
that �(x) = c0 for some c /= b. Since I(�(t)) /= I(�(0)) and I(�(t)) /= I(�(x + b′0)) for b′ /= b, it follows that
I(�(t)) = I(�(x + b0)) = {b, c}. So x ∈ var0(t), and hence t = x + b0.

Suppose n > 1. Then I(t) = {a} by Lemma 3(3) and var0(t) = ∅ by Lemma 3(3), so t = ∑
i∈I ati with I /= ∅.

Clearly, ati �RS a
n−10 + ∑

b∈A an−1(x + b0), so by the induction hypothesis, for all i ∈ I , ati = an−10 or ati =
an−1x or ati = an−1(x + bi0) for some bi ∈ A.

It remains to establish that ati = atj for all i, j ∈ I . Suppose, towards a contradiction, that ati /= atj for

some i, j ∈ I . Then clearly there exist t′i and t′j such that ati
an−1−−−→ t′i , atj

an−1−−−→ t′j and t′i /= t′j . Modulo symmetry
we can distinguish four cases, and in each of them it suffices to provide a closed substitution � such that
�(at) /�RS�(a

n0 + ∑
b∈A an(x + b0)).

Cases 1,2: t′i = 0 and t′j = x or t′j = x + bj0.

Define � such that �(x) ��RS 0. Then �(t) /�RSa
n−10 (because �(t) an−1−−−→ �(t′j) ��RS 0) and �(t) /�RSa

n−1�(x +
bj0) (because �(t) an−1−−−→ �(t′i) �RS 0).

Case 3: t′i = x and t′j = x + bj0.

Define � such that �(x) = 0. Then �(t) /�RSa
n−10 (because �(t) an−1−−−→ �(t′j) ��RS 0) and �(t) /�RSa

n−1�(x + bj0)
(because �(t) an−1−−−→ �(t′i) = 0).

Case 4: t′i = x + bi0 and t′j = x + bj0 for some bi , bj ∈ A with bi /= bj .

T. Chen et al. / Information and Computation 206 (2008) 492–519 517

Table 1
The existence of finite bases for BCCSP in the linear time–branching time spectrum

|A| = 1 1 < |A| < ∞ |A| = ∞

Bisimulation + + +
Two-nested simulation − − −
Possible futures − − −
Ready simulation + − +
Completed simulation + − −
Simulation + − +
Possible worlds + − +
Ready traces + − −
Failure traces + − +
Readies + − +
Failures + + +
Completed traces + + +
Traces + + +

Define � such that �(x) = 0. Then �(t) /�RSa
n−10 (because �(t) an−1−−−→ �(t′i) ��RS 0) and �(t) /�RSa

n−1�(x + b0)
for all b ∈ A (because b /= bk for k = i or k = j, so that �(t) an−1−−−→ �(t′k) �RS bk0 and �(x + b0) ��RS bk0).

We have established that ati = atj for all i, j ∈ I , so we may conclude that if at�RSa
n0 + ∑

b∈A an(x + b0),
then at = an0 or at = anx or at = an(x + b0) for some b ∈ A. If, moreover, at an−−→ t′ with t′ = x, then it is easy
to define closed substitutions showing that at /= an0 and at /= an(x + b0), so the proof of the lemma is complete.

�
The following lemma corresponds to Lemma 30 of the previous section.

Lemma 34. Suppose t �RS u, let n ≥ 1 be a natural number greater than the depth of t and u, and suppose
�(t), �(u)�RSa

n0 + ∑
b∈A an(x + b). Then �(t) has a summand anx if and only if �(u) has a summand anx.

Proof. A straightforward adaptation of the proof of Lemma 30, using Lemma 33 instead of Lemma 29, replacing
�CS by �RS, �CS by �RS, and an0 + an(x + y) by an0 + ∑

b∈A an(x + b0) �
The following proposition corresponds to Proposition 31 from the previous section.

Proposition 35. Let E be a finite axiomatization over BCCSP that is sound modulo �RS, let n be a natural number
greater than the depth of any term in E, and suppose E � t ≈ u and t, u�RS a

n0 + ∑
b∈A an(x + b0). Then t has a

summand ready similar to anx if and only if u has a summand ready similar to anx.

Proof. A straightforward adaptation of the proof of Proposition 27, using Lemma 34 instead of Lemma 26, re-
placing �S by �RS,�S by�RS, “similar” by “ready similar” and

∑
�∈An a

(
x +��n

) + a
n by an0 + ∑
b∈A an(x +

b0). �
Now we are in a position to prove the main theorem of this section.

Theorem 36. Let 1 < |A| < ∞. Then the equational theory of BCCSP modulo �RS is not finitely based.

Proof. Let E be a finite axiomatization over BCCSP that is sound modulo �RS. Let n be greater than the depth
of any term in E.

Note that an0 + ∑
b∈A an(x + b0) does not contain a summand ready similar to anx. So according to Propo-

sition 35, the equation

anx + an0 +
∑
b∈A

an(x + b0) ≈ an0 +
∑
b∈A

an(x + b0),

518 T. Chen et al. / Information and Computation 206 (2008) 492–519

which is sound modulo �RS, cannot be derived from E. It follows that every finite collection of equations that
are sound modulo �RS is necessarily incomplete, and hence the equational theory of BCCSP modulo �RS is
not finitely based. �

9. Conclusions

For every equivalence in van Glabbeek’s linear time–branching time spectrum it has now been determined
whether it is finitely based or not. Table 1 presents an overview, with a + indicating that a finite basis exists and
a − indicating that a finite basis does not exist. We distinguish three categories, according to the cardinality of
the alphabet A: singleton, finite with at least two actions, and infinite.

Acknowledgments

We are most grateful to Luca Aceto and Anna Ingolfsdottir for stimulating discussions, and to the anonymous
referees for suggesting many improvements.

References

[1] L. Aceto, W. Fokkink, R. van Glabbeek, A. Ingolfsdottir, Nested semantics over finite trees are equationally hard, Information and
Computation 191 (2) (2004) 203–232.

[2] L. Aceto, W. Fokkink, A. Ingolfsdottir, Ready to preorder: get your BCCSP axiomatization for free, in: Proceedings 2nd Conference
on Algebra and Coalgebra in Computer Science (CALCO’07), LNCS, vol. 4624, Springer, Bergen, 2007, pp. 65–79.

[3] L. Aceto, W. Fokkink, A. Ingolfsdottir, B. Luttik, Finite equational bases in process algebra: results and open questions, in: Processes,
Terms and Cycles: Steps on the Road to Infinity, Essays Dedicated to Jan Willem Klop, on the Occasion of his 60th Birthday, LNCS,
vol. 3838, Springer, Amsterdam, 2005, pp. 338–367.

[4] L. Aceto, W. Fokkink, A. Ingolfsdottir, B. Luttik, A finite equational base for CCS with left merge and communication merge, in:
Proceedings 33rd Colloquium on Automata, Languages and Programming (ICALP’06), LNCS, vol. 4052, Springer, Venice, 2006, pp.
492–503.

[5] S. Blom, W. Fokkink, S. Nain, On the axiomatizability of ready traces, ready simulation and failure traces, in: Proceedings 30th
Colloquium on Automata, Languages and Programming (ICALP’03), LNCS, vol. 2719, Springer, Eindhoven, 2003, pp. 109–118.

[6] T. Chen, W. Fokkink, On finite alphabets and infinite bases III: simulation, in: Proceedings 17th Conference on Concurrency Theory
(CONCUR’06), LNCS, vol. 4137, Springer, Bonn, 2006, pp. 421–434.

[7] T. Chen, W. Fokkink, S. Nain, On finite alphabets and infinite bases II: completed and ready simulation, in: Proceedings 9th Conference
on Foundations of Software Science and Computation Structures (FOSSACS’06), LNCS, vol. 3921, Springer, Vienna, 2006, pp. 1–15.

[8] W. Fokkink, B. Luttik, An ω-complete equational specification of interleaving, in: Proceedings 27th Colloquium on Automata, Lan-
guages and Programming (ICALP’00), LNCS, vol. 1853, Springer, Geneva, 2000, pp. 729–743.

[9] W. Fokkink, S. Nain, On finite alphabets and infinite bases: from ready pairs to possible worlds, in: Proceedings 7th Conference
on Foundations of Software Science and Computation Structures (FOSSACS’04), LNCS, vol. 2987, Springer, Barcelona, 2004, pp.
182–194.

[10] W. Fokkink, S. Nain, A finite basis for failure semantics, in: Proceedings 32nd Colloquium on Automata, Languages and Programming
(ICALP’05), LNCS, vol. 3580, Springer, Lisbon, 2005, pp. 755–765.

[11] R. van Glabbeek, The linear time–branching time spectrum (Extended Abstract), in: Proceedings 1st Conference on Concurrency
Theory (CONCUR’90), LNCS, vol. 458, Springer, Amsterdam, 1990, pp. 278–297.

[12] R. van Glabbeek, The linear time–branching time spectrum I. The semantics of concrete, sequential processes, in: J.A. Bergstra, A.
Ponse, S.A. Smolka (Eds.), Handbook of Process Algebra, Elsevier, 2001, pp. 3–99.

[13] J.F. Groote, A new strategy for proving ω-completeness with applications in process algebra, in: Proceedings 1st Conference on
Concurrency Theory (CONCUR’90), LNCS, vol. 458, Springer, Amsterdam, 1990, pp. 314–331.

[14] R. Gurevic̆, Equational theory of positive natural numbers with exponentiation is not finitely axiomatizable, Annals of Pure and
Applied Logic 49 (1990) 1–30.

[15] J. Heering, Partial evaluation and ω-completeness of algebraic specifications, Theoretical Computer Science 43 (1986) 149–167.
[16] L. Henkin, The logic of equality, American Mathematical Monthly 84 (8) (1977) 597–612.
[17] H. Lin, PAM: a process algebra manipulator, Formal Methods in System Design 7 (3) (1995) 243–259.
[18] A. Lazrek, P. Lescanne, J.-J. Thiel, Tools for proving inductive equalities, relative completeness, and ω-completeness, Information and

Computation 84 (1) (1990) 47–70.
[19] R. Lyndon, Identities in two-valued calculi, Transactions of the American Mathematical Society 71 (1951) 457–465.

T. Chen et al. / Information and Computation 206 (2008) 492–519 519

[20] R. McKenzie, Tarski’s finite basis problem is undecidable, Journal of Algebra and Computation 6 (1) (1996) 49–104.
[21] R. McKenzie, G. McNulty, W. Taylor, Algebras, Varieties, Lattices, Wadsworth & Brooks/Cole, 1987.
[22] R. Milner, LNCS, Springer, 1980.
[23] R. Milner, Communication and Concurrency, Prentice Hall, 1989.
[24] F. Moller, Axioms for Concurrency, PhD thesis, University of Edinburgh, 1989.
[25] F. Moller, The nonexistence of finite axiomatisations for CCS congruences, in: Proceedings 5th Annual IEEE Symposium on Logic in

Computer Science (LICS’90), IEEE Computer Society, Philadelphia, 1990, pp. 142–153.
[26] V.L. Murskiı̆, The existence in the three-valued logic of a closed class with a finite basis having no finite complete system of identities,

Doklady Akademii Nauk SSSR 163 (1965) 815–818 (in Russian).
[27] V.L. Murskiı̆, The existence of a finite basis of identities, and other properties of “almost all finite algebras, Problemy Kibernetiki 30

(1975) 43–56 (in Russian).
[28] G.D. Plotkin, The �-calculus is ω-incomplete, Journal of Symbolic Logic 39 (2) (1974) 313–317.

	Introduction
	Preliminaries
	Failures
	Failure traces
	From ready pairs to possible worlds
	Simulation
	Completed simulation
	Ready Simulation
	Conclusions

