
Math. Struct. in Comp. Science (2008), vol. 18, pp. 5–28. c© 2008 Cambridge University Press

doi:10.1017/S0960129507006524 Printed in the United Kingdom

On the axiomatisability of priority

LUCA ACETO†, TAOLUE CHEN‡¶, WAN FOKKINK‡§

and ANNA INGOLFSDOTTIR†

†Reykjav́ık University, Department of Computer Science, Kringlan 1, 103 Reykjav́ık, Iceland

Email: {luca,annai}@ru.is
‡CWI, Embedded Systems Group, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands
§Vrije Universiteit, Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

Received 9 June 2006; revised 21 February 2007

In Memory of Sauro Tulipani

This paper studies the equational theory of bisimulation equivalence over the process

algebra BCCSP extended with the priority operator of Baeten, Bergstra and Klop. We prove

that, in the presence of an infinite set of actions, bisimulation equivalence has no finite,

sound, ground-complete equational axiomatisation over that language. This negative result

applies even if the syntax is extended with an arbitrary collection of auxiliary operators, and

motivates the study of axiomatisations using equations with action predicates as conditions.

In the presence of an infinite set of actions, it is shown that, in general, bisimulation

equivalence has no finite, sound, ground-complete axiomatisation consisting of equations

with action predicates as conditions over the language studied in this paper. Finally,

sufficient conditions on the priority structure over actions are identified that lead to a finite,

ground-complete axiomatisation of bisimulation equivalence using equations with action

predicates as conditions.

1. Introduction

Programming and specification languages often include constructs to describe mode

switches (see, for example, Mauw (1991) and Milner et al. (1987)). Indeed, some form

of mode transfer in computation appears in operating systems in the guise of interrupts,

in programming languages as exceptions, and in the behaviour of control programs and

embedded systems as discrete ‘mode switches’ triggered by changes in the state of their

environment. Such mode changes are often used to encode different levels of urgency

amongst the actions that can be performed by a system as it computes, and implement

variations on the notion of pre-emption.

In light of the ubiquitous nature of mode changes in computation, it is not surprising

that classic process description languages include primitive operators to describe mode

† The first and fourth authors were partly supported by the project ‘The Equational Logic of Parallel Processes’

(nr. 060013021) of The Icelandic Research Fund.
‡ The second and third authors were partly supported by the Dutch Bsik project BRICKS (Basic Research in

Informatics for Creating the Knowledge Society).
¶ The second author was partly supported by 973 Program of China (No. 2002CB312002), NNSFC

(No. 60233010, No. 60273034, No. 60403014).

L. Aceto, T. Chen, W. Fokkink and A. Ingolfsdottir 6

changes – for example, LOTOS (Brinksma 1985; ISO 1987) offers the so-called disruption

operator – or have been extended with variations on mode transfer operators. Examples of

such operators that may be added to the process algebra CCS are discussed by Milner in

Milner (1989, pages 192–193), and Dsouza and Bloom offer in Dsouza and Bloom (1995)

some discussion on the benefits of adding one of those, viz. the checkpointing operator,

to CCS.

One of the most widely studied, and natural, notions used to implement different levels

of urgency between system actions is priority. (A thorough and clear discussion of the

different approaches to the study of priority in process description languages may be

found in Cleaveland et al. (2001).) In this paper, we consider the well-known priority

operator Θ studied by Baeten, Bergstra and Klop (Baeten et al. 1986) in the context

of process algebra. (See Camilleri and Winskel (1985), Cleaveland and Hennessy (1990),

Cleaveland et al. (2001) and Cleaveland et al. (1996) for later accounts of this operator

in the setting of process description languages.) The priority operator Θ gives certain

actions priority over others based on an irreflexive partial ordering relation < over the set

of actions. Intuitively, a < b is interpreted as ‘b has priority over a’. This means that, in

the context of the priority operator Θ, action a is pre-empted by action b. For example,

if p is some process that can initially perform both a and b, then Θ(p) will initially only

be able to execute the action b.

In their classic paper Baeten et al. (1986), Baeten, Bergstra and Klop provided a sound

and ground-complete axiomatisation for this operator modulo bisimulation equivalence.

Their axiomatisation uses predicates on actions (to express priorities between actions)

and one extra auxiliary operator. Bergstra showed in an earlier paper (Bergstra 1985)

that, in case of a finite alphabet of actions, there exists a finite equational axiomatisation

for Θ, without action predicates and help operators. So, if the set of actions is finite,

neither equations with action predicates as conditions nor auxiliary operators, as used in

Baeten et al. (1986), are actually necessary to obtain a finite axiomatisation of bisimulation

equivalence over basic process description languages enriched with the priority operator.

But, can Bergstra’s positive result be extended to a setting with a countably infinite

collection of actions? Or are equations with action predicates as conditions and auxiliary

operators necessary to obtain a finite axiomatisation of bisimulation equivalence in the

presence of an infinite collection of actions? (Note that infinite sets of actions are common

in process calculi, and arise, for instance, in the setting of value- or name-passing calculi.)

The aim of this paper is to provide a thorough answer to these questions in the setting

of the process algebra BCCSP enriched with the priority operator Θ. In the case of an

infinite alphabet, we permit the occurrence of action variables in axioms.

The process algebra BCCSP only contains basic process algebraic operators from

CCS and CSP, but is sufficiently powerful to express all finite synchronisation trees.

This paper considers the equational theory of BCCSP with the priority operator Θ

from Baeten et al. (1986) modulo bisimulation equivalence. Our first main result is a

theorem indicating that the use of equations with action predicates as conditions is indeed

inevitable if we are to provide a finite axiomatisation of bisimulation equivalence over

the basic process language we consider in this study. To this end, we prove that, in the

case of an infinite alphabet and in the presence of at least one priority relation a < b

On the axiomatisability of priority 7

between a pair of actions, there is no finite equational axiomatisation for BCCSP enriched

with the priority operator (Theorem 4.3). This result even applies if one is allowed to

add an arbitrary collection of help operators to the syntax. Theorem 4.3 offers a very

strong indication that the use of equations with action predicates as conditions is essential

for axiomatising Θ, and cannot be circumvented by introducing auxiliary operators.

(This is in contrast to the classic positive and negative results on the existence of finite

equational axiomatisations for parallel composition offered in Bergstra and Klop (1984),

Moller (1990a) and Moller (1990b).)

The idea underlying the proof of Theorem 4.3 is that for each finite sound equational

axiomatisation E, there is a pair of actions c, d that does not occur in E. If c and d are

incomparable, then

Θ(c.0 + d.0) ≈ c.0 + d.0

is sound modulo bisimulation equivalence. However, using a simple renaming argument,

we show that a derivation of this equation from E would give rise to a derivation of the

unsound equation Θ(a.0 + b.0) ≈ a.0 + b.0. Similarly, if c < d,

Θ(c.0 + d.0) ≈ d.0

is sound modulo bisimulation equivalence. But we prove that a derivation of this equation

from E would give rise to a derivation of the unsound equation Θ(d.0 + c.0) ≈ c.0.

Having established that equations with action predicates as conditions are necessary

in order to obtain a finite, ground-complete equational axiomatisation of bisimulation

equivalence, we then proceed to investigate whether, in the presence of an infinite set of

actions, this equivalence can be finitely axiomatised using equations with action predicates

as conditions, but without auxiliary operators like the unless operator used in Baeten

et al. (1986). We show that, in general, the answer to this question is negative. We do this

by exhibiting a priority structure with respect to which bisimulation equivalence affords

no finite, sound and ground-complete axiomatisation in terms of equations with action

predicates as conditions (Theorem 5.6). This shows that, in general, the use of auxiliary

operators is indeed necessary to axiomatise bisimulation equivalence finitely, even using

equations with action predicates as conditions and over the simple language considered

in this study. The priority structure used in the proof of Theorem 5.6 consists of actions

ai and bi for i � 1 together with an action c, where ai < bi < c for each i � 1. We prove

that given a finite sound axiomatisation E consisting of equations with action predicates

as conditions, the sound equation

Θ(b1.0 + · · · + bn.0) ≈ b1.0 + · · · + bn.0

cannot be derived from E, for a sufficiently large n.

In contrast with the aforementioned negative results, we exhibit a countably infinite,

ground-complete axiomatisation for bisimulation equivalence over BCCSP with the

priority operator in terms of equations with action predicates as conditions (Theorem 5.9).

This axiomatisation suggests that, in general, infinite collections of pairwise incomparable

actions with respect to the priority relation < are the source of our negative result

presented in Theorem 5.6. It is therefore natural to ask ourselves whether there are

L. Aceto, T. Chen, W. Fokkink and A. Ingolfsdottir 8

conditions that can be imposed on the poset of actions that are sufficient to guarantee that

bisimulation equivalence be finitely axiomatisable using equations with action predicates

as conditions, but without auxiliary operators. We conclude the technical developments

in this paper by proposing some such sufficient conditions. The most general of these

applies to all priority structures such that:

1 the collection of the sizes of the finite, maximal anti-chains is finite;

2 there are only finitely many infinite, maximal anti-chains; and

3 for each infinite, maximal anti-chain A, each element of A is above the same set of

actions – that is, for each a, b ∈ A and action c, we have that c < a if and only if c < b.

Our results add the priority operator to the list of operators whose addition to a process

algebra spoils finite axiomatisability modulo bisimulation equivalence; see, for example,

Aceto et al. (2005), Aceto et al. (2006), Moller (1990a), Moller (1990b) and Sewell (1997)

for other examples of non-finite axiomatisability results over process algebras. Notably,

two mode transfer operators from Baeten and Bergstra (2000) are studied in Aceto

et al. (2006) in the setting of the basic process algebra BPA. It is shown there that, even

in the presence of just one action, the interrupt operator does not have a finite equational

axiomatisation, while the disrupt operator does. In the interrupt operator, a process p can

be interrupted by another process q; and upon termination of q, process p resumes its

computation. In the disrupt operator, a process p can be pre-empted by another process

q, after which the execution of p is aborted.

This paper is organised as follows. Section 2 contains some preliminaries. In Section 3,

the finite axiomatisation for the priority operator Θ from Bergstra (1985) is presented.

Section 4 contains the proof of a result to the effect that, in the case of an infinite alphabet,

there is no finite equational axiomatisation for the priority operator modulo bisimulation

equivalence, even in the presence of auxiliary operators. Finally, we show that, in the

presence of an infinite set of actions, in general, bisimulation equivalence does not afford

a finite axiomatisation in terms of equations with action predicates as conditions without

the use of auxiliary operators (Section 5.1), and we identify sufficient conditions on the

priority structure over actions that lead to the existence of a finite axiomatisation using

equations with action predicates as conditions (Section 5.2).

2. Preliminaries

We begin by introducing the basic definitions and results on which the technical

developments given later are based.

2.1. The language BCCSPΘ

Act denotes a non-empty alphabet of atomic actions, with typical elements a, b, c, d, e. We

assume an irreflexive, transitive partial ordering < over Act to express priorities between

actions. Intuitively, a < b expresses the fact that the action b has priority over the action

a. We say that actions a1, . . . , an are incomparable if they are distinct and ai < aj does not

hold for all 1 � i, j � n.

On the axiomatisability of priority 9

The language of processes we shall consider in this paper, which we will refer to as

BCCSPΘ from now on, is obtained by adding the unary priority operator Θ from Baeten

et al. (1986) to the basic process algebra BCCSP (van Glabbeek 1990; van Glabbeek 2001).

The language is given by the following grammar:

t ::= 0 | a.t | t + t | Θ(t) | x | α.t ,

where a ranges over Act , x is a process variable and α is an action variable. Process and

action variables range over given, disjoint countably infinite sets. We use x, y, z to range

over the collection of process variables, and α, β as typical action variables.

We use t, u, v to range over the collection of open process terms �(BCCSPΘ). A process

term is closed if it does not contain any variables, and p, q, r, range over the set of closed

terms T(BCCSPΘ). The size of a term is its length in function symbols.

Remark 2.1. The reader familiar with van Glabbeek (1990; 2001) might have already

noticed that we consider a slightly extended syntax for BCCSP, in that we allow for

the use of prefixing operators of the form α. , where α is an action variable. The use of

action variables is natural in the presence of infinite sets of actions, and will allow us to

formulate stronger versions of the negative results to follow.

A substitution maps each process variable to a process term, and each action variable to

an action or action variable. A substitution is closed if it maps process variables to closed

process terms and action variables to actions. For every term t and substitution σ, the

term obtained by replacing occurrences of process variables x and action variables α in t

with σ(x) and σ(α), respectively, is written σ(t). Note that σ(t) is closed if σ is closed. For

example, σ(α.x) = a.0 if σ(α) = a and σ(x) = 0.

In general, for each signature Σ (that is, a collection of function symbols together with

their arity), �(Σ) denotes the collection of open terms over Σ, and T(Σ) stands for the

collection of closed terms over Σ. In Section 4, we shall consider signatures extending the

signature for the language BCCSPΘ.

The semantics of the operators is captured by the transition rules below, which give

rise to Act-labelled transitions between closed terms. An Act-labelled transition between

closed terms is a triple (p, a, p′), where p, p′ are closed terms and a ∈ Act . From now on,

and as usual, we shall use the suggestive notation p
a→ p′ instead of (p, a, p′). A transition

relation is a collection of Act-labelled transitions.

The operational semantics for the language BCCSPΘ is given by the labelled transition

system

(T(BCCSPΘ),→),

where the transition relation → is the unique supported model of the following rules in

the sense of Bloom et al. (1995):

a.x
a→ x

x1
a→ y

x1 + x2
a→ y

x2
a→ y

x1 + x2
a→ y

x
a→ y x

b
� for a < b

Θ(x)
a→ Θ(y)

where a ranges over Act . It is well known that the transition relation → is the one defined

by structural induction over closed terms using the above rules.

L. Aceto, T. Chen, W. Fokkink and A. Ingolfsdottir 10

Intuitively, closed terms in the language BCCSPΘ represent finite process behaviours,

where 0 does not exhibit any behaviour, p+ q is the non-deterministic choice between the

behaviours of p and q, and a.p executes action a to transform into p. Furthermore, the

process graph of Θ(p) is obtained by eliminating all transitions q
a→ q′ from the process

graph of p for which there is a transition q
b→ q′′ with a < b.

We consider the language BCCSPΘ modulo bisimulation equivalence.

Definition 2.2. A binary symmetric relation R over T(BCCSPΘ) is a bisimulation if p R q

together with p
a→ p′ imply q

a→ q′ for some q′ with p′ R q′. We write p ↔ q if there

is a bisimulation relating p and q. The relation ↔ will be referred to as bisimulation

equivalence or bisimilarity.

It is well known that ↔ is an equivalence relation. Moreover, the transition rules are in

the GSOS format of Bloom et al. (1995). Hence, bisimulation equivalence is a congruence

with respect to all the operators in the signature of BCCSPΘ, meaning that p ↔ q implies

C[p] ↔ C[q] for each BCCSPΘ-context C[].

We can therefore consider the algebra of the closed terms in T(BCCSPΘ) modulo ↔.

In Section 4, we shall give results that apply to any signature Σ that extends the signature

of BCCSPΘ. To this end, we tacitly assume that all of the new operators in Σ also

preserve bisimulation equivalence, and are semantically interpreted as operations over

finite synchronisation trees (Milner 1989).

2.2. Equational logic

An axiom system is a collection of equations t ≈ u over the language BCCSPΘ. An

equation t ≈ u is derivable from an axiom system E, notation E � t ≈ u, if it can be

proved from the axioms in E using the rules of equational logic (viz. reflexivity, symmetry,

transitivity, substitution and closure under BCCSPΘ contexts).

t ≈ t

t ≈ u

u ≈ t

t ≈ u u ≈ v

t ≈ v

t ≈ u

σ(t) ≈ σ(u)

t ≈ u t′ ≈ u′

t + t′ ≈ u + u′
t ≈ u

a.t ≈ a.u

t ≈ u

α.t ≈ α.u

t ≈ u

Θ(t) ≈ Θ(u)

Without loss of generality, one may assume that substitutions happen first in equational

proofs, that is, that the rule

t ≈ u

σ(t) ≈ σ(u)

may only be used when t ≈ u ∈ E. Moreover, by postulating that for each axiom in E its

symmetric counterpart is also present in E, we can disregard applications of symmetry in

equational proofs. In the rest of this paper, we shall tacitly assume that our equational

axiom systems are closed with respect to symmetry. Furthermore, it is well known (cf., for

example, Groote (1990, Section 2)) that if an equation relating two closed terms can be

proved from an axiom system E, then there is a closed proof for it. (A proof is closed if

it only mentions closed terms.) We shall only consider questions related to the provability

On the axiomatisability of priority 11

Table 1. Axiomatisation for |Act | < ∞

x + y ≈ y + x (A1)

x + (y + z) ≈ (x + y) + z (A2)

x + x ≈ x (A3)

x + 0 ≈ x (A4)

Θ(0) ≈ 0 (PR1)

Θ(a.x + a.y + z) ≈ Θ(a.x + z) + Θ(a.y + z) (PR2)

Θ(a.x + b.y + z) ≈ Θ(b.y + z) (a < b) (PR3)

Θ(a1.x1 + · · · + an.xn) ≈ a1.Θ(x1) + · · · + an.Θ(xn) (a1, . . . , an incomparable) (PR4)

of closed equations from an axiom system. Therefore, in light of the previous observation,

we can restrict ourselves to considering closed proofs.

Definition 2.3. An equation t ≈ u is sound with respect to ↔ if σ(t) ↔ σ(u) holds for each

closed substitution σ. An axiom system E is called sound over some language modulo

↔ if E � t ≈ u implies t ↔ u for all terms t, u in the language. Conversely, E is called

ground-complete if p ↔ q implies E � p ≈ q for all closed terms p, q in the language.

Our order of business in the rest of this paper will be to present a thorough study of

the equational theory of the language BCCSPΘ modulo bisimulation equivalence. We

will begin our investigation by considering the case in which the set of actions Act is

finite in the following section. We then move on to investigate the equational properties

of bisimulation equivalence over BCCSPΘ when the set of actions is infinite (Sections 4

and 5).

3. |Act | < ∞

In this section, we assume that the action set is finite. The axiom system in Table 1 was

put forward by Jan Bergstra in Bergstra (1985). Note that, in the case of a finite action

set, this axiom system is finite, since then the axiom schemas PR2–4 give rise to finitely

many equations.

Theorem 3.1 (Bergstra 1985). The axiom system consisting of the equations (A1)–(A4)

and (PR1)–(PR4) is sound and ground-complete for BCCSPΘ modulo ↔.

Proof. (Sketch) Since ↔ is a congruence with respect to BCCSPΘ, soundness can be

checked for each axiom separately. This is an easy exercise.

Next observe that, using (PR1)–(PR4), one can remove all occurrences of Θ from closed

terms. Then ground-completeness follows from the well-known ground-completeness of

(A1)–(A4) for BCCSP modulo ↔ (see, for example, Hennessy and Milner (1985)).

L. Aceto, T. Chen, W. Fokkink and A. Ingolfsdottir 12

In the rest of this paper, process terms are considered modulo associativity and commut-

ativity of +. In other words, we do not distinguish between t + u and u + t, or between

(t + u) + v and t + (u + v). We use a summation
∑n

i=1 ti to denote t1 + · · · + tn, where the

empty sum represents 0. Such a summation is said to be in head normal form if each term

ti is of the form ai.t
′
i or αi.t

′
i for some action ai or action variable αi, and term t′i.

It is easy to see that modulo the axioms (A1) and (A2), every term t in the language

BCCSPΘ has the form
∑

i∈I ti, for some finite index set I , and terms ti (i ∈ I) that do not

have the form t′ + t′′. The terms ti (i ∈ I) will be referred to as the summands of t. For

example, the term Θ(a.0 + b.0) has only itself as summand.

Remark 3.2. Note that the axiom system in Table 1 is not strong enough to prove all of

the sound equations over the language BCCSPΘ modulo bisimulation equivalence. For

instance, one can check that the equation

Θ(Θ(x) + y) ≈ Θ(x + y)

is sound modulo bisimulation equivalence irrespective of the cardinality of the set of

actions Act and the ordering relation <. However, this equation cannot be proved from

those in Table 1.

4. |Act | = ∞

In this section, we deal with the case in which the action set is infinite. Our main

result is that bisimulation equivalence does not afford a finite equational axiomatisation

over the language BCCSPΘ provided Act contains at least two actions a, b with a < b.

(Otherwise, the equation Θ(x) ≈ x would be sound, and the priority operator could

be eliminated from all terms.) This negative result even applies if BCCSPΘ is extended

with an arbitrary collection of operators (over finite synchronisation trees) for which

bisimulation equivalence is a congruence.

The idea behind the proof of our main result of this section is that a finite axiom

system E can mention only finitely many action names. So, since Act is infinite, we can

find a pair c, d of distinct actions that do not occur in E. If c and d are incomparable, the

equation Θ(c.0 + d.0) ≈ c.0 + d.0 is sound; if c < d, then Θ(c.0 + d.0) ≈ d.0 is sound. In

the first case, we show that an equational proof of Θ(c.0 + d.0) ≈ c.0 + d.0 from E would

give rise to a proof of the unsound equation Θ(a.0 + b.0) ≈ a.0 + b.0 from E. This follows

by a simple renaming argument, using the fact that c and d do not occur in E. Similarly,

in the second case, a proof of Θ(c.0 + d.0) ≈ d.0 from E would give rise to a proof of the

unsound equation Θ(d.0 + c.0) ≈ c.0 from E.

To present the formal proof of the aforementioned negative result, we first introduce

the action renaming mentioned in the proof idea sketched above.

Definition 4.1. Let A ⊆ Act , and let Σ be a signature that includes the set of operators in

BCCSPΘ. We extend each renaming function ρ : A → Act to a function ρ : �(Σ) → �(Σ)

On the axiomatisability of priority 13

as follows, where f is any operator that is not of the form a. :

ρ(0)
def
= 0

ρ(a.t)
def
=

{
ρ(a).ρ(t) if a ∈ A

a.ρ(t) if a
∈ A

ρ(f(t1, . . . , tn))
def
= f(ρ(t1), . . . , ρ(tn))

ρ(x)
def
= x

ρ(α.t)
def
= α.ρ(t) .

For each substitution σ, the substitution ρ(σ) is defined by ρ(σ)(x)
def
= ρ(σ(x)) and

ρ(σ)(α)
def
=

{
ρ(σ(α)) if σ(α) ∈ A

σ(α) otherwise.

The following lemma states that the renaming of actions that are not mentioned in an

axiom system E preserves provability.

Lemma 4.2. Let A ⊆ Act and ρ : A → Act . Let Σ be a signature that includes the set of

operators in BCCSPΘ, and E be a collection of equations over Σ, and assume that all of

the actions a ∈ A do not occur in E. Then E � p ≈ q implies E � ρ(p) ≈ ρ(q).

Proof. The proof is by induction on the depth of a closed proof of the equation p ≈ q

from E. We proceed by a case analysis on the last rule used in the proof of p ≈ q from E.

The case of reflexivity is trivial, and that of transitivity follows immediately by using the

induction hypothesis, so we will only consider the other cases, namely the instantiation

of an axiom and closure under contexts (since we are dealing with closed proofs, closure

with respect to prefixing by action variables need not be considered):

— Case E � p ≈ q because σ(t) = p and σ(u) = q for some equation t ≈ u ∈ E and

closed substitution σ. Then ρ(p) = ρ(σ(t)) = ρ(σ)(ρ(t)). According to the proviso

of the lemma, no action a ∈ A occurs in t, so it is clear that ρ(t) = t. Similarly,

ρ(q) = ρ(σ(u)) = ρ(σ)(ρ(u)) = ρ(σ)(u). Since t ≈ u ∈ E, by substitution instance,

E � ρ(σ)(t) ≈ ρ(σ)(u). In other words, E � ρ(p) ≈ ρ(q), which was to be shown.

— Case E � p ≈ q because p = a.p′ and q = a.q′ where E � p′ ≈ q′. If a ∈ A, then

ρ(p) = ρ(a).ρ(p′) and ρ(q) = ρ(a).ρ(q′); otherwise, ρ(p) = a.ρ(p′) and ρ(q) = a.ρ(q′). In

either case, by induction, E � ρ(p′) ≈ ρ(q′). By context closure, E � ρ(p) ≈ ρ(q).

— Case E � p ≈ q because p = f(p1, . . . , pn) and q = f(q1, . . . , qn), for some operator

f in the signature that is not of the form a. , where E � pi ≈ qi for i = 1, . . . , n.

By definition, ρ(p) = f(ρ(p1), . . . , ρ(pn)) and ρ(q) = f(ρ(q1), . . . , ρ(qn)). By induction,

E � ρ(pi) ≈ ρ(qi) for i = 1, . . . , n, and by context closure, E � ρ(p) ≈ ρ(q).

We are now in a position to show the first main result of this paper.

Theorem 4.3. Let |Act | = ∞, and a < b for some a, b ∈ Act . Let Σ be a signature consisting

of the operators in BCCSPΘ, together with auxiliary operators for which bisimulation

equivalence is a congruence. Then bisimulation equivalence has no finite, sound and

ground-complete axiomatisation over T(Σ).

L. Aceto, T. Chen, W. Fokkink and A. Ingolfsdottir 14

Proof. We need to show that no finite axiom system is both sound and ground-complete

for T(Σ) modulo ↔. Let E be a finite axiom system over T(Σ) that is sound modulo ↔.

Fix a pair of distinct actions c, d ∈ Act that do not occur in E. We can select c, d such

that either they are incomparable, or c < d. In the first case, the following equation is

sound modulo ↔:

Θ(c.0 + d.0) ≈ c.0 + d.0 .

Assume, in order to show a contradiction, that this equation can be derived from E.

Consider the renaming function ρ defined as ρ(c) = a and ρ(d) = b. Since neither

c nor d occurs in E, Lemma 4.2 gives E � ρ(Θ(c.0 + d.0)) ≈ ρ(c.0 + d.0). That is,

E � Θ(a.0 + b.0) ≈ a.0 + b.0, which is not sound modulo ↔, since a < b. This contradicts

the soundness of E.

In the second case, the following equation is sound modulo ↔:

Θ(c.0 + d.0) ≈ d.0.

Again, assume in order to show a contradiction that this equation can be derived from E.

Consider the renaming function ρ defined as ρ(c) = d and ρ(d) = c. Since neither c nor d

occurs in E, Lemma 4.2 gives E � ρ(Θ(c.0+ d.0)) ≈ ρ(d.0). That is, E � Θ(d.0+ c.0) ≈ c.0,

which is not sound modulo ↔. Once more, this contradicts the soundness of E.

In either case, we can conclude that the axiom system E is not ground-complete.

5. Axiomatising priority over an infinite action set, conditionally

Theorem 4.3 offers very strong evidence that, in the presence of an infinite set of actions,

equational logic is inherently not sufficiently powerful to achieve a finite axiomatisation

of bisimilarity over closed terms in the language BCCSPΘ. Indeed, that result holds true

even in the presence of an arbitrary number of auxiliary operators.

In the presence of action variables, it is natural to view our language as consisting of

two sorts: one for actions and the other for processes. This is all the more true because

the set of actions has the structure of a partial order, and we would like to express axioms

over processes that reflect the influence that this poset structure on actions has on the

behaviour of processes. When our set of actions is finite, this can be done by means of a

finite number of equations that are instances of (PR3) and (PR4) in Table 1.

In the presence of an infinite action set, however, the axiom schemas (PR3) and (PR4),

as well as (PR2), have infinitely many instances. One way to try and capture their effects

finitely is to take seriously the idea that, in the presence of action variables, the equation

schemas (PR3) and (PR4) can be phrased as equations with action predicates as conditions

thus:

(α < β) ⇒ (CPR3)

Θ(α.x + β.y + z) ≈ Θ(β.y + z)

(
∧

1�i,j�n

¬(αi < αj)) ⇒ (CPR4n)

Θ(α1.x1 + · · · + αn.xn) ≈ α1.Θ(x1) + · · · + αn.Θ(xn) (n � 0).

On the axiomatisability of priority 15

In both of the above equations, we use predicates over actions to restrict the applicability

of the equation on the right-hand side of the implication. In general, in the rest of this

paper we shall consider equations of the form

P ⇒ t ≈ u,

where P is a predicate over actions, and t ≈ u is an equation over the language BCCSPΘ.

In the following, we shall take a semantic view of predicates over actions. An action

predicate P will be identified simply with the collection of closed substitutions that satisfy

it – with the proviso that two closed substitutions that agree over the collection of action

variables are either both in P or neither of them is. As we did above for the equations

(CPR3) and (CPR4n), we shall often express predicates over actions using formulae in

first-order logic with equality and the binary relation symbol <. The definition of the

collection of closed substitutions that satisfy a predicate P expressed using such formulae

is entirely standard, and we omit the details. For example, a closed substitution σ satisfies

the predicate α < β if and only if σ(α) < σ(β) holds in the poset (Act , <). We will

sometimes write σ(P) = true if the closed substitution σ satisfies the predicate P . We say

that a predicate is satisfiable if some closed substitution satisfies it. If P is a tautology, we

simply write t ≈ u. For instance, a version of equation (PR2) with action variables will be

written

Θ(α.x + α.y + z) ≈ Θ(α.x + z) + Θ(α.y + z). (CPR2)

Note that equation (PR1) in Table 1 is just (CPR40). Moreover, since < is irreflexive,

equation (CPR41) reduces to

Θ(α.x) ≈ α.Θ(x). (1)

(Note that the above equation can be derived from each of the (CPR4n) with n � 1 and

axiom (A3) in Table 1.)

An equation of the form P ⇒ t ≈ u is sound with respect to bisimilarity, if σ(t) ↔ σ(u)

holds for each closed substitution σ that satisfies the predicate P . It is not hard to see

that we have the following lemma.

Lemma 5.1. For each partial order of actions (Act , <), the equations (CPR2), (CPR3)

and (CPR4n) with (n � 0) are sound modulo bisimilarity over the language BCCSPΘ.

A proof in conditional equational logic of an equation from a set E of axioms with action

predicates as conditions uses the same rules presented in Section 2.2. However, the rule

for substitution instance now reads

P ⇒ t ≈ u

σ(t) ≈ σ(u)
(σ(P) = true),

where P ⇒ t ≈ u is one of the equations with action predicates as conditions in the set E.

Again, by postulating that for each equation of the form P ⇒ (t ≈ u) in E its symmetric

counterpart P ⇒ (u ≈ t) is also present in E, we can disregard applications of symmetry

in conditional equational proofs.

A natural question to ask at this point, and one that we will address in the rest of

this paper, is whether, unlike standard equational logic, equations with action predicates

L. Aceto, T. Chen, W. Fokkink and A. Ingolfsdottir 16

Table 2. Axioms for Θ in the presence of �

Θ(α.x) ≈ α.x

Θ(0) ≈ 0

Θ(x + y) ≈ (Θ(x) � y) + (Θ(y) � x)

¬(α < β) ⇒ (α.x) � (β.y) ≈ α.x

(α < β) ⇒ (α.x) � (β.y) ≈ 0

(α.x) � 0 ≈ α.x

0 � (α.x) ≈ 0

(x + y) � z ≈ (x � z) + (y � z)

x � (y + z) ≈ (x � y) � z

as conditions suffice to obtain a finite, ground-complete axiomatisation of bisimulation

equivalence over the language BCCSPΘ.

In their classic paper (Baeten et al. 1986), Baeten, Bergstra and Klop offered a

finite, ground-complete axiomatisation of bisimilarity over the language BPAδ with the

priority operator that employs equations with action predicates as conditions. Their

axiomatisation, however, relied upon the introduction of a binary auxiliary operator, the

so-called unless operator �. Operationally, the behaviour of the unless operator is specified

by the rules

x
a→ x′ y

b
� for a < b

x � y
a→ x′

,

where a ∈ Act .

In the setting of BCCSPΘ, and using action variables instead of concrete action names,

the relation between the priority operator and the unless operator is expressed by the

axioms in Table 2. It is not too hard to see that those axioms, together with (A1)–(A4)

in Table 1, yield a ground-complete, finite axiomatisation of bisimulation equivalence.

Therefore, even in the presence of an infinite set of actions, bisimulation equivalence

affords a finite, ground-complete axiomatisation using equations with action predicates

as conditions at the price of introducing a single auxiliary operator. But, we can ask: if

the set of actions is infinite, is the use of an auxiliary operator like the unless operator

really necessary to obtain a finite axiomatisability result for bisimulation equivalence

over BCCSPΘ using equations with action predicates as conditions? We will address

this question in the following. In particular, we first show that, in general, the use of

auxiliary operators is indeed necessary to obtain a finite, ground-complete axiomatisation

of bisimulation equivalence using equations with action predicates as conditions. We do

this in Section 5.1 by exhibiting a poset of actions for which no finite set of sound equations

with action predicates as conditions is ground-complete with respect to bisimulation

equivalence over BCCSPΘ. This negative result, however, does not entail that, in the

presence of an infinite set of actions, auxiliary operators are always needed to give

a finite, ground-complete axiomatisation of bisimulation equivalence over the language

BCCSPΘ. In fact, we then isolate sufficient conditions on the priority structure over actions

On the axiomatisability of priority 17

that guarantee the finite axiomatisability of bisimulation equivalence over the language

BCCSPΘ using equations with action predicates as conditions (Section 5.2).

5.1. A negative result

Our order of business will now be to prove that, in the presence of an infinite set

of actions, in general, auxiliary operators are indeed necessary if we are to obtain a

finite ground-complete axiomatisation of bisimulation equivalence over the language

BCCSPΘ, even if we permit the use of equations of the form P ⇒ (t ≈ u). In this

section, Act = {ai, bi | i � 1} ∪ {c}, where ai < bi < c for each i � 1, and these are

the only inequalities. Moreover, for convenience, we consider terms not only modulo

associativity and commutativity of +, but also modulo the sound equations x+0 ≈ x and

Θ(Θ(x) + y) ≈ Θ(x + y) – see Remark 3.2. So we can assume, without loss of generality,

that terms contain neither redundant 0 summands nor nested occurrences of Θ.

We will prove the following claim, which will be used to argue that bisimulation

equivalence has no finite, ground-complete axiomatisation consisting of equations with

action predicates as conditions over the language BCCSPΘ (Theorem 5.6).

Claim 5.2. Let E be a finite collection of equations with action predicates as conditions

that is sound modulo ↔. Let n � 2 be larger than the size of any term in the equations

of E. Then we cannot derive the following equation from E:

Θ(Φn) ≈ Φn,

where Φn denotes
∑n

i=1 bi.0.

Note that the equation above is sound modulo ↔ because the actions bi (i � 1) are

pairwise incomparable.

First we establish a technical lemma.

Lemma 5.3. Let P ⇒ t ≈ u be an equation that is sound modulo ↔, where P is satisfiable.

If some process variable x occurs as a summand in t, then x also occurs as a summand

in u.

Proof. Since P is satisfiable, there exists a closed substitution σ such that σ(P) = true.

Take some action d ∈ Act that does not occur in σ(u); such an action exists because Act

is infinite. Consider the closed substitution σ′ that maps x to d.(b1.0 + c.0), and all other

process variables to 0, and that agrees with σ on action variables. As P ⇒ t ≈ u is sound

modulo ↔ and σ′(P) = σ(P) = true, we have that σ′(t) ↔ σ′(u). Since x is a summand of

t and σ′(t)
d→ b1.0 + c.0, it follows that σ′(u)

d→ q ↔ b1.0 + c.0 for some q. Since d does

not occur in σ(u) and b1 < c, it is not hard to see that x must be a summand of u.

The following lemma forms the crux of the proof of our claim. It states a property of

closed terms that holds for all of the closed instantiations of axioms in any finite, sound

collection of equations with action predicates as conditions. As we shall see later, this

property is also preserved by arbitrary conditional equational proofs from a finite, sound

collection of equations with action predicates as conditions (Proposition 5.5).

L. Aceto, T. Chen, W. Fokkink and A. Ingolfsdottir 18

Lemma 5.4. Let P ⇒ t ≈ u be sound modulo ↔. Let σ be a closed substitution with

σ(P) = true. Assume that:

— n is larger than the size of t, where n � 2; and

— the summands of σ(t) are all bisimilar to either Φn or 0.

Then the summands of σ(u) are all bisimilar to either Φn or 0.

Proof. First suppose that all summands of σ(t) are bisimilar to 0. Then σ(t) ↔ 0, so

the soundness of P ⇒ t ≈ u together with σ(P) = true yields σ(u) ↔ 0. This means that

all summands of σ(u) are bisimilar to 0, and we are done.

So we can assume that some summand of σ(t) is bisimilar to Φn. Then σ(t) ↔ σ(u) ↔ Φn,

by the proviso of the lemma and the soundness of P ⇒ t ≈ u.

We know that we can write t =
∑

i∈I ti and u =
∑

j∈J uj for some non-empty, finite

index sets I and J , where the terms ti and uj are of the form x, a.v, α.v or Θ(v). By the

proviso of the lemma, for each i ∈ I , the summands of σ(ti) are all bisimilar to Φn or 0.

Since n � 2, for each i ∈ I , the term ti is not of the form a.v or α.v. Hence either it is a

process variable x, or it is of the form

Θ

(∑
�∈Li

di�.t
′
i� +

∑
m∈Mi

αm.t
′′
im +

∑
k∈Ki

zik

)

(modulo the equations x + 0 ≈ x and Θ(Θ(x) + y) ≈ Θ(x + y)). Let I ′ ⊆ I be the set of

indices of summands of t that have the above form. Observe that Ki
= � for each i ∈ I ′

such that σ(ti) is bisimilar to Φn (because n is larger than the size of t). Note, moreover,

that summands ti of t having the above form such that σ(ti) ↔ 0 must have Li = Mi = �,

and for such summands σ(zik) ↔ 0 for each k ∈ Ki.

Let us assume, in order to show a contradiction, that there is an index j ∈ J such that

σ(uj) has a summand that is not bisimilar to either Φn or 0. We proceed by a case analysis

on the form of uj:

1 Case uj = x. By assumption, σ(x) has a summand that is not bisimilar to either Φn or

0. Since P ⇒ t ≈ u is sound modulo ↔ and P is satisfiable (because σ(P) = true by

the proviso of the lemma), by Lemma 5.3, t also has x as a summand. Consequently,

σ(t) has a summand that is not bisimilar to either Φn or 0, which contradicts one of

the assumptions of the lemma.

2 Case uj = a.u′
j or uj = α.u′

j . Since σ(u) ↔ Φn, we have that a = bh or σ(α) = bh for

some 1 � h � n. Define the substitution σ′ by

σ′(y) =

{
c.0 if y = zik for some i ∈ I ′ and k ∈ Ki

0 otherwise

for process variables y, and let σ′ agree with σ on action variables. Then σ′(t)
bh
�,

because:

— c > bh;

— Ki
= � for every i ∈ I ′ with σ(ti) ↔ Φn;

On the axiomatisability of priority 19

— Li = Mi = � for every i ∈ I ′ with σ(ti) ↔ 0; and

— t does not contain summands of the form bh.v or α.v.

On the other hand, as σ and σ′ agree on action variables, σ′(uj)
bh→ σ′(u′

j). It follows

that σ′(u)
bh→ σ′(u′

j), so σ′(t) ↔/ σ′(u). Since σ′(P) = σ(P) = true, this contradicts the

soundness of P ⇒ t ≈ u modulo ↔.

3 Case uj = Θ(u′). Then uj consists of a single summand, so, by assumption, we have

that σ(uj) ↔/ Φn and σ(uj) ↔/ 0.

Since σ(u) ↔ Φn, and terms are considered modulo the equations x + 0 ≈ x and

Θ(Θ(x) + y) ≈ Θ(x + y), we can take u′ to be of the form∑
�∈L

e�.u
′
� +

∑
m∈M

βm.u
′′
m +

∑
k∈K

yk

for some finite index sets L,M,K . We distinguish two cases:

(a) For each i ∈ I ′ with σ(ti) ↔/ 0 there is a ki ∈ Ki such that ziki is not a summand

of u′.

Define the substitution σ′ by

σ′(y) =

⎧⎨
⎩
c.0 if y = ziki for some i ∈ I ′ with σ(ti) ↔/ 0, or

if y is a summand of t with σ(y) ↔/ 0

σ(y) otherwise

for process variables y, and let σ′ agree with σ on action variables. It is not hard to

see that σ′(t)
bi
� for i = 1, . . . , n (because c > bi and t has no summand of the form

a.v or α.v). On the other hand, since σ(uj) ↔/ 0 and σ(u) ↔ Φn, there is an h with

1 � h � n such that σ(u′)
bh→. Furthermore, σ(u′)

c
�. By assumption, ziki is not a

summand of u′ for each i ∈ I ′ with σ(ti) ↔/ 0. Moreover, for any variable summand

y of t with σ(y) ↔/ 0, y is not a summand of u′, because, by assumption, σ(y) ↔ Φn

while σ(u′) ↔/ Φn. So σ(u′)
bh→ and σ(u′)

c
� imply σ′(u′)

bh→ and σ′(u′)
c

�. It follows

that σ′(uj)
bh→, so σ′(u)

bh→. Hence σ′(t) ↔/ σ′(u). Since σ′(P) = σ(P) = true, this

contradicts the fact that P ⇒ t ≈ u is sound modulo ↔.

(b) {zi0k | k ∈ Ki0} ⊆ {yk | k ∈ K}, for some i0 ∈ I ′ with σ(ti0) ↔/ 0.

In this case, K is non-empty since, as previously observed, Ki0 is non-empty. By the

proviso of the lemma, σ(ti0) ↔ Φn, so (since n is larger than the size of ti0) there

is a k0 ∈ Ki0 with σ(zi0k0
) ↔/ 0. Furthermore, by the assumption for case 3 of the

proof, σ(uj) ↔/ 0 and σ(uj) ↔/ Φn. Therefore, there is an h with 1 � h � n such

that σ(Θ(u′))
bh
�. Define the substitution σ′ as

σ′(y) =

{
ah.0 if y = zi0k0

σ(y) otherwise

for process variables y, and let σ′ agree with σ on action variables. We argue that

σ′(t)
ah
�. To this end, observe first that, since σ(Θ(u′))

bh
�, we have σ(

∑
k∈K yk)

bh
�,

so σ(zi0k0
)

bh
�. We are now ready to show that no summand of σ′(t) affords an

L. Aceto, T. Chen, W. Fokkink and A. Ingolfsdottir 20

ah-labelled transition. We consider three exhaustive possibilities:

(i) Let i ∈ I ′ with zi0k0

∈ {zik | k ∈ Ki}. Then clearly σ′(ti)

ah
�.

(ii) Let i ∈ I ′ with zi0k0
∈ {zik | k ∈ Ki}. Then σ(ti) ↔/ 0 because σ(zi0k0

) ↔/ 0, so,

by assumption, σ(ti) ↔ Φn. This implies σ(ti)
bh→, so, since σ(zi0k0

)
bh
�, it follows

that σ′(ti)
bh→. Since the outermost function symbol of ti is Θ, we can conclude

that σ′(ti)
ah
�.

(iii) Finally, since σ(zi0k0
) ↔/ 0 and σ(zi0k0

)
bh
�, the proviso of the lemma yields the

fact that zi0k0
cannot be a summand of t.

Since t has no other types of summands, from the three cases above we can

conclude that σ′(t)
ah
�. On the other hand, σ′(Θ(u′))

ah→ because σ(Θ(u′))
bh
� and

zi0k0
∈ {yk | k ∈ K}. Hence σ′(u)

ah→, so σ′(t) ↔/ σ′(u). Since σ′(P) = σ(P) = true,

this contradicts the fact that P ⇒ t ≈ u is sound modulo ↔.

Summarising, the assumption that, for some j ∈ J , the term σ(uj) has a summand that is

not bisimilar to either Φn or 0 leads to a contradiction. This completes the proof.

The following proposition states that the property of closed instantiations of sound

equations with action predicates as conditions mentioned in the above lemma is preserved

under equational derivations from a finite collection of sound equations. This is the key

to the promised proof of our claim.

Proposition 5.5. Let E be a finite collection of equations with action predicates as

conditions that is sound modulo ↔. Let n � 2 be larger than the size of any term

in the equations of E. Assume, furthermore, that

— E � p ≈ q; and

— the summands of p are all bisimilar to Φn or 0.

Then the summands of q are all bisimilar to Φn or 0.

Proof. We use induction on the depth of the closed proof of the equation p ≈ q from

E. We proceed by a case analysis on the last rule used in the proof of p ≈ q from E:

— E � p ≈ q because σ(t) = p and σ(u) = q for some equation P ⇒ t ≈ u ∈ E and closed

substitution σ with σ(P) = true. The claim follows immediately from Lemma 5.4.

— E � p ≈ q because p = p′ + p′′ and q = q′ + q′′ for some p′, q′, p′′, q′′ such that

E � p′ ≈ q′ and E � p′′ ≈ q′′. Since the summands of p are all bisimilar to Φn or 0, the

same holds for p′ and p′′. By induction, the summands of q′ and q′′ are all bisimilar

to Φn or 0. The claim now follows because the summands of q are those of q′ and q′′.

— E � p ≈ q because p = a.p′ and q = a.q′ for some p′, q′ such that E � p′ ≈ q′. This

case is vacuous, because n � 2 and p ↔ Φn.

— E � p ≈ q because p = α.p′ and q = α.q′ for some p′, q′ such that E � p′ ≈ q′. This

case is vacuous, because p and q are closed.

— E � p ≈ q because p = Θ(p′) and q = Θ(q′) for some p′, q′ such that E � p′ ≈ q′. The

claim is immediate, because both p and q consist of a single summand, and p ↔ q by

the soundness of E.

On the axiomatisability of priority 21

Theorem 5.6. Let Act = {ai, bi | i � 1} ∪ {c}, where ai < bi < c for each i � 1, and

these are the only inequalities. Then bisimulation equivalence has no ground-complete

axiomatisation over BCCSPΘ consisting of a finite set of sound equations with action

predicates as conditions.

Proof. Let E be a finite collection of equations with action predicates as conditions

that is sound modulo ↔. Let n � 2 be larger than the size of any term in the equations

of E. According to Proposition 5.5, from E we cannot derive Θ(Φn) ≈ Φn. This equation

is sound modulo ↔, and therefore E is not ground-complete.

5.2. Positive results

In the previous section, we gave an example of a priority structure (Act , <) with respect

to which it is impossible to give a finite, ground-complete axiomatisation of bisimulation

equivalence over BCCSPΘ in terms of equations with action predicates as conditions,

without recourse to auxiliary operators. That result, however, does not imply that auxiliary

operators are always necessary to achieve a finite basis of equations with action predicates

as conditions for bisimulation equivalence. Our aim in this section is to substantiate

this claim by providing some general conditions over the priority structure (Act , <) that

are sufficient to guarantee the existence of a finite, ground-complete axiomatisation of

bisimulation equivalence over BCCSPΘ that uses equations with action predicates as

conditions.

Definition 5.7. An anti-chain in a poset (Act , <) is a subset of Act consisting of pairwise

incomparable actions. The width of a poset (Act , <) is the least upper bound of the

cardinalities of its anti-chains. A poset (Act , <) has finite width if its width is finite.

Example 5.8. The poset of actions we considered in Section 5.1 has uncountably many

infinite, maximal anti-chains. (Each such anti-chain can, in fact, be obtained by picking

exactly one of ai and bi for each i � 1.) The width of that poset is therefore infinite.

We now consider a countably infinite, ground-complete axiomatisation of bisimulation

equivalence over BCCSPΘ using equations with action predicates as conditions. Such an

axiomatisation reduces to a finite one if the poset of actions has finite width.

Theorem 5.9. Let (Act , <) be an infinite poset of actions. The following statements hold:

1 The axiom system consisting of the equations (CPR2), (CPR3) and (CPR4n) (n � 0),

together with equations (A1)–(A4) in Table 1 is ground-complete for bisimilarity over

the language BCCSPΘ.

2 Assuming that the width of (Act , <) is k, the axiom system consisting of the equations

(CPR2), (CPR3), and (CPR4k), together with equations (A1)–(A4) and (PR1) in

Table 1, is ground-complete for bisimilarity over the language BCCSPΘ. Therefore,

bisimilarity has a finite, ground-complete axiomatisation using equations with action

predicates as conditions if (Act , <) has finite width.

Proof. We will only present a sketch of the proof for statement (2). (The proof for

statement (1) follows similar lines.)

L. Aceto, T. Chen, W. Fokkink and A. Ingolfsdottir 22

First, observe that it is enough to show that if the cardinality of each anti-chain in

(Act , <) is at most k, the equations (CPR2), (CPR3), (CPR4k) and (PR1) can be used to

remove all occurrences of Θ from closed terms. Indeed, if we can do so, then ground-

completeness follows from the well-known ground-completeness of (A1)–(A4) for BCCSP

modulo ↔ (see, for example, Hennessy and Milner (1985)).

To prove that all occurrences of Θ can be removed from closed terms, assume that we

have a closed term p that does not contain occurrences of Θ. We show that Θ(p) can be

proved equal to a term q that does not contain occurrences of Θ by induction on the size

of p. To this end, note that, modulo associativity and commutativity of +, the term p can

be written
∑n

i=1 ai.pi for some n � 0, actions ai and closed terms pi that do not contain

occurrences of Θ.

If n = 0, equation (PR1) gives us that Θ(0) ≈ 0, and we are done. If n = 1, the claim

follows using (1) and the induction hypothesis. (Recall that, since k � 1, equation (1) is

derivable from (CPR4k).) Consider now the case when n � 2. We proceed by examining

the following three sub-cases:

— there are i, j such that 1 � i < j � n and ai = aj;

— there are i, j such that 1 � i, j � n and ai < aj; and

— the collection of actions {a1, . . . , an} is an anti-chain in the poset (Act , <).

The first two sub-cases are handled using the induction hypothesis, and equations (CPR2)

and (CPR3), respectively.

If the proviso for the third sub-case applies, we know that n � k. Using equation (A3)

if n < k, we can therefore reason as follows:

Θ

(
n∑

i=1

ai.pi

)
≈ Θ

⎛
⎜⎝ n∑

i=1

ai.pi + an.pn + · · · + an.pn︸ ︷︷ ︸
(k − n) times

⎞
⎟⎠

≈
n∑

i=1

ai.Θ(pi) (by (CPR4k) and possibly (A3))

≈
n∑

i=1

ai.qi (by the induction hypothesis)

for some closed terms q1, . . . , qn that do not contain occurrences of Θ.

Using this result, a simple argument by structural induction over closed terms shows

that each closed term in the language BCCSPΘ is provably equal to one that does not

contain occurrences of the Θ operator, and we are done.

Thus, bisimilarity affords a finite, ground-complete axiomatisation that uses equations

with action predicates as conditions if the poset (Act , <) has finite width. (Moreover,

the equations with action predicates as conditions making up the axiom systems used in

Theorem 5.9 only involve predicates over actions that can be expressed as conjunctions

of, possibly negated, atomic formulae of the form α < β.) A natural question to ask at this

point is whether this result holds for more general priority structures. We now proceed to

address this question in some detail.

On the axiomatisability of priority 23

Let us begin by observing that there are priority structures with infinite anti-chains that

do allow for a finite equational axiomatisation of bisimilarity over the language BCCSPΘ.

Consider, by way of an example, the flat priority structure ({⊥, a0, a1, . . .}, <), where the

only ordering relations are given by ⊥ < ai for each i � 0. Membership of the countably

infinite anti-chain {a0, a1, . . .} can be characterised by the predicate

P (α) = ∀β. ¬(α < β).

We can therefore write the following equation that allows us to reduce the number of

summands within the scope of a Θ operator:

P (α) ∧ P (β) ⇒ Θ(α.x + β.y + z) ≈ Θ(α.x + z) + Θ(β.y + z). (2)

It is not hard to see that the above equation is sound. (In fact, the soundness of this

equation will follow from the more general result in Lemma 5.12.) Moreover, following

the lines of the proof sketch for Theorem 5.9(2), one can argue that, together with (PR1),

(CPR2), (CPR3) and (1), this equation can be used to remove all occurrences of Θ from

closed terms. Hence, we have the following proposition.

Proposition 5.10. Consider the priority poset ({⊥, a0, a1, . . .}, <), where the only ordering

relations are given by ⊥ < ai for each i � 0. Then the axiom system consisting of the

equations (2), (CPR2), (CPR3) and (1), together with equations (A1)–(A4) and (PR1) in

Table 1, is ground-complete for bisimilarity over the language BCCSPΘ.

As another example, consider the priority structure

A = ({a0, a1, . . .} ∪ {b0, b1, c}, <),

where the relation < is the least transitive relation satisfying

bi < aj for all i ∈ {0, 1}, j � 0 and

aj < c for each j � 0.

This poset has one non-trivial maximal finite anti-chain, namely {b0, b1}, and one maximal

countably infinite anti-chain, namely

A = {a0, a1, . . .}.

Membership of A is characterised by the predicate PA defined by

PA(α) = ∃β1, β2. β1 < α < β2.

One can check that the instance of equation (2) associated with this predicate is sound.

(Once again, the soundness of this equation will follow from the more general result in

Lemma 5.12.) Moreover, following the lines of the proof sketch for Theorem 5.9(2), one

can argue that, together with (PR1), (CPR2), (CPR3) and (CPR42) (to handle the finite

anti-chain {b0, b1}), this equation can be used to remove all occurrences of Θ from closed

terms. Thus, we have the following proposition.

Proposition 5.11. Consider the priority poset A. Then the axiom system consisting of

equation (2) for predicate PA, (CPR2), (CPR3) and (CPR42), together with equations

L. Aceto, T. Chen, W. Fokkink and A. Ingolfsdottir 24

(A1)–(A4) and (PR1) in Table 1, is ground-complete for bisimilarity over the language

BCCSPΘ.

In both of the examples we have just presented, equation (2) plays a key role in that it

allows us to reduce the size of terms in ‘head normal form’ having summands of the form

a.p and b.q with a, b contained in an infinite anti-chain within the scope of a Θ operator.

The following lemma states a necessary and sufficient condition on the infinite anti-chain

that guarantees that axiom (2) is sound modulo bisimilarity.

Lemma 5.12. Let A be an anti-chain in the poset (Act , <) whose membership is described

by predicate PA. Then the equation (2) for predicate PA is sound modulo bisimilarity if

and only if each element of A is above the same set of actions – that is, for each a, b ∈ A

and c ∈ Act , we have that c < a if and only if c < b.

Proof. We first prove the ‘if implication’. To this end, assume that a, b ∈ A and p, q, r

are closed terms in the language BCCSPΘ. We claim that

Θ(a.p + b.q + r) ↔ Θ(a.p + r) + Θ(b.q + r).

To see that this claim does hold, it is enough to observe that the following statements

hold for each closed term p′:

1 Θ(a.p + b.q + r)
a→ p′ if and only if Θ(a.p + r) + Θ(b.q + r)

a→ p′;

2 Θ(a.p + b.q + r)
b→ p′ if and only if Θ(a.p + r) + Θ(b.q + r)

b→ p′; and

3 Θ(a.p + b.q + r)
c→ p′ if and only if Θ(a.p + r) + Θ(b.q + r)

c→ p′, for each action c

different from a, b.

We only give a proof here for the last of these statements. To this end, assume first that

Θ(a.p + b.q + r)
c→ p′ for some action c different from a, b and closed term p′. Since c is

different from a, b, there is a closed term r′ such that:

— p′ = Θ(r′);

— r
c→ r′;

— r
d
� for each action d such that c < d; and

— neither c < a nor c < b holds.

It is now a simple matter to see that, for instance, Θ(a.p + r)
c→ p′. This gives us that

Θ(a.p + r) + Θ(b.q + r)
c→ p′, which was to be shown.

Conversely, suppose that Θ(a.p + r) + Θ(b.q + r)
c→ p′ for some action c different from

a, b and closed term p′. Without loss of generality, we may assume that this is because

Θ(a.p + r)
c→ p′. Since c is different from a, b, there is a closed term r′ such that:

— p′ = Θ(r′);

— r
c→ r′;

— r
d
� for each action d such that c < d; and

— c < a does not hold.

Observe now that c < b does not hold either, because a and b are above the same actions

by the proviso of the lemma. It follows that Θ(a.p+b.q+ r)
c→ p′, which was to be shown.

To establish the ‘only if implication’, assume that A contains two distinct incomparable

actions a and b that are not above the same set of actions. Suppose, without loss of

On the axiomatisability of priority 25

generality, that c < a, but c < b does not hold, for some action c. Then

Θ(a.0 + b.0 + c.0) ↔ a.0 + b.0 ↔/ a.0 + b.0 + c.0 ↔ Θ(a.0 + c.0) + Θ(b.0 + c.0).

(The last equivalence holds true because b and c must be incomparable, as c < a and a

and b are incomparable.) Therefore equation (2) for predicate PA is not sound modulo

bisimilarity.

Remark 5.13. Let A,B be different, maximal anti-chains in the poset (Act , <). Assume

that all elements of A are above the same set of actions (that is, for each a, b ∈ A and

c ∈ Act , we have that c < a if and only if c < b), and that all elements of B are also.

Then A and B are disjoint.

To see this, assume, in order to show a contradiction, that a ∈ A ∩ B. Since A and B

are maximal anti-chains, neither is a subset of the other. Therefore, since A
= B, there

are actions b, c such that b ∈ A − B and c ∈ B − A. It follows that a, b, c are above the

same set of actions in Act . However, b
∈ B. Therefore, since B is maximal, there must be

some action d ∈ B with b < d or d < b. If b < d, we have that b < a because a, d ∈ B

and each element of B is above the same actions. This contradicts the assumption that A

is an anti-chain. If d < b, then, reasoning as above, we can reach a contradiction to the

assumption that B is an anti-chain. Therefore, A and B must be disjoint.

Suppose that p is a closed term in head normal form whose set of initial actions is

included in an infinite anti-chain satisfying the constraint in the statement of Lemma 5.12.

Then the sound equation (2) offers a way of ‘simplifying’ the term Θ(p). The use of this

axiom is the key to the proof of the following generalisation of Theorem 5.9(2), and of

Propositions 5.10 and 5.11.

Theorem 5.14. Let (Act , <) be an infinite poset of actions. Assume that:

1 the collection of the sizes of the finite, maximal anti-chains in (Act , <) is finite;

2 (Act , <) has finitely many infinite, maximal anti-chains; and

3 for each infinite, maximal anti-chain A in (Act , <), each element of A is above the

same set of actions – that is, for each a, b ∈ A and c ∈ Act , we have that c < a if and

only if c < b.

Let k be the size of the largest finite, maximal anti-chain in (Act , <), or 1 if all maximal

anti-chains are infinite. Then the axiom system consisting of one instance of the equation

(2) for predicate PA for each infinite anti-chain A in (Act , <), (CPR2), (CPR3) and

(CPR4k), together with equations (A1)–(A4) and (PR1) in Table 1, is ground-complete

for bisimilarity over the language BCCSPΘ.

Proof. The soundness of the axiom system is easily established, using Lemma 5.12 for

the instances of axiom (2). The completeness of the axiom system can be shown along

the lines of the proof of Theorem 5.9. The key step in the argument is again to prove that

each term Θ(
∑n

i=1 ai.pi), where the pi do not contain occurrences of Θ, can be proved

equal to a term q that does not contain occurrences of Θ by induction on the size of∑n
i=1 ai.pi. This we do by considering several sub-cases depending on the number n of

summands in
∑n

i=1 ai.pi.

L. Aceto, T. Chen, W. Fokkink and A. Ingolfsdottir 26

If n = 0, the claim follows using (PR1). If n = 1, it is enough to use (1) and the

induction hypothesis. (Recall that (1) is derivable from (CPR4k).) If n � 2, we distinguish

the following sub-cases:

— there are i, j such that 1 � i < j � n and ai = aj;

— there are i, j such that 1 � i, j � n and ai < aj;

— the collection of actions {a1, . . . , an} is an anti-chain in the poset (Act , <).

The first two sub-cases are handled using the induction hypothesis, and the equations

with action predicates as conditions (CPR2) and (CPR3), respectively.

The last sub-case is handled using (CPR4k) as in the proof of Theorem 5.9 if the set of

actions {a1, . . . , an} is included in a finite maximal anti-chain. Assume now that {a1, . . . , an}
is only included in an infinite maximal anti-chain, say A. (In fact, Remark 5.13 ensures

that such an anti-chain A is unique.) Using the instance of equation (2) for predicate PA

and induction, the claim follows.

The rest of the proof follows along the same lines as the proof of Theorem 5.9, so is

omitted.

Remark 5.15. The priority structure we employed in our proof of Theorem 5.6 satisfies

neither condition 2 nor condition 3 in the proviso of the above theorem.

In light of the above result, bisimilarity has a finite, ground-complete axiomatisation using

equations with action predicates as conditions over the language BCCSPΘ if the poset of

actions satisfies the proviso of the above theorem. The above theorem therefore generalises

Propositions 5.10 and 5.11. A further example of a priority structure that satisfies the

conditions stated in Theorem 5.14 is one having a finite collection of ‘priority levels’ each

consisting of an infinite set of actions – consider, for instance, the poset

({aij | 1 � i � N, j � 1}, <),

where N is a positive integer and aij < ahk holds if and only if i < h.

We have not yet attempted a complete classification of the priority structures for which

bisimulation equivalence affords a finite axiomatisation in terms of equations with action

predicates as conditions over the language BCCSPΘ. This is probably a hard problem,

which we leave for future research.

Acknowledgements

We thank Jaco van de Pol, Vincent van Oostrom and the other participants in the PAM

seminar at CWI for their useful comments. The work reported in this paper was carried

out while Luca Aceto and Anna Ingolfsdottir were also employed by the Department of

Computer Science, Aalborg University.

References

Aceto, L., Fokkink, W., Ingolfsdottir, A. and Luttik, B. (2005) CCS with Hennessy’s merge has no

finite equational axiomatization. Theoretical Computer Science 330 (3) 377–405.

On the axiomatisability of priority 27

Aceto, L., Fokkink, W., Ingolfsdottir, A. and Nain, S. (2006) Bisimilarity is not finitely based over

BPA with interrupt. Theoretical Computer Science 366 (1–2) 60–81. (An extended abstract of

this paper appeared in Fiadeiro, J., Harman, N., Roggenbach, M. and Rutten, J. (eds.) Proc.

1st Conference on Algebra and Coalgebra in Computer Science (CALCO’05). Springer-Verlag

Lecture Notes in Computer Science (2005) 3629 52–66.)

Baeten, J., Bergstra, J. and Klop, J.W. (1986) Syntax and defining equations for an interrupt

mechanism in process algebra. Fundamenta Informaticae IX (2) 127–168.

Baeten, J. and Bergstra, J. (2000) Mode Transfer in Process Algebra. Report CSR00–01, Eindhoven

University of Technology.

Bergstra, J. (1985) Put and get primitives for synchronous unreliable message passing. Logic Group

Preprint Series 3, Utrecht University, Department of Philosophy.

Bergstra, J. and Klop, J.W. (1984) Process algebra for synchronous communication. Information

and Control 60 (1/3) 109–137.

Bloom, B., Istrail, S. and Meyer, A.R. (1995) Bisimulation can’t be traced. Journal of the ACM 42

(1) 232–268.

Brinksma, E. (1985) A tutorial on LOTOS. In: Diaz, M. (ed.) Proc. 5th IFIP Workshop on Protocol

Specification, Testing and Verification (PSTV’85), North-Holland 171–194.

Camilleri, J. and Winskel, G. (1985) CCS with priority choice. Information and Computation 116 (1)

26–37.

Cleaveland, R. and Hennessy, M. (1990) Priorities in process algebras. Information and Computation

87 (1-2) 58–77.

Cleaveland, R., Lüttgen, G. and Natarajan, V. (2001) Priorities in process algebra. In: Bergstra, J.,

Ponse, A. and Smolka, S. (eds.) Handbook of Process Algebra, Elsevier 711–765.

Cleaveland, R., Lüttgen, G., Natarajan, V. and Sims, S. (1996) Priorities for modeling and verifying

distributed systems. In: Margaria, T. and Steffen, B. (eds.) Proc. 2nd Workshop on Tools and

Algorithms for Construction and Analysis of Systems (TACAS’96). Springer-Verlag Lecture Notes

in Computer Science 1055 278–297.

Dsouza, A. and Bloom, B. (1995) On the expressive power of CCS. In: Thiagarajan, P. S. (ed.) Proc.

15th Conference on Foundations of Software Technology and Theoretical Computer Science

(FSTTCS’95). Springer-Verlag Lecture Notes in Computer Science 1026 309–323.

van Glabbeek, R. (1990) The linear time-branching time spectrum. In: Baeten, J. and Klop, J.W.

(eds.) Proc. 1st Conference on Concurrency Theory: Unification and Extension (CONCUR’90).

Springer-Verlag Lecture Notes in Computer Science 458 278–297.

van Glabbeek, R. (2001) The linear time-branching time spectrum I. The semantics of concrete,

sequential processes. In: Bergstra, J., Ponse, A. and Smolka, S. (eds.) Handbook of Process Algebra,

Elsevier 3–99.

Groote, J. F. (1990) A new strategy for proving ω-completeness with applications in process algebra.

In: Baeten, J. and Klop, J.W. (eds.) 1st Conference on Concurrency Theory (CONCUR’90).

Springer-Verlag Lecture Notes in Computer Science 458 314–331.

Hennessy, M. and Milner, R. (1985) Algebraic laws for nondeterminism and concurrency. Journal

of the ACM 32 (1) 137–161.

ISO (1987) Information processing systems – open systems interconnection – LOTOS – a

formal description technique based on the temporal ordering of observational behaviour.

ISO/TC97/SC21/N DIS8807.

Mauw, S. (1991) PSF – A Process Specification Formalism, Ph.D. thesis, University of Amsterdam.

Milner, R. (1989) Communication and Concurrency, Prentice-Hall.

Milner, R., Tofte, M., Harper, R. and MacQueen, D. (1987) The Definition of Standard ML (Revised),

MIT Press.

L. Aceto, T. Chen, W. Fokkink and A. Ingolfsdottir 28

Moller, F. (1990a) The importance of the left merge operator in process algebras. In: Paterson, M.

(ed.) Proc. 17th Colloquium on Automata and Languages (ICALP’90). Springer-Verlag Lecture

Notes in Computer Science 443 752–764.

Moller, F. (1990b) The nonexistence of finite axiomatisations for CCS congruences. In: Proc.

5th Symposium on Logic in Computer Science (LICS’90), IEEE Computer Society Press

142–153.

Sewell, P. (1997) Nonaxiomatisability of equivalences over finite state processes. Annals of Pure and

Applied Logic 90 (1–3) 163–191.

