
TREE LOGIC WITH RECURSION AND MODEL CHECKING ALGORITHM

Taolue Chen Tingting Han Jian Lu
State Key Laboratory of Novel Software Technology, Nanjing University,

Nanjing, Jiangsu, P.R.China 210093
email: ctl@ics.nju.edu.cn

ABSTRACT
Semi-structured data plays an increasingly important role
in the exchange of information between globally dis-
tributed applications, which invokes renewed interests in
typed programming languages that can manipulate tree-like
data structures. Tree logic, inherited from ambient logic,
is introduced as the formal foundation of related program-
ming language and type systems. In this paper, we intro-
duce recursion into such logic system, which can describe
the tree data more clearly and concisely. By making a dis-
tinction between proposition and predicate, a concise se-
mantics interpretation for our modal logic is given. We also
develop a model checking algorithm for the logic without.
operator. The correctness of the algorithm is shown. Such
work can be seen as the basis of the semi-structured data
processing language and more flexible type system.

KEY WORDS
Semi-structured data, Tree logic, Fixpoint, Model Check-
ing Algorithm

1 Introduction

Semi-structured data plays an important role in the ex-
change of information between globally distributed appli-
cations: examples include BibTex files and XML docu-
ments. Due to the growing popularity of semi-structured
data, and particularly XML, there are renewed interests in
typed programming languages that can manipulate tree-like
data structures.

In general, we are going to have some tree-like data
t, and some description languageT that can flexibly de-
scribe the shape of the data. What we are interested in is
the description languages which are so flexible that they
are akin to logics rather than to type systems. We refer
the reader to [2] for more descriptions. Generally speak-
ing, the key problem is to find rich description languages
and satisfaction and validity algorithms admitted by them.
In the research community, it is well recognized that modal
logic is an excellent candidate of such description language
and thus in essence, such problems can be reduced to corre-
sponding model checking problem, which is the main focus
of this paper.

These problems have been widely studied by some re-
searchers. For data model, the research community mostly
agree on defining semi-structured data using trees with

’graphical’ links or labelled directed graphs. For the de-
scription language, a logic that can be used as a rich de-
scription language for tree-like data has been provided. It
merges as an application of the novel area of spatial logics
used for describing data and network structures. In this pa-
per, we call this logicTree Logic. Many researches have
focused on such a modal logic system. Indeed, tree logic is
a sublogic of Ambient Logic [4] for ambient calculus due
to Cardelli and Gordon, or spatial logic [1] due to Caires et
al. Some detailed comparison is deferred to Section 4.

With the semi-structured data models and associated
languages being investigated, the need for manipulating
private data elements is becoming aware. Such private re-
sources can be modelled using names and name hiding no-
tions arising from theπ-calculus [7] : during data manip-
ulation, the identity of a private name is not important as
long as the distinctions between it and other (public or pri-
vate) names are preserved. Such work has been initialized
by Cardelli et al in [5], where the simple tree model (such
as XML) is extended in a general and orthogonal way with
a hiding operator. Besides that, in logic, some modal op-
erators, inspired by spatial logics of concurrency devised
to cope withπ-calculus restriction and scope extrusion, are
introduced. However, so far there still lacks a satisfactory
approach to introduce recursion into such logics, due to
subtle interactions between recursion and first-order quan-
tification. The recursion is important and useful, it can de-
scribe the tree data more clearly and concisely. We will
give a illuminating example in Section 2. The standard ap-
proach to introducing recursion into a modal logic is via
fixpoint, as inµ-calculus, however such work is not trivial
since the rich modalities, such asR©,�, especially the first
order quantification Nis introduced in order to manipulate
hidden labels. To deal with such problems, we make a dis-
tinction between proposition and predicate, thus the possi-
ble interactions between recursion and first-order quantifi-
cation can be solved based on the above work, a concise
semantics interpretation for our modal logic is given. The
main contribution of this paper lies in the model checking
algorithm for the logic. We devote to presenting such an
algorithm because it is the pivot of semi-data related lan-
guage and corresponding type system. The correctness of
the algorithm is shown. Note that due to space restriction,
most of proofs in this paper are omitted, we refer the inter-
ested readers to our technical report [3].

The rest of the paper is organized as follows: In Sec-

tion 2, the data model and tree logic with recursion is intro-
duced, and the semantics is presented, some useful proper-
ties are also discussed in this section. The model checking
algorithm is presented and its correctness is shown in Sec-
tion 3. The paper is concluded with Section 4 where related
work is also discussed.

2 Data Model and Tree Logic

2.1 Data Model

Let l,m, n, ... ranged over byN , which is a countable infi-
nite set of names. The data model, which essentially is an
edge-labelled finite tree with restriction name, is defined by
BNF as follows:

P,Q ::= 0 | P |Q | m[P] | (νn)P

we refer reader to [5] for the intended meaning of these op-
erators. As in common process calculi,(νn)P introduces
the distinction of bound names and free names. In com-
mon, we usefn(P) and bn(P) to denote the set of free
names and bound names respectively appearing in treeP.
And we identifyα-equivalent trees, i.e. trees that are dif-
ferent only in renaming of bound names.

As usually, the structural congruence, denoted by≡,
is defined as usual. We refer the readers to [5] or [3] for
details.

The following result is well-known for ambient cal-
culus and can be easily adapted to our data model.

Lemma 1 The following properties hold:

(i) (νn)P ≡ 0 iff P ≡ 0.

(ii) For different namem, n, (νn)P ≡ m[Q] iff there ex-
ists treeR, s.t.P ≡ m[R] andQ ≡ (νn)R.

(iii) (νn)P ≡ Q1 | Q2 iff there exists treeR1, R2, s.t.
Q1 ≡ (νn)R1 and Q2 ≡ R2 and n /∈ fn(Q2) or
Q1 ≡ R1 andQ2 ≡ (νn)R2 andn /∈ fn(Q1).

A substitution{m1/n1, · · ·ml/nl} is a function from
N to N that mapsni onto mi for i ∈ {1, · · · , l} andn
onto itself forn /∈ {n1, · · · , nl}. Substitutions are usually
denoted byσ. The empty substitution, that is the identity
function onN , is written as []. The result of applyingσ
to P is denoted byPσ. In the below, byα-conversion
it is assumed that a substitutionσ acts as an identity on
the bound names of the process and keeps the separation
between bound and free names. We follow this conven-
tion in the below and will use it implicitly in the proof. If
T is a set of trees andσ a substitution,T σ is defined as
{Pσ | P ∈ T }.

Substitution that just interchange a pair of names,
which is calledtransposition and ranged byτ , will plays a
special role in technical developments to follow. More pre-
cisely, the transposition ofn andm, written as{m ↔ n},
denoted the substitutionσ : {m,n} → {n, m}. It turns out
that transpositions are a useful tool in proving properties
concerning fresh names.

2.2 Tree Logic with Recursion

We assume a countable infinite setV of name variables
which is ranged over byx, y, z, · · · , such thatV ∩ N =
∅. And we assume a countably infinite setX of predicate
variables, ranged over byX, Y, Z, · · · . The syntax of the
formula is defined by BNF as follows:

A,B ::= T | ¬A | A ∨B | 0 | A|B | A . B | η[A] |
A@η | η R©A | A� η | Nx.A | ∀x.A | Λ(η̃)

Λ ::= X | λx̃.A | νX.Λ

where,η ∈ N ∪ V.
In formulas of the form∀x.A, Nx.A, λx̃.A and

νX.Λ, the distinguished occurrences ofx andX are bind-
ing, with the scope of propositionsA or predicateΛ. We
define on formulas the relation≡α of α-congruence in the
standard way, that is, as the least congruence identifying
formulas modulo renaming of bound (name and predicate)
variables. We will consider formulas always moduloα-
congruence. Note that for a formula, the notion of name
substitution is extended to the function fromN ∪ V toN ,
i.e. we allow the name variables to be replaced by names.

For any formulaA, we introduce the following sets
in the common way, that is, the names inA, denoted by
n(A), the free name variables inA, denoted byfv(A), and
the free predicate variables inA, denotedfpv(A). Since
their definitions are rather standard, and we omit the formal
presentation.

Note that for convenience, we identifyβ-equivalence
formulas, that is,(λx̃.A)(η̃) andA[η̃/x̃]. A formula A is
called name-closed iffv(A) = ∅ and is called predicated-
closed iffpv(A) = ∅. A formula is closed if it has neither
free name variables nor free predicate variables.

In the tree logic, besides the unary operator6=, the op-
erator. may also convey the same ’negative’ effect. For-
mally, for any formulaA, we define¬− and− . A as two
negative operators. We say that a predicate variableX is
positive (resp. negative) inA if it is under an even (resp.
odd) number of negative operators. Note that a variable
X can be both positive and negative in a formulaA. We
say that a formulaA is monotonic inX whenever every
occurrence ofX in A is positive, otherwise we sayA is
anti-monotonic inX.

A fixpoint predicateνX.Λ is well-formedif Λ is well-
formed andn(Λ) ∪ fv(Λ) = ∅ and monotonic inX. Note
that we require thatΛ has no free name, thusn(Λ(η̃)) and
fv(Λ(η̃)) are totally determined by the actual parameter
η̃. Also, all free occurrences ofX in Λ must occur just at
positive position, which is used to ensure monotonicity of
the denotation mapping associated with fixpoint formulas.
A formula is well-formed if every fixpoint subformula in
it is well-formed. In the sequel, we only consider well-
formed formulas.

For application, especially some interesting examples
of our logic, we refer the reader to [3].

2.3 Semantics

The semantics of formula is defined by assigning to each
formula A a set of treesJAK, namely the set of all trees
that satisfy the property denoted byA. SinceA may con-
tain free name variables and free occurrences of predicate
variables, its denotation depends on the denotation of such
variables, which is given by a valuation (name valuation
and predicate valuation). A name valuationρ is a map-
ping fromV ∪ N toN which is identity onN . We define
ρ[n/x] asρ[n/x](y) = if x = y thenn elseρ(y). A predi-
cate valuationξ assigns to every predicate variable of arity
k a functionN k → ℘(P), that isξ : X → (N k → ℘(P)).
As usual, the relation⊆ can be extended point-wise to func-
tional space as follows: for two functionf (k), g(k) : N k →
℘(P), definef (k) v g(k) iff f(ñ) v g(ñ) for anyñ ∈ N k.
Thus, the functional spaceN k → ℘(P) forms a complete
lattice w.r.t. v. The denotation of formulas is defined in-
ductively in Figure 1.

The semantics defined in Figure 1 is presented in
the style of denotation, indeed, it can also be presented
by satisfaction relation. We writeP |=ρ,ξ A whenever
P ∈ JAKρ,ξ: this means thatP satisfies formulaA un-
der name valuationρ and predicate valuationξ. Note that
for a name-closed formulaA, JAKρ,ξ does not depend onρ
and can be denoted byJAKρ; and ifA is closed, thenJAKρ,ξ

depends on neitherρ nor ξ and can be denoted byJAK.
In the below, we devote to showing that the denotation

map is well-defined. In particular, we show the semantics
of the fixpoint operation is the intended one, i.e.νX.Λ
indeed denotes the greatest fixpoint.

As in the case of first-order logic, the following
lemma which relates substitutions and valuations is com-
mon, and will be used implicitly.

Lemma 2 The following properties hold:

(i) JA[n/x]Kρ,ξ=JAKρ[n/x],ξ.

(ii) JΛ[F/X]Kρ,ξ = JΛKρ,ξ[ξ(F)/X].

Since we consider formulas up toα-congruence, we
start by verifying that the denotation map is well-defined
on the corresponding equivalence classes.

Lemma 3 For any name evaluationρ and predicate eval-
uationξ, if A ≡α B, thenJAKρ,ξ=JBKρ,ξ.

The following lemma shows the monotonicity of de-
notation semantics.

Lemma 4 Let F,G : N k → ℘(P) andF v G, then the
following properties hold:

(i) If A andΛ are monotonic inX, then

– JAKρ,ξ[F/X] ⊆ JAKρ,ξ[G/X].

– JΛKρ,ξ[F/X] v JΛKρ,ξ[G/X]

(ii) If A andΛ are anti-monotonic inX, then

– JAKρ,ξ[G/X] ⊆ JAKρ,ξ[F/X].

– JΛKρ,ξ[G/X] v JΛKρ,ξ[F/X]

By the above lemma, it is easy to see that the func-
tional λΨ.JΛKρ,ξ[Ψ/X] is a monotonic operator over the
complete latticeN k → ℘(P) w.r.t. v, sinceΛ is mono-
tonic inX. By Tarski-Knaster theorem, we have:

Lemma 5 Let Λ be monotonic inX, and for any name
evaluationρ and predicate evaluationξ, then

JνX.ΛKρ,ξ = gfix(λΨ.JΛKρ,ξ[Ψ/X])

Where gfix(λΨ.JΛKρ,ξ[Ψ/X]) denotes the greatest fixpoint
of the functionalλΨ.JΛKρ,ξ[Ψ/X].

For spatial logic, the properties concerning fresh
names are important, especially when the modal operators
which are used to deal with restriction, such asη R©A, A�η,
are introduced. Now, we devote to establishing some im-
portant results. Following [1], we use transposition as a
useful tool to give some concise proof of properties con-
cerning fresh names. The following definition extends the
notion of transposition to predicate.

Definition 1 Letτ be a transposition. A functionf : N →
℘(P) is τ -preserving if(f(n))τ = f(nτ) for any n. A
valuationξ is τ -preserving ifξ(X) is τ -preserving for any
X.

Lemma 6 Given a transpositionτ and a functionf :
N → ℘(P), definefτ : N → ℘(P) as fτ (n) =
f(n) ∪ (f(nτ))τ for anyn, then the following properties
hold:

(i) fτ is τ -preserving.

(ii) If f v g andg is τ -preserving, thenfτ v g.

The intuition of the following lemma is obvious. Al-
though the proof is rather long, it needs no new techniques,
only case analysis and mutual induction on the structure of
A andΛ. Due to space restriction, we omit the details.

Lemma 7 Supposeξ is τ -preserving, then the following
properties hold:

(i) (JAKρ;ξ)τ = JAτKρ;ξ.

(ii) JΛKρ;ξ is τ -preserving.

Obviously, freshness plays a central role in our logic
system and maybe is the most subtle operator, especially
for the fresh name quantification. A fundamental conse-
quence of above lemma is the following characterization of
fresh name quantification. As in [1], the semantics defini-
tion of it is stated in ’existential’ style, indeed, it also can
be stated in ’universal’ style, that is, if some property holds
of a fresh name, it holds of all fresh names, which makes
clear the universal/existential ambivalence of freshness.

JT Kρ;ξ = P
J¬AKρ;ξ = P\JAKρ;ξ

JA ∨BKρ;ξ = JAKρ;ξ ∪ JBKρ;ξ

J0Kρ;ξ = {P |P ≡ 0}
JA|BKρ;ξ = {P |P ≡ P1|P2 ∧ P1 ∈ JAKρ;ξ ∧ P2 ∈ JBKρ;ξ}

JA . BKρ;ξ = {P |Q ∈ JAKρ;ξ ⇒ Q|P ∈ JBKρ;ξ}
Jη[A]Kρ;ξ = {P |∃Q.P ≡ ρ(η)[Q] ∧Q ∈ JAKρ;ξ}
JA@ηKρ;ξ = {P |ρ(η)[P] ∈ JAKρ;ξ}
Jη R©AKρ;ξ = {P |∃Q.P ≡ (νρ(η))Q ∧Q ∈ JAKρ;ξ}
JA� ηKρ;ξ = {P |(νρ(η))P ∈ JAKρ;ξ}
J Nx.AKρ;ξ = ∪n/∈fn(A){P | P ∈ JAKρ[n/x];ξ ∧ n /∈ fn(P)}
J∀x.AKρ;ξ = ∩n∈N {JAKρ[n/x];ξ}
JΛ(η̃)Kρ;ξ = JΛKρ;ξ(ρ(η̃))

JXKρ;ξ = ξ(X)
Jλx̃.AKρ;ξ = λz̃.JAKρ[z̃/x̃];ξ

JνX.ΛKρ;ξ = t{F : N k → ℘(P)|F v JΛKρ;ξ[F/X]}

Figure 1. Interpretation of Formula

Lemma 8 The following statements are equivalent:

(i) P ∈ J Nx.AKρ,ξ.

(ii) There exists a namen /∈ fn(P) ∪ fn(A), s.t. P ∈
JAKρ[n/x],ξ.

(iii) For every namen /∈ fn(P)∪fn(A), P ∈ JAKρ[n/x],ξ.

3 Model Checking Algorithm

In this section, we devote to providing a model checking
algorithm for the logic presented in this paper. Note that
we have investigated the problem of model checking tree
against formulas that may contain composition adjunct (.).
It is now a rather standard result ([6]) that such a problem is
undecidable, which might result from the coexist of the ex-
istential quantification (∃) and the composition adjunct (.).
A novel result of ours lies in that we prove that even the
logic containsonly fresh name quantification (but no ex-
istential quantification!) and the composition adjunct, the
model checking problem for logic formulas is undecidable
all the same. Due to space restriction, the proof is not pre-
sented here, and we refer the interested reader to [3]. Un-
der such circumstance, we have to turn to design the model
checking algorithm for formulawithout ..

3.1 Algorithm

Since our logic system subsumes the recursion (via fix-
point) constructor, one of the notable features of such al-

gorithm is the mechanism used to keep track of unfold-
ing fixpoint formulae. We adopt the latter of the meth-
ods, due to Winskel [8], and generalize it to the pred-
icate case. In our algorithm, the tag sets will contain
pairs (ñ, P) of name vector and the tree. Formally, let
T = {(ñ1, P1), . . . , (ñl, Pl)}, where,ñi (1 ≤ i ≤ l) are
vectors of the same length, sayk and for∀i, j, i 6= j, we
haveñi 6= ñj . For any tag setT , we useλT to denote a
functionN k → ℘(P) defined as follows:

(λT)(ñ) =
{

{P} if (ñ, P) ∈ T
∅ if o.w.

Now, the fixpoint predicateνX.Λ can be generalized
to νX.[T]Λ, note that theX must have the same arity as
T and the usage ofT lies in recording which points of the
model have been visited before thus is only a bookkeeping
device. The definition ofn(νX.[T]Λ), fv(νX.[T]Λ) and
fpv(νX.[T]Λ) are the same as the corresponding defini-
tion for νX.Λ.

The denotation ofνX.[T]Λ is a simple extension for
JνX.ΛKρ;ξ as follows:

JνX.[T]ΛKρ;ξ = t{F : N k → ℘(P) | F v (JΛKρ;ξ[F/X]tλT)}

It is easy to see that the functionalλΨ.(JΛKρ,ξ[Ψ/X]t
λT) is also a monotonic operator over the complete lattice
N k → ℘(P) w.r.t. v, sinceΛ is monotonic inX. Thus, a
little generalization for Lemma 5 is valid all the same, and
we use gfix(λΨ.JΛKρ,ξ[Ψ/X] t λT) to denote the greatest
fixpoint of the functionalλΨ.JΛKρ,ξ[Ψ/X] t λT .

There now follows a technical Lemma which is a gen-
eralization of the so called Reduction Lemma of [8], the
essence of the tag set method.

Lemma 9 Let L = N k → ℘(P) be a complete lattice
w.r.t. v andφ : L → L be a monotonic functional. Then
for anyf ∈ L,

f v gfix(λΨ.φ(Ψ)) iff f v φ(gfix(λΨ.φ(Ψ) t f))

So, using Lemma 9, the following lemma can be eas-
ily proved.

Lemma 10 If (ñ, P) /∈ T , then

P ∈ JνX.[T]ΛKρ;ξ(ñ) iff P ∈ JΛ[νX.[T∪{(ñ, P)}]Λ/X]Kρ;ξ(ñ)

To deal with name restriction, as in [6], we fix the
representation of the tree: usingα-renaming of restricted
names and the rules (Str ResPar) and (Str ResAmb) of the
congruence relation, we group together all name-restriction
operators by transforming every tree to one of the form
(νn1) . . . (νnk)P and separate bounded names by the fol-
lowing functionsep. Note that all bounded names are re-
named apart so that they are different.

Definition 2

sep(0)
def
= 〈∅, P 〉 if P ≡ 0

sep((νn)P)
def
= 〈N ∪ {n}, P ′〉 if sep(P) = 〈N,P ′〉

sep(n[P])
def
= 〈N,n[P ′]〉 if sep(P) = 〈N,P ′〉

sep(P |Q)
def
= 〈N ∪N ′, P ′|Q′〉 if sep(P) = 〈N,P ′〉

andsep(Q) = 〈N ′, Q′〉

Now, we are ready to present our model-checking al-
gorithm. It is an extension of the algorithms from [6]. It is
well known from the result of [6], for any treeP , the sets
{P | P ≡ 0}, {(Q,R) | P ≡ Q|R} and{(n, Q) | P ≡
n[Q]} are decidable. For notation, we use∪̇ for disjoint
union, that is,A = B∪̇C if A = B ∪ C ∧B ∩ C = ∅. We
recalled that all bound names in the trees are renamed apart
so that they are all different from each other and different
from all free names occurring in the trees and the formulas.
SinceN is countable, we can assume it is ordered. For a
set of namesV , function new(V) returns the least name in
N\V . The algorithm is presented in Figure 2.

Now, we devote to proving the correctness of our al-
gorithm. To establish the termination property of the al-
gorithm, we need to bound on the number of names for
model checking process. First, recall that since we adopt
the α-equivalence for formula, we can assume that both
bound names inP and the bound name variables in a for-
mulaA are different. Then we writeNP for the number of
names (including free and bound names) contained in the
treeP andNA for the number of names and name variables
contained inA. Note that names in tag set of the formula
are not included, since it only contributes as a bookkeep-
ing. The following lemma is important, by which we can
conclude that provided that each term only appears once in
each tag set (just as in our algorithm), the size of tag set is
bounded since the treeP we consider is finite.

Lemma 11 For each recursive call of check, with caller
parameter(N,P, A) and the callee parameter (N’,P’,A’),
NP ′ + NA′ ≤ NP + NA.

We now use this fact to give a well-founded order-
ing to formulae. We writeA �P A′ iff A′ is not a fix-
point formula andA is a proper sub-formula ofA′, other-
wiseA is the formΛ[νX.[T ∪ {ñ, P}]Λ/X](ñ) andA′ is
νX.[T]Λ(ñ) where(ñ, P) /∈ T andT contains only nodes
from P. We aim to show that the transitive closure�+

P of
this relation is a well-founded order wheneverP is finite.

Lemma 12 For any treeP ,�+
P is well-founded order.

Lemma 13 Let ρ be name evaluation andξ be predicate
evaluation for∀x.A, and assumen /∈ fn(P) ∪ n(A), then
P ∈ JAKρ,ξ iff P ∈ ∩k∈fn(P)∪n(A)∪{n}JA[k/x]Kρ,ξ.

Theorem 1 For any treeP and closed.-free formulaA,
the following properties hold:

(i) check(sep(P), A) terminates;

(ii) check(sep(P), A) = true iff P ∈ JAK.

4 Conclusion

In this section, we conclude our work and discuss the re-
lated work. This paper deals with semi-structured data
model and related logic system, i.e. tree logic system. We
extend existing work such as [5] with recursion, which is
important as we have pointed out in Section 2. Because
of the subtle interactions between recursion and first-order
quantification, especially the ’fresh’ quantificationN, such
task is challenging and in which one of our contribution
lies. We solve such a problem by making a distinction be-
tween proposition and predicate. A concise semantics in-
terpretation for the modal logic formula is given. Based
on it, since as we point out in the Introduction, model-
checking algorithm plays a curial role in the research of
corresponding programming language and type system, we
focus on devising such an algorithm. Unfortunately, it can
be shown that model checking the full logic system is not
decidable. Alternatively, we present a model checking al-
gorithm for .-free sublogic system. We adapt the well-
known Winskel’s tag set method to predicate case to deal
with fixpoint operator, note that our tag set construction is
different from Winskel’s. The correctness of the algorithm
is shown.

There are some publications on tree logic, or more
generally, ambient logic or spatial logic. The ambient logic
has been developed step by step for a few years. And the
the most comprehensive version might be [4]. A spatial
logic for an asynchronousπ-calculus was introduced and
studied in [1], which has both fresh name quantification
and recursion. The tree logic can be seen as the adaption
of above work to the research of semi-structured data pro-
cessing language and related type systems. Its development

check(N,P, T)
def
= true;

check(N,P,¬A)
def
= ¬check(N,P, A);

check(N,P, A ∨B)
def
= check(N,P, A) ∨ check(N,P, B)

check(N,P, 0)
def
=

{
true if P ≡ 0
false o.w.

check(N,P, A|B)
def
=

∨
N=N1∪̇N2

∨
P≡P1|P2

check(N1, P1, A) ∧ check(N2, P2, A)
∧fn(P1) ∩N2 = ∅ ∧ fn(P2) ∩N1 = ∅;

check(N,P, n[A])
def
= n /∈ N ∧ P ≡ n[Q] ∨ check(N,Q,A);

check(N,P, A@n)
def
= check(N,n[P], A)

check(N,P, n R©A)
def
=

∨
m∈N check(N\{m}, P [n/m], A)
∨(n /∈ fn(P) ∧ check(N,P, A));

check(N,P, A� n)
def
= check(N ∪ {n}, P, A);

check(N,P, Nx.A)
def
= check(N,P, A[new(fn(N,P) ∪ fn(A))/x]);

check(N,P,∀x.A)
def
=

∧
n∈fn(N,P)∪fn(A) check(N,P, A[n/x])

∧check(N,P, A[new(fn(N,P) ∪ fn(A))/x]);

check(N,P, (νX.[T]Λ)(ñ)) =
{

true if(ñ, P) ∈ T
check(N,P, Λ[νX.[T ∪ {(ñ, P)}]Λ/X](ñ)) o.w.

Figure 2. The Algorithm

follows similar lines. [2] has a good introduction. How-
ever, our work follows [5], in which hidden information is
studied. However, in [5], the transposition is explicitly in
the data model and logic system while we follow the more
traditional approach and transposition is only a proof tool.
Now, we will do some comments on [1] since both of [1]
and our work deal with recursion. Comparing to [1], be-
sides the difference in the data (process) model, the syntax
and the semantics are also very different. [1] does not make
a distinction between proposition and predicate, however, it
conveys difficulties when interpreting the fresh name quan-
tification. As a remedy, the notion ofPSetsis introduced.
We refer the reader to [1] for more details. The advan-
tage of our solution lies in that the semantics of our logic
is clearer and more concise. What’s more, it is more favor-
able (at least) for model checking purpose. However, some
useful tools, such as transposition, comes from [1]. It is
worth pointing out that we believe our method can also be
applied to ambient calculus and spatial logic (with recur-
sive), we leave it as our future work.

There are several directions for further research. First
of all, how to improve efficiency of our algorithm is an in-
teresting problem. At the same time, the tree logic lacks so
called somewhere modality♦, we think it is important for
the description of the static structure of the tree, which is
another direction of our further research.

Acknowledgements The work in this paper is par-
tially support by NNSFC (60273034, 60233010), 863
Program (2002AA116010) and 973 Program of China
(2002CB312002).

References

[1] L.Caires, L.Cardelli. A Spatical Logic for Concur-
rency (Part I). Proc. TACS’2001, LNCS 2215, pp.1-
30, Springer, 2001.

[2] C.Calcagno, L.Cardelli, A.D.Goron. Deciding Valid-
ity in a Spatial Logic for Trees. Proc. TLDI’03, ACM
Press, pp. 62-73, 2003.

[3] T.Chen, T.Han, J.Lu. Tree Logic with Recursion
and Model Checking Algorithm. Technical Report of
State Key Laboratory for Novel Software Technology,
Nanjing University, Nanjing, P.R.China, 2004.

[4] L.Cardelli, A.D.Gordon. Ambient Logic. Mathemati-
cal Structures in Computer Science. To appear.

[5] L.Cardelli, P.Gardner, G.Ghelli. Manipulating Trees
with Hidden Labels. Proc. FOSSACS’03, LNCS
2620, Springer, 2003.

[6] W.Charatonik, J.-M.Talbot. The Decidability of
Model Checking Mobile Ambient. Proc. CSL’01.
LNCS 2142, pp.339-354, Springer, 2001.

[7] R.Milner, J.Parrow, D.Walker. A Calculus of Mobile
Process, part I/II. Journal of Information and Compu-
tation, 100:1-77, Sept.1992.

[8] G.Winskel. A Note on Model Checking the Modalµ-
calculus. Theoretical Computer Science 83:157-167,
1991.

