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Abstract. Priced Probabilistic Timed Automata (PPTA) extend timed
automata with cost-rates in locations and discrete probabilistic branch-
ing. The model is a natural combination of Priced Timed Automata and
Probabilistic Timed Automata. In this paper we focus on cost-bounded
probabilistic reachability for PPTA, which determines if the maximal
probability to reach a goal location within a given cost bound (and time
bound) exceeds a threshold p ∈ (0, 1]. We prove undecidability of the
problem for simple PPTA in 3 variants: with 3 clocks and stopwatch
cost-rates or strictly positive cost-rates. Because we encode a 2-counter
machine in a new way, we can also show undecidability for cost-rates in
Z and only 2 clocks.

1 Introduction

Digital technology has been widely deployed in safety-critical situations and real-
life environments, which leads to increased interest in computer systems that
satisfy quantitative timing constraints. Timed automata [1] are a prominent and
well-established formalism for modeling, analysis and verification of such real-
time systems, which have received much attention both in terms of theoretical
and practical developments.

In addition to computation time, systems also use other finite resources, e. g.
energy, memory, or bandwidth. In many cases, some resources are scarce; the
system should not use more resources than a certain budget. Priced (or weighted)
timed automata [2,3] model resource use and resource constraints.

Traditional approaches to the formal description of real-time systems usually
express the system model purely in terms of nondeterminism. However, many
real-life systems, such as multimedia equipment, communication protocols and
networks, exhibit random behavior. Thus we may ask for the likelihood that
certain properties are satisfied. This suggests the study of probabilistic models.
In this paper, we investigate priced probabilistic timed automata (PPTAs) [4],
which are a probabilistic extension of priced timed automata. This model is an
orthogonal extension of priced as well as probabilistic timed automata [5].
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One of the most fundamental problems for timed automata and their variants
is reachability. In the setting of PPTA, cost-bounded probabilistic reachability
asks: “Is it possible to reach a goal state with probability ≥ p within a given
cost (and time) bound?” This problem has been studied in [4], where the authors
provided a semi-algorithm: If the answer is affirmative or the symbolic state
space is finite, the algorithm terminates; however, the decidability of the problem
remained open. In this paper, we show its undecidability. The proof reduces a
2-counter machine to a PPTA with three clocks; the 2-counter machine does not
terminate iff some state in the PPTA is reachable with probability 1. Moreover,
the PPTA can be restricted to: 1. either only cost-rates ∈ {0, 1} or only cost-rates
> 0, 2. no difference constraints nor strict constraints, and 3. no probabilistic
resets. So, even when cost must increase with time passing, it may be necessary
for the semi-algorithm of [4] to investigate infinitely many symbolic states. Un-
decidability also holds for PPTA with two clocks that allow cost-rates ∈ Z.

Related Work. Although greatly inspired by [6], there are some thorough changes
in our encoding of a 2-counter machine. First, we use a single clock to encode
both counters, similar to [7]. We find our encoding simpler, since it uses the
third clock only in one subautomaton. Second, [6] shows undecidability in the
setting of the logic WCTL on priced timed automata, as well as in the setting
of weighted timed games. In both settings the goal state is reached by simu-
lating a terminating execution, or by doing a test after simulating an initial
fragment of any execution. The 2-counter machine terminates iff the goal state
cannot be avoided indefinitely. For our setting this would not work, because tests
are entered probabilistically; the (now probabilistic) choice whether to continue
simulation or do a test cannot avoid testing infinitely often.

The other way around, our undecidability results carry over to the setting of
[6]. Our Theorem 1 shows a somewhat stronger result, since our PPTA forbid
strict guards. Theorem 2 shows a new result on only two clocks, while often three
clocks are necessary. Because of the strictly positive cost-rates, Theorem 3 also
gives new insight in the setting of [6]. The innovative construction for Theorem 3
ensures that the time to reach the goal state is always 9 time units; it uses the
third clock to measure the runtime. Theorem 2 also carries over to the game
setting of [7] for two clocks and a lower bound.

Outlook. A possible continuation of this work is by having the slightly different
notion of cost-bounded probabilistic reachability as in [4], namely to have > p
instead of ≥ p on reachability. The semi-algorithm in [4] does not necessarily
terminate for = p on probability. Can this crack between the two results be
closed?

2 Preliminaries

A probability distribution over a finite set Q is a function μ : Q → [0, 1] with∑
q∈Q μ(q) = 1. For set Q′, let Dist(Q′) be the set of distributions over finite

subsets of Q′.
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A clock is a real-valued variable that can be used to measure the elapse of
time. A clock valuation is a mapping X → R≥0, assigning a value to each clock in
some finite set X. Let R

X

≥0 denote the set of all clock valuations. For v ∈ R
X

≥0 and
d ∈ R≥0, let v+d denote the clock valuation that maps each x ∈ X to v(x) + d.
For r ⊆ X, let v[r:=0] denote the reset of the clocks in r, i. e. v[r:=0](x) equals
0 if x ∈ r and v(x) otherwise. Valuation vzero ∈ R

X

≥0 assigns 0 to all clocks in X.
A zone or constraint is a conjunction of non-strict inequalities where the value

of a single clock is compared to an integer. Formally, for the set X of clocks the
set Zones(X) of zones Z is defined by the grammar: Z ::= x ≤ b | x ≥ b | Z ∧Z,
where x ∈ X, b ∈ N. Note that some other definitions [1] allow strict inequalities
and inequalities on the difference between clocks, e. g. x > 2, x − y < 3.

2.1 Priced Probabilistic Timed Automata

The next definition a PPTA differs from [4] by: having no invariants, having
only edges that incur cost 0, using our restricted notion of zones, and allowing
negative cost-rates.

Definition 1. A PPTA is a tuple (L, linit, X, edges, $̇), where L is a finite set
of locations; linit ∈ L is the initial location; X is a finite set of clocks; edges ⊆
L× Zones(X)×Dist(2X ×L) is a finite set of edges; and $̇ : L → Z associates a
cost-rate with each location.

For edge (l, g, p) ∈ edges, l denotes the source location, g the guard (which
is a zone), and p a distribution on pairs of a set of clocks to be reset and a
destination location. Figure 1 shows a PPTA with clock x. The locations are
represented by circles, with branching arrows between them denoting the edges
of the PPTA. The initial location l0 is marked with a dangling arrow. The cost-
rates are written next to the locations. Guards (e. g. x≥1) are next to the source
location; the probabilities and resets are at the branches (e. g. probability 0.1
and x:= 0.) Cost-rate 0, probability 1, and guards that always hold are omitted.

l0
3 l2

x:=0

0.5

l1

0.5

x≥1

−2
0.1

0.9

Fig. 1. Example PPTA

Intuitively, a PPTA behaves as follows. It always is
in a state consisting of a location l, a clock valuation
v and the amount of cost already incurred. A policy
fills in the non-deterministic choice between the outgo-
ing edges to take, or delaying. Only edges with guards
satisfying the current valuation are available. Delaying
will increase each clock by the amount of delay, and
the accumulated cost by the amount of delay times the
the cost-rate ($̇(l)). When taking an edge, one reset set
and a destination location are chosen probabilistically, these clocks are reset and
the system enters the destination.

Definition 2. A Markov Decision Process (MDP) is a tuple (S, sinit, Act, π),
where S is a set of states, sinit ∈ S is the initial state, Act is a set of action
labels, and π ⊆ S × Act × Dist(S) is a probabilistic transition relation such that
for each s ∈ S, there exist a ∈ Act and μ ∈ Dist(S) such that (s, a, μ) ∈ π.
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A (in)finite run ω in an MDP (S, sinit, Act, π) is a (in)finite sequence: s0
a0,μ0−−−→

s1
a1,μ1−−−→ s2

a2,μ2−−−→ · · · such that s0 = sinit, (si, ai, μi) ∈ π, and μi(si+1) > 0 for
all i. Let ωi denote the i-th state in the run ω, i. e. ωi = si. Let last(ω) denote
the last state in the finite run ω. A policy (also called scheduler, adversary, or
strategy) is a function mapping every finite run ω in some MDP (S, sinit, Act, π)
to a pair (a, μ) ∈ Act × Dist(S) such that (last(ω), a, μ) ∈ π. For a policy A, let
RunsA denote the set of all infinite runs that are induced by A. ProbA denotes
the probability measure on RunsA, defined using classical techniques [8].

Definition 3 (PPTA Semantics). Given PPTA Aut = (L, linit, X, edges, $̇),
its semantics is the MDP: MDP(Aut) = (S, (linit, vzero, 0), R≥0, π), where S =
L × R

X

≥0 × R so that a state consists of a location, a clock valuation, and the
accumulated cost; and ((l, v, c), d, μ) ∈ π if one of the following conditions holds:

– time transitions: d > 0 and μ(l, v + d, c + $̇(l)d) = 1
– discrete transitions: d = 0 and there exists (l, g, p) ∈ edges such that v |= g

and for any (l′, v′, c) ∈ S: μ(l′, v′, c) =
∑

r⊆X∧v′=v[r:=0] p(r, l′)

Definition 4 (CBPR). Given PPTA Aut = (L, linit, X, edges, $̇), cost-bounded
probabilistic reachability asks the question: “It is possible to reach location lG ∈
L with probability at least p ∈ (0, 1] and with cost at most κ ∈ N.”, denoted
∃P≥pF

≤κlG . It holds iff there exists a policy A of MDP(Aut) such that

ProbA{ω ∈ RunsA | ∃i ∈ N.ωi ∈ {lG} × R
X

≥0 × (−∞, κ]} ≥ p

3 Undecidability Results

Our undecidability results hold for restricted PPTA, called simple PPTA.

Definition 5 (Simple PPTA). We call a PPTA Aut = (L, linit, X, edges, $̇)
simple if the resolution of probabilities does not influence the set of clocks being
reset: ∀(l, g, p) ∈ edges.∃r ∈ 2X.∀r′ ∈ 2X.∀l′ ∈ L.p(r′, l′) > 0 =⇒ r′ = r.

Theorem 1. CBPR of simple PPTA with three clocks and $̇ : L → {0, 1} (stop-
watch cost) is undecidable.

Theorem 2. CBPR of simple PPTA is undecidable even with two clocks.

Theorem 3. CBPR of simple PPTA with three clocks and $̇ : L → N>0 (strictly
positive cost-rates) is undecidable.

Note that our definition of policy is deterministic: a run is mapped to exactly one
distribution. There exist other classes of policies, for which the undecidability
results will hold in case the class allows the deterministic policies we have used.

The rest of this work contains the proofs. Sections 3.1–3.6 give the proof of
Theorem 1. Sections 3.7 and 3.8 prove Theorems 2 and 3, respectively.
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3.1 Proof of Theorem 1

Definition 6. A 2-counter Minsky machine [9] is a computational model, con-
sisting of a finite sequence of instructions, labeled l1, l2, . . . , lH . Computation
starts at l1 and halts at lH . Instructions l1, . . . , lH−1 are of the following two
types, where c ∈ {a, b} is one of the counters:

increment c li : c := c + 1; goto lj;
test-and-decrement c li : if c = 0 then goto lk;

else c := c − 1; goto lj ;

We will encode the halting problem for 2-counter Minsky machine M using a
PPTA Aut with a special goal location lG that satisfies the following property:

∃P≥1F
≤8lG holds for Aut ⇐⇒ ¬(M terminates)

Aut has one location for each instruction label l1, . . . , lH . Each transition, when
taken at the correct time, corresponds to the execution of one instruction. After
the transition, a test may check whether the right edge was taken at the correct
time. There is a unique policy that chooses the correct time and edge in every
state and so simulates the execution of M; we call it the fulfilling policy. Any
other policy will fail some test, which implies that it misses lG or the cost bound
with positive probability. So, the fulfilling policy is the only one that may satisfy
CBPR. However, if M terminates, it leads to lH with positive probability, so the
maximal probability to reach lG is still < 1. It is well-known that termination of
a 2-counter machine is undecidable, implying Theorem 1.

Aut uses only 3 clocks x, y, z; it is not simple, and it allows resets of the form
x:=y, where clock x is set to the value of clock y. Section 3.6 shows how Aut can
be changed to a simple PPTA with only resets to zero.

Upon entering location li (under the fulfilling policy), auxiliary clock y = 0,
and the values of the counters a and b are encoded by x as: x = 2−a · 3−b. A
value for x uniquely determines a and b. Since both counters start at 0, we have
initial location l0 with an edge to l1 guarded by x = 1 and reset y:=0.

Ineq(x≤3y)

Ineq(3y≤x)

lj
x:=y, y:=0li

Fig. 2. Automaton for incre-
menting counter a

CBPR for p < 1 (e. g., Aut |= ∃P≥0.7F
≤clG) is

also undecidable. Just add a probabilistic choice
to the edge from l0: enter l1 with probability p,
and let the remaining probability of 1 − p go to
lH .

In the rest of this section we assume a uniform
distribution on all edges, and a cost-rate of 0 in
every location, unless a different cost-rate is ex-
plicitly given. We now discuss the subautomata
needed to let the fulfilling policy simulate the
2-counter machine.

3.2 Increment Subautomata

Figure 2 shows the subautomaton for incrementing counter a. We denote the value
of x and y upon entering li by xi and yi, respectively. Assume xi = 2−a · 3−b (for
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some a, b ∈ N) and yi = 0. (The fulfilling policy guarantees these assumptions.)
The automaton ensures that under the fulfilling policy, the value upon entering lj
is xj = 1

2xi = 2−(a+1) · 3−b, which indeed encodes an increment on counter a: Let
di be the time spent in li, and xIneq, yIneq be the values of the clocks upon entering
the Ineq subautomata.

In subautomaton Ineq(ϕ), lG is reachable with probability 1 within the cost
bound only if ϕ holds and 0 ≤ yIneq ≤ xIneq ≤ 2. Thus the fulfilling policy will only
take the edge at a time when xIneq = 3yIneq. Now yIneq = di and 0 ≤ yIneq ≤ xIneq

due to yi = 0. Since xj = yIneq due to reset x:=y, we have:

xi = xIneq − di = 3yIneq − di = 3di − di = 2di = 2yIneq = 2xj (1)

and xIneq = 3yIneq = 3
2xi ≤ 3

2 . The automaton for incrementing b is the same
with the exception that we test for xi = 3xj with Ineq(x ≤ 4y) and Ineq(4y ≤ x).

3.3 Power Subautomata

Ineq(2x≤3y)

Ineq(3y≤2x)
y=0

y:=0
x:=y,

y≤1

Fig. 3. Power(2): automaton for multiply-
ing x a number of times by 2

We now introduce an auxiliary au-
tomaton called Power(k). The fulfill-
ing policy will multiply x with a power
of k ∈ N. In particular, a concate-
nation of Power(2) and Power(3) is
used to check whether x has the form
2−a·3−b: under the fulfilling policy x is
doubled a times, leading to x = 3−b,
and then tripled b times, leading to
x = 1. If x does not have the required
form, it is impossible to reach x = 1.
Figure 3 shows Power(2). The number of times x is doubled is the number of
times the loop is taken. The guard y ≤ 1 excludes a policy that always doubles
and never takes the exit edge. Such a policy would pass a test with probability
1, because the probability to stay in the loop indefinitely is 0.

Let xi be the value of x when entering the location for the i-th time. A similar
argument as for Eq. 1 shows that xi = 1

2xi+1. The power automaton can only
be left with x = xi for some i, because of the guard y = 0, so x upon leaving
the power automaton is 2i−1 · x1. For Power(3) and Power(5) (used later), the
corresponding tests are 3x = 4y and 5x = 6y, respectively.

3.4 Decrement Subautomata

Figure 4 shows the subautomaton for test-and-decrement of counter a. In loca-
tion li, the fulfilling policy takes the edge from li to lk only if a = 0, because the
test branch only succeeds if xi has the form 20 · 3−b. Below, we will see that the
fulfilling policy takes the other edge only if a > 0.

Decrementing a is very similar to incrementing counters. With the same no-
tations as in Sect. 3.2, assume xi = 2−a · 3−b (for some a, b ∈ N) and yi = 0.
Then, the Ineq subautomata ensure that the fulfilling policy lets xi = 1

2xj .
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lG

li

Ineq(2x≤3y) Ineq(3y≤2x)

lj

y=0

lk

x:=y, y:=0

Power(2) Power(3)
x=1

x:=y, y:=0

Fig. 4. Automaton for test-and-decrement of counter a

Add(2−y)Add(x)Add(x)

p times q times

lGAdd(2−y) z:=0

2

z=4−q

Fig. 5. Ineq(px ≤ qy): automaton for testing px ≤ qy

The fulfilling policy will take the edge from li to lj only if a = 0. Otherwise,
assume the edge is taken while a = 0, then xi = 3−b. Recall that the fulfilling
policy will ensure that xj = 2xi = 2 · 3−b. But then the branch leading from li
to Power(2) will not reach lG , since it would have to divide x by 2.

The construction for test-and-decrement of counter b is very similar: on the
edge from li to lk, one would test for xi = 2−a · 30, and on the edge from li to
lj , one would test for 3x = 4y.

3.5 Ineq Subautomata

la
z:=0 x=2, x:=0

y=2,
y:=0

x=2, x:=0

0

0

lb

y=2,
y:=0

z=21

1

lc ld

Fig. 6. Add(x): automaton adding x
to the accumulated cost

Figure 5 shows the Ineq(px ≤ qy) subau-
tomaton. Location lG is reached within the
cost bound of 8 under a policy only if the
clocks satisfy px ≤ qy and 0 ≤ y ≤ x ≤ 2
upon entering Ineq. Subautomata Add(x)
and Add(2−y) are used to add x respec-
tively 2−y to the accumulated cost of a
run under any policy that enters and exits
the subautomaton, while all clocks have the
same values upon exiting as upon entering.
The accumulated cost when entering lG is:

px + q(2 − y) + (4 − q)2 = px − qy + 8

So lG is reached within the cost bound of 8 only if px ≤ qy.
Figure 6 depicts Add(x). The automaton has the same effect as in [6]1. Sub-

automaton Add(2−x) is easily obtained by swapping the cost-rates 0 and 1. The
reader easily verifies the needed effect of passing through Add(x) or Add(2−x).
1 Add(x) in [6] contains a glitch: when y = 1 on entrance, possibly y = 0 on exit.
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li li′

1

(a)

lG

lj

x:=0

x:=0li(b)x:=0 lj

x=81
Fig. 7. Removing probabilistic resets

la lb lc
x=2 y=2 y=4 lG

p−qqq−p

Fig. 8. Ineq(px ≤ qy): automaton for testing px ≤ qy

3.6 Adaption to Simple PPTA

To render the PPTA simple, we change the encoding as follows. The resets
x:=y, y:=0 are replaced by x:=0. This swaps the role of x and y in the target
location, i. e. y now encodes the counters. The fact that the clocks are swapped
in some location will be captured by a copy of that location, where x and y are
swapped on all guards and resets of outgoing edges.

The obtained PPTA still has resets x:=0 that depend on the resolution of
probability. Figure 7a shows such an edge, and Fig. 7b shows how we can replace
it using an intermediate location li′ and a reset that does not depend on the
resolution of probability. The fulfilling policy will not let time advance in li′ ,
because this incurs cost, and upon leaving li′ , a test may be invoked to check
whether the cost incurred up to that point is still 0.

3.7 Proof of Theorem 2

In this section, we allow PPTA to have any positive or negative integer cost rate.
This relaxation will allow us to encode the 2-counter machine with two clocks
only, because we can simplify the Ineq subautomata.

Figure 8 shows the alternative Ineq subautomaton. The cost-bound of the
CBPR problem is changed to 0. (It may happen that a run exceeds the cost
bound temporarily; however, upon entry into lG , its cost has to be ≤ 0.) Let
da, db, dc denote the time that elapses in locations la, lb, lc respectively. Let
xa, ya, ca denote the values of the clocks and accumulated cost when entering la.
A run that reaches lG has the following accumulated cost:

ca + (q − p)da + qdb + (p − q)dc (2)

Since all the locations a run visits before entering la have cost-rate 0 we have ca =
0. We need to ensure that da, db, dc are nonnegative (under the fulfilling policy).
da = 2 − xa, and non-negativity follows from the fact that when xa > 1 the
encoding of the counters is incorrect, which is only possible under a non-fulfilling
policy. db = 2 − (ya + da) = xa − ya, and non-negativity follows from the fact
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lG

li

Ineq(7y≤2x)

lj

y=0

lk

x:=y, y:=0

Power(2)

x:=y, y:=0

Power(3) Power(5)
x=1

Ineq(2x≤7y)

Fig. 9. New automaton for test-and-decrement of counter a

that ya ≤ xa whenever Ineq is entered. Clearly dc = 2. By filling in Eq. 2 we get
the following accumulated cost: (q−p)(2−xa) + q(xa−ya) + (p−q)2 = pxa − qya.
Therefore, Ineq(px ≤ qy) reaches lG with cost ≤ 0 iff px ≤ qy upon entering.

3.8 Proof of Theorem 3

We now want to construct a simple PPTA with only strictly positive cost rates.
As a starting point, we take the PPTA obtained in the previous section. We will
again add a third clock z, but now, z is never reset, so it equals the duration of
the run in all states.

The PPTA is adapted by adding 6 to all cost-rates. For all locations that had
cost-rate 0 this clearly enforces a strictly positive cost-rate. The only negative
cost-rates appear in Ineq subautomata (Fig. 8), but they are all larger than −6,
so the new rates are all strictly positive.

All runs of the fulfilling policy that reach lG should have an accumulated cost
below the cost bound of the cost-bounded reachability problem. Because of the
strictly positive cost-rate, we therefore need an overall time bound for all these
runs, which we will show later to be 9. To accomodate the time bound, next to
the counters a and b, clock x will encode the integer n, which is used to count
the number of times a test-and-decrement instruction decremented any of the
two counters. The encoding becomes: x = 2−a · 3−b · 5−n.

The new test-and-decrement automaton is shown in Fig. 9. The values for the
two Ineq automata are changed to accommodate that on entering lj : xj = 2

5xi

(which corresponds to decrementing a and incrementing n.) From Power(3) there
is now an edge to Power(5) which has the edge guarded by x = 1 to lG . The
Power(5) automaton is needed here, because this part was used to check the
correctness of the encoding by x, which now includes the factor 5−n.

6

l′G
z=9 lG

Fig. 10. Subautomaton
to reach lG in exactly 9
time units

The final change to the total automaton is that on
every run where lG was entered, the run now has to pass
by a new location l′G . Figure 10 depicts l′G and how from
there lG is reachable. Because z measures the duration
of a run, which is bounded by 9 (as explained below),
and time is spent in l′G until z becomes 9, the additional
cost for any run is: 9 · 6 = 54. Indeed the cost bound
for the CBPR problem is changed to 54.

We will now show that every run that enters l′G has a duration bounded by
9. First of all 1 time unit is spent in l0. Under the fulfilling policy, as long as
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no Ineq or Power subautomaton is entered, every passage through an increment
or decrement subautomaton multiplies x with 1

2 , 1
3 , 2

5 or 3
5 , so the new value of

x is at most 3
5 times its old value. Further, the time spent in some subautoma-

ton is equal to the new value of x. (If in a test-and-decrement subautomaton,
the tested counter is = 0, then x is not changed and no time is spent in the
subautomaton, so we can ignore this case in the runtime calculation.) There-
fore, the total runtime until entering some Power or Ineq automaton is less than
1 +

∑∞
i=1(

3
5 )i = 2 1

2 .
Similarly, one can see that each iteration in a concatenation of Power sub-

automata takes at most 1
2 times the time of the next iteration, and the last

iteration (all under the fulfilling policy) takes time 1. Therefore, the maximal
time spent in Power subautomata is

∑∞
i=0(

1
2 )i = 2.

Finally, an Ineq subautomaton takes at most 4 time units. Summing up, we
get a total upper bound on the runtime of 2 1

2 + 2 + 4 ≤ 9 upon entering l′G .

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Sci-
ence 126(2), 183–235 (1994)

2. Alur, R., Torre, S.L., Pappas, G.J.: Optimal paths in weighted timed automata.
In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS,
vol. 2034, pp. 49–62. Springer, Heidelberg (2001)

3. Behrmann, G., Fehnker, A., Hune, T., Larsen, K.G., Pettersson, P., Romijn, J.,
Vaandrager, F.W.: Minimum-cost reachability for priced timed automata. In: Di
Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS, vol. 2034,
pp. 147–161. Springer, Heidelberg (2001)

4. Berendsen, J., Jansen, D.N., Katoen, J.P.: Probably on time and within budget: On
reachability in priced probabilistic timed automata. In: QEST, pp. 311–322. IEEE
Computer Society Press, Los Alamitos (2006)

5. Kwiatkowska, M., Norman, G., Segala, R., Sproston, J.: Automatic verification of
real-time systems with discrete probability distributions. Theoretical Computer Sci-
ence 282(1), 101–150 (2002)

6. Bouyer, P., Brihaye, T., Markey, N.: Improved undecidability results on weighted
timed automata. Inf. Process. Lett. 98(5), 188–194 (2006)

7. Bouyer, P., Fahrenberg, U., Larsen, K.G., Markey, N., Srba, J.: Infinite runs in
weighted timed automata with energy constraints. In: Cassez, F., Jard, C. (eds.)
FORMATS 2008. LNCS, vol. 5215, pp. 33–47. Springer, Heidelberg (2008)

8. Kemeny, J., Snell, J., Knapp, A.: Denumerable Markov Chains, 2nd edn. Springer,
New York (1976)

9. Minsky, M.L.: Computation: finite and infinite machines. Prentice-Hall, Inc., Upper
Saddle River (1967)


	Undecidability of Cost-Bounded Reachability in Priced Probabilistic Timed Automata
	Introduction
	Preliminaries
	Priced Probabilistic Timed Automata

	Undecidability Results
	Proof of Theorem 1
	Increment Subautomata
	Power Subautomata
	Decrement Subautomata
	Ineq Subautomata
	Adaption to Simple PPTA
	Proof of Theorem 2
	Proof of Theorem 3

	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Photoshop 4 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




