
Time-abstracting Bisimulation for Probabilistic Timed Automata

Taolue Chen
CWI

PO Box 94079, 1090 GB Amsterdam, The Netherlands
chen@cwi.nl

Tingting Han Joost-Pieter Katoen
MOVES, RWTH Aachen University, Germany
FMT, University of Twente, The Netherlands

{tingting.han, katoen}@cs.rwth-aachen.de

Abstract

This paper focuses on probabilistic timed automata
(PTA), an extension of timed automata with discrete prob-
abilistic branchings. As the regions of these automata of-
ten lead to an exponential blowup, reduction techniques are
of utmost importance. In this paper, we investigate prob-
abilistic time-abstracting bisimulation (PTAB), an equiva-
lence notion that abstracts from exact time delays. PTAB
is proven to preserve probabilistic computational tree logic
(PCTL). The region equivalence is a (very refined) PTAB.
Furthermore, we provide a non-trivial adaptation of the tra-
ditional partition-refinement algorithm to compute the quo-
tient under PTAB. This algorithm is symbolic in the sense
that equivalence classes are represented as polyhedra.

1 Introduction
Digital technology has been widely deployed in safety-

critical situations and real-life environments, which leads to
increased interests in computer systems expressed in terms
of quantitative timing constraints. Timed automata (TAs,
[2]) are a prominent and well-established formalism for
modeling, analysis and verification of such real-time sys-
tems, which have received much attention both in terms of
theoretical and practical developments.

Traditional approaches to the formal description of real-
time systems usually express the system model purely in
terms of nondeterminism. However, many real-life sys-
tems, such as multimedia equipment, communication pro-
tocols and networks, exhibit random behaviors, thus it may
be desirable to refer to the likelihood of certain properties
satisfied by the real-time system. This notion is particularly
important when the fault-tolerance aspect of systems is con-
cerned. This suggests the study of probabilistic models.

In this paper, we investigate probabilistic timed au-
tomata (PTAs) [8], which are a probabilistic extension of
timed automata. As in TAs, in the research of PTAs, the no-
tion of region graphs plays an essential role, see e.g. [8].
However, it is well recognized that albeit being a very use-
ful tool for theoretical purposes, the region graph is too

large to be of any practical interest: its size is exponential
in the number of clocks of the system as well as the size
of the constants in the time constraints. To overcome this
explosion, inspired by [12], we propose probabilistic time-
abstracting bisimulations (PTAB) for PTAs, where the pas-
sage of arbitrary time is abstracted by a τ transition. This
equivalence is usually much coarser than the region equiva-
lence, therefore, in practice, it induces a much smaller state
space partition. In particular, the region equivalence con-
stitutes a (very fine) probabilistic time-abstracting bisimu-
lation. The bisimulation quotient is a finite-state Markov
decision process (MDP), where the states are equivalence
classes over symbolic states (a set of states) with either τ or
discrete probabilistic transitions.

PTAB is particularly useful when the desired properties
do not involve time constraints, which are prevalent in prac-
tice, i.e., safety, reachability, etc. Those properties can be
well captured by the probabilistic computation tree logic
(PCTL) [6], which is proven to be preserved under PTABs.
In this case, the existing tools and algorithms for MDPs w.r.t.
PCTL [7] can thus be applied for PTAs.

To obtain a minimal PTAB quotient, our algorithm
works in the partition-refinement fashion [11]. We start
from an initial partition that respects state labeling, and pro-
ceed by refining each block till it contains only bisimilar
states. Due to the fact that PTAs involve an interweaving
of time, nondeterminism and probability distributions, the
minimization has thus to deal with the following difficul-
ties: When taking a τ transition, it must guarantee that time
traverses continuously, e.g., time cannot jump from 0 to 2
without traversing 1. Thus, we introduce the timed prede-
cessor set as a splitter, as in [12]. Moreover, since a discrete
transition results in one or more probability distributions,
the splitter of only one block in [12] is, however, not ap-
plicable. Our algorithm instead, adopts the idea of mutual-
refine technique in [3], which maintains a state partition and
a distribution partition. In each refinement iteration, the dis-
tribution partition is used to refine a state partition and vice
versa. The algorithm in [3], unfortunately, cannot be ap-
plied in our setting in a straightforward way, as the number
of symbolic states in a block may grow in each iteration

2nd IFIP/IEEE International Symposium on Theoretical Aspects of Software Engineering

978-0-7695-3249-3/08 $25.00 © 2008 IEEE

DOI 10.1109/TASE.2008.29

177

�1, x � 2 {a}

�3, x � 3

{a}

�2

∅

�4

∅

x � 1, 1

0.3, {x}
0.7, ∅

x � 2, 1, ∅

0.7, ∅

0.3, {x}

x > 1

x > 2

Figure 1. An example PTA

�1 �2 �1 �2

x � 1, 3/4

x > 2, 1

3/4

x � 2, 1/4

0 � x < 1, 1

1/4

1 � x � 2

Figure 2. The encoding to a one-clock-
constraint model

Remark 1 Due to the syntax, one transition is associated
with a single clock constraint. This requirement is intuitive
and reasonable since the more-than-one clock constraint
case, see e.g., [10], can be encoded by adding more dis-
tributions. To give an example, the left in Fig. 2 is a PTA

with two clock constraints in one distribution. This can be
encoded by the PTA on the right in Fig. 2. It goes as fol-
lows: When 0 � x < 1, the transition from �1 to �2 is not
enabled. Thus the only possible transition is the self-loop on
�1, which is normalized to probability 1. When 1 � x � 2,
both transitions are enabled, and their probabilities remain
the same. The x > 2 case is similar as 0 � x < 1.

Probabilistic timed structures. The semantics of a timed
automaton is an infinite timed transition system. The se-
mantics of a PTA is provided by a probabilistic timed struc-
ture, in fact an infinite MDP.

Definition 3 (Probabilistic timed structures) A prob-
abilistic timed structure (PTS) M is a labeled Markov
decision process (S,Steps , L, s0) where S is a set of states,
Steps : S → 2R×Distr(S) is a function that assigns to
each state s ∈ S a set of pairs (t, μ) where t ∈ R and
μ ∈ Distr(S) and L : S → 2AP is a state labeling function.
s0 ∈ S is the initial state.

Steps(s) is the set of transitions that can be nondeter-
ministically chosen in state s. The transition labels are of
the form (t, μ) where t is the duration of the transition and
μ is the probability distribution over the successor states.

s
t,μ
→ s′ means that after t time units have elapsed, a transi-

tion is fired from s to s′ with probability μ(s′).

Paths. Paths in a PTS arise by resolving both the nonde-
terministic and probabilistic choices. A path of the PTS

M = (S,Steps , L, s0) is a finite or infinite sequence:

ω = s0
t0,μ0

→ s1
t1,μ1

→ s2
t2,μ2

→ ...

where si ∈ S, (ti, μi) ∈ Steps(si) and μi(si+1) > 0 for all
0 � i � |ω|, where |ω| is the number of transitions in ω. A
finite path ω ends in a state, denoted last(ω).

We use Pathfin to denote the set of finite paths and
Pathfin(s) the set of finite paths that start in s. Path inf

and Path inf (s) are the counterpart for infinite paths. Con-
sider a path ω ∈ Path inf of M. A position of ω is a pair
(i, t′) where i ∈ N and t′ ∈ R such that 0 � t′ � ti. The
state at position (i, t′) on ω is denoted by ω(i, t′) = si + t′.

Definition 4 (Scheduler of a PTS) A scheduler of a PTS

M = (S,Steps , L, s0) is a function G mapping every
finite path ω of M to a pair (t, μ) such that G(ω) ∈
Steps(last(ω)). Let W be the set of all schedulers ofM.

A scheduler resolves the nondeterminism by choosing
a probability distribution based on the process executed so
far. Formally, if a PTS is guided by scheduler G and has the
finite path ω as its history, then it will be in state s in the
next step with probability μ(s), where G(ω) = (t, μ).

We denote the set of infinite paths induced by a given
scheduler G to be PathsG with PathsG = {ω ∈ Paths |
G(ω↓i) = μi for i�0}, where ω↓i returns the prefix of ω up
to length i. PathsG(s) is defined as PathsG ∩ Paths(s).

Scheduler G on PTS M induces a discrete-time Markov
chain (DTMC)MG, where the nondeterminism has been re-
solved. Each state inMG is a finite path fragment ω inM.
The transition probability is determined by G and the cho-
sen probability distribution. We omit the formal definition
of MG, the probability space of MG, and a basic cylinder
as they are standard and can be found in e.g., [4].

Semantics. Any PTA can be interpreted as a PTS. Due
to the continuous nature of clocks, these underlying PTSs
have infinitely many states (even uncountably many), and
are infinitely branching. PTA can thus be considered as a
finite description of infinite PTSs.

Given a PTA G = (Loc,X , �0, L, inv,�), a state of G is
a pair (�, ν), where � ∈ Loc is a location and ν ∈ inv(�) is
a valuation satisfying the invariant of �.

Definition 5 (PTS semantics of a PTA) Let G =
(Loc,X , �0, L, inv,�) be a PTA. The PTS of G is
MG = (S,Steps , L′, s0) with:

• S = {(�, ν) | ν |= inv(�), � ∈ Loc};
• L′((�, ν)) = L(�) ∪ {g ∈ ACC(X) | ν |= g};
• s0 = (�0,0);
• Given (t, μ) ∈ Steps((�, ν)), transition → is defined

by the following rules:

178

– discrete transition: (�, ν)
0,μ
→ (�′, ν′), if the fol-

lowing conditions hold:

1. ∃ transition �
g
� η in G with η(�′, X) > 0;

2. ν |= g;
3. ν′ = ν[X := 0];
4. μ(�′, ν′) =

∑
X⊆X ,ν′=ν[X:=0] η(X, �′).

Usually, we simply write (�, ν) → μ.

– delay transition: (�, ν)
d,1
→ (�, ν + d) for all 0 �

d � t, if ν + d |= inv(�).
Note that 1 indicates that the probability dis-
tribution is μ1

(�,ν+d). Usually, we simply write

(�, ν)
d
→ (�, ν + d).

Symbolic states. We define symbolic states which are
used for the effective representation and manipulation of the
infinite state space of PTS. Generally, a symbolic state is a
set of states ofMG .

In a nutshell, a zone Z ∈ R
X of X is a set of valuations

which satisfy a conjunction of constraints. Formally, the
zone for the constraint g is Z = {ν | ν(x) |= g, x ∈ X}.
Geometrically, a zone is a polyhedron (note that we do not
require a zone to be convex). A symbolic state S is a set of
states whose clock evaluations form a zone. Strictly, S is a
set of pairs of location and zone, namely, of the form (�, Z).
The union of all symbolic states is the state space S.

3 Time-abstracting Bisimulation for PTS

In order to refine the dense state space as much as pos-
sible, we adopt the time-abstracting bisimulation [12] for
state space minimization, which abstracts from the quanti-
tative aspect of time: we know that some time passes, but
not how much. We first introduce a technical definition:

Definition 6 μ, μ′∈Distr(S) are equivalent w.r.t. equiva-
lenceR on S, written μ≡Rμ′, if ∀U ∈ S/R. μ(U)=μ′(U).

Definition 7 (Probabilistic time-abstracting bisimulation)
Let G be a PTA, MG = (S, Steps, L′, s0) be the PTS of G.
A probabilistic time-abstracting bisimulation (PTAB) for G
is an equivalence relation R on S such that for all states
(s1, s2) ∈ R, the following conditions hold:

• L′(s1) = L′(s2);

• If s1
t1→ s′1, for some t1 ∈ R, then there exists t2 ∈ R

and s′2 ∈ S such that s2
t2→ s′2 and (s′1, s

′
2) ∈ R;

• If s1 → μ1, for some μ1 ∈ Distr(S), then there exists
some μ2∈Distr(S) such that s2 → μ2 and μ1 ≡R μ2.

s1 and s2 are probabilistic time-abstracting bisimilar, de-
noted s1 ∼ s2, if (s1, s2) ∈ R for some PTAB R.

We use τ -transitions to abstract away the exact time pas-

sage, formally, s
τ
→ s′ iff ∃t ∈ R.s

t
→ s′.

Region equivalence. In the following, we first recall the
definition and properties of region equivalence (RE) [1]
which is essential in turning the infinite state space of a PTS

into a finite quotient. We will then show a similar result as
in [12] that the RE for PTS is in fact a PTAB.

Consider a set of clocks X and let c = cmax(G) the
largest integer constant among all the clock constraints and
invariants in G. Two clock evaluations ν and ν′ are region
equivalent, denoted ν ∼= ν′, iff they satisfy:
• ∀x ∈ X , either �ν(x)� = �ν′(x)� or both ν(x) > c

and ν′(x) > c.
• ∀x, y ∈ X , either �ν(x)− ν(y)� = �ν′(x)− ν′(y)� or

both �ν(x) − ν(y)� > c and �ν′(x)− ν′(y)� > c.
Note that �r� is the maximal integer that is at most r. The

equivalence classes induced by ∼= are regions. The region
equivalence can be lifted to states such that (�, ν) ∼= (�′, ν′)
if � = �′ and ν ∼= ν′.

The region equivalence has following properties:
Lemma 8 For valuations ν, ν′ ∈ R

X with ν ∼= ν′:
1. for any zone Z , ν ∈ Z iff ν′ ∈ Z;
2. for any set of clocks X⊆X , ν[X := 0] ∼= ν′[X := 0];
3. ∀d � 0 ∃d′ � 0. ν + d ∼= ν′ + d′.

Theorem 9 The region equivalence is a PTAB, i.e.,∼=⊆∼.
Proof: Let (�, ν), (�, ν′) be two states in PTS M =
(S,Steps , L′, s0) such that (�, ν) ∼= (�, ν′).
• (Labels) Due to the fact that if (�, ν) ∼= (�, ν′), ν ∈ Z

iff ν′ ∈ Z (Lemma 8(1)), it holds that {g ∈ ACC(X) |
ν |= g} = {g′ ∈ ACC(X) | ν′ |= g′}. Since
L′((�, ν)) = L(�) ∪ {g ∈ ACC(X) | ν |= g}, where
L is the labeling function in the corresponding PTA G,
we have L′((�, ν)) = L′((�, ν′)).

• (Timed transition) Let (�, ν)
d
→ (�, ν + d). Due to

Lemma 8(3), there exists a d′ � 0 such that ν + d ∼=
ν′ + d′. ν′, ν′ + d′ |= inv(�) since ν, ν + d |= inv(�).
For any d′′ < d′, ν + d′′ |= inv(�), by the downward-

closedness of inv(�). Thus (�, ν′)
d′

→ (�, ν′ + d′).
• (Prob. transition) Let (�, ν)→ μ. μ is chosen by some

scheduler G. As G can only select enabled transitions,
μ |= g. Let Z = {ν | ν |= g}, ν ∈ Z . Since (�, ν) ∼=
(�, ν′), due to Lemma 8(1), ν′ ∈ Z , which means that
ν′ |= g, thus μ is also enabled in (�, ν′). Therefore, we
can construct a scheduler G′ which chooses the same
distribution as G. Since μ ≡∼= μ, (�, ν′) → μ.

RE satisfies all conditions of being a PTAB, thus∼= ⊆ ∼. �

The above theorem asserts that the region equivalence is
a (probably very refined) PTAB. Note that the converse does
not hold in general. It can be the case that (�, ν) ∼ (�′, ν′)
where � �= �′ (see Example 2), however, (�, ν) �∼= (�′, ν′).

The next result shows that timelocks are preserved by∼.
Proposition 1 If (�, ν) ∼ (�′, ν′), then (�, ν) has a timelock
iff (�′, ν′) has a timelock.

Evidently, the converse does not hold.

179

when time comes into play. As a result, the symbolic state
space and the distribution set vary in each iteration, let alone
their partitions. To solve this problem, an Expand operator
is introduced, recalculating the symbolic states in a block
as well as the distribution set before the mutual-refine tech-
nique is applied. This algorithm is symbolic, namely, equiv-
alence classes are symbolic states and set-theoretic opera-
tors are used to compute the set of (time) predecessor states
of a symbolic state.

Related works. [3, 5] present algorithms for the proba-
bilistic bisimulation and simulation for discrete probabilis-
tic systems. [10] investigates weak probabilistic bisimula-
tion for PTAs with a decision procedure, however, the algo-
rithm is region based, which is tried to be avoided in the
current paper. [8] presents a comprehensive exposition for
PTAs and model checking algorithms for PTAs. [9] gives a
symbolic algorithm for model checking, however, the prob-
lem of deciding time-abstracting bisimulations is not con-
sidered.

Structure of the paper. Section 2 presents basic defini-
tions regarding PTAs. Section 3 defines probabilistic time-
abstracting bisimulation. Section 4 presents the bisimula-
tion minimization algorithm and constitutes the core of this
paper. Section 5 shows that bisimulation preserves PCTL

formulae. This paper is concluded in Section 6.

2 Preliminaries
Definition 1 (Probability distribution) For a finite set S,
a distribution is a function μ : S → [0, 1] such that∑

s∈S μ(s) = 1. μ1
s denotes the unique distribution on S

with μ(s) = 1. Supp(μ) denotes the support of μ, i.e., the
set of states s ∈ S with μ(s) > 0. With Distr(S) we denote
the set of all probability distributions on S.

Clocks and valuations. Let R denote the set of non-
negative reals and let X = {x1, · · · , xn} be a set of vari-
ables in R, called clocks. An X -valuation is a function
ν : X �→ R assigning to each clock x a value ν(x). The
set of all valuations over X is denoted by R

X . We write
0 for the valuation that assigns zero to all clocks. For a
subset X ⊆ X , ν[X := 0] is the valuation ν′ such that
∀x ∈ X. ν′(x) = 0 and ∀x /∈ X. ν′(x) = ν(x). For
d ∈ R, ν + d is the valuation ν′′ such that ∀x ∈ X .
ν′′(x) = ν(x) + d, by which it implies that all clocks pro-
ceed at the same speed.

Hyperplanes and polyhedra. An clock constraint on X
is an expression of the form x �� c or x − y �� c or
the conjunction of any clock constraints, where x, y ∈ X ,
�� ∈ {<,�, >,�} and c ∈ N. An atomic constraint does
not contain any conjunctions. Let CC(X) and ACC(X)
denote the set of clock constraints and atomic clock con-
straints over X , respectively.

An X -valuation ν satisfies a clock constraint g, denoted
as ν |= g, and is defined as follows: ν |= x �� c iff ν(x) ��
c, ν |= x − y �� c iff ν(x) − ν(y) �� c and ν |= g1 ∧ g2 if
ν |= g1 and ν |= g2.

An X -hyperplane is a set of valuations satisfying an
atomic constraint. The class of HX -polyhedra is de-
fined as the smallest subset of 2R

X

which contains all X -
hyperplanes and is closed under set union, intersection, and
complement.

Intersection (∩), union (∪) and complement(̄) are well-
defined operations on polyhedra. Given a polyhedron Z and
a subset of clocks X ⊆ X , the operation Z[X := 0] is
defined as {ν | ν[X := 0] ∈ Z}.

Probabilistic timed automata. Let AP denote a fixed,
finite set of atomic propositions ranged over by a, b, c,

Definition 2 (Probabilistic timed automata [8]) A prob-
abilistic timed automaton (PTA) is a tuple G =
(Loc,X , �0, L, inv,�) where:
• Loc is a finite set of locations;
• X is a set of clocks;
• �0 ∈ Loc is the initial location;
• L : Loc→ 2AP is a labeling function for the locations;
• �⊆ Loc×CC(X)×Distr(2X ×Loc) is a transition

relation;
• inv:Loc→CC(X) is an invariant-assignment function.

All invariants are downward-closed in the sense that for any
d ∈ R, ν + d |= inv(�) implies that ν |= inv(�).

The system starts in location �0 with all its clocks initial-
ized to 0. The values of all the clocks increase uniformly
with time. We refer to �

g
� η as a transition, where the

guard g is a clock constraint on the clocks of G and η is
a distribution over the (X, �) pairs with X ⊆ X a set of
clocks to be reset and � the successor location. The intu-
ition is that the PTA G can move from location � to loca-
tion �′ via two phases. In the first phase, a distribution η
is nondeterministically chosen when g holds. In the second
phase, a successor location �′ is probabilistically chosen ac-
cording to η(X, �′), where the clocks in X should be reset
when entering �′. The function inv assigns to each � a loca-
tion invariant that constrains the amount of time that may be
spent in �. In other words, location � should be left before
the invariant inv(�) becomes invalid. If there is no outgo-
ing transition enabled and no further progress is possible,
it is a timelock. The labeling function L associates to each
location � a set of atomic propositions that are valid in �.

Example 1 Fig. 1 is an example PTA, where from �1 there
are two distributions (or transitions) and thus is nondeter-
ministic. The transitions to �3 and �4 share the same guard
x > 1, since they belong to the same distribution. The tran-
sition to �3 resets the clock {x}. The labeling on �1 and �3

is {a}, ∅ otherwise.

180

4 Minimization of PTA

Having defined the PTAB, an immediate question is:
how to compute it, since one of the crucial steps of exploit-
ing PTAB for verification is to generate the quotient of the
given PTA. A simple answer might be, taking the region
graph, since the region equivalence is a PTAB! However, as
pointed in [1], the number of regions grows exponentially
with the number of clocks in the TA, the finite region equiv-
alence quotient is too large to be of any practical interest,
and the same applies to PTAs. Therefore, for the sake of ef-
ficiency, we are interested in the minimal quotient, namely,
the one corresponding to the coarsest bisimulation. In what
follows, we will propose an algorithm to compute the quo-
tient of a PTS w.r.t. the coarsest PTAB, which combines the
algorithm in [12] for timed automata and the algorithm in
[3] for MDPs.

Partition refinement. Prior to presenting our algorithm,
let us first recall how the minimization algorithm works
for finite (non-probabilistic, without time) labeled transi-
tion systems (LTSs). The algorithm relies on the partition-
refinement technique [11]. Roughly speaking, the state
space S is partitioned in blocks, i.e., pairwise disjoint sets of
states. Starting from an initial partition Π0 where, e.g., all
equally-labeled states form a block, the algorithm succes-
sively refines these blocks such that ultimately each block
contains only bisimilar states. The refinement is based
on the fact that a bisimulation induces a pre-stable parti-
tion. Formally, given a partition Π of states and blocks
C1, C2 ∈ Π, C1 is pre-stable w.r.t. C2 if C1 ⊆ pred(C2)
or C1 ∩ pred(C2) = ∅, where pred(C) is the set of direct
predecessors of all the states in C. If C1 is not stable w.r.t.
C2, then C1 can further be partitioned into two sub-blocks
C1 ∩ pred(C2) and C1 \ pred(C2). In this case, C2 is a
splitter of C1. Π is pre-stable if all its blocks are pairwise
pre-stable. The main sketch of the algorithm below, albeit
simple, is the essence of partition refinement.

Algorithm 1 The general partition-refinement algorithm
Require: The LTS, the initial partition Π0

Ensure: The partition Π under the coarsest bisimulation
1: Π := Π0;
2: while (∃C1, C2 ∈ Π, C1 is not stable w.r.t. C2) do
3: ΠC1

:= {C1 ∩ pred(C2), C1 \ pred(C2)};
4: Π := (Π \ {C1}) ∪ ΠC1

;
5: end while
6: return Π;

The scheme can be adapted to infinite state spaces, as-
suming that they admit effective representations of blocks
and decision procedures for computing intersection, set-
difference and predecessors of blocks, and testing whether
a block is empty. For termination, it must be ensured that a

pre-stable partition always exists. In [12], such an adapta-
tion is given for TA to compute time-abstracting bisimula-
tion since the state space of TA falls in this category.

4.1 Bisimulation quotienting algorithm

In this section, we shall move further, taking the proba-
bilistic transitions into account. This is not trivial since the
infinite states (caused by time) and probabilistic transitions
are closely interweaved, thus the set pred should be replaced
by the discrete predecessors discpred and the timed prede-
cessors timepred in a proper way.

The set of timed predecessors splits a block where a
discontinuity on time occurs when taking a timed transi-
tion. This is captured by the time-refinement operator (see
Def. 10). Besides, due to Proposition 1, a state having a
timelock must be in a different block than a state that does
not suffer from a timelock. This suggests a first discrete-
refinement operator (see Def. 11).

For discrete predecessors, since a probability distribu-
tion rather than a state is associated with a transition, suc-
cessively dividing a block by a single-block splitter does
not suffice. Instead, we adapt the mutual-refine algorithm
in [3]. The algorithm maintains a distribution partition in
addition to a state partition, and in each iteration refines one
partition by the other and vice versa, till both partitions sta-
bilize. However, this algorithm cannot be directly applied
in our case, since a block might expand in a new partition
as the number of symbolic states in it may grow. Conse-
quently, in a new partition, it is possible that the distribution
set differs from the one in the last iteration and obviously
the old distribution partition is obsolete. The Expand oper-
ator (see Def. 12) thus recalculates the symbolic states, the
distribution set, as well as the distribution partition and as
a final step in one iteration, a state block is refined by the
second discrete-refinement operator (see Def. 13) using the
newest distribution partition.

The algorithm is presented in Algo. 2. A detailed expla-
nation follows.

Determining the initial partition. The initial partition of
states ΠAP = S/RAP is the AP -partition of S, where
RAP = {(s1, s2) ∈ S × S | L(s1) = L(s2)}. Initially,
the zone of symbolic state (�, ν) is inv(�), thus on the sym-
bolic state level, ΠAP =

{
{([�]RAP

, inv(�))} | � ∈ Loc
}

.

Refining partitions. In the rest of this section, we will
concentrate on how to refine an existing partition. For ref-
erence convenience, given a PTA, we designate each tran-
sition (leading to a distribution) a unique action name, and
for each location �, we denote ∇(�) as the set of outgoing
transitions from �, which is ranged over by α, β Let
∇ =

⋃
�∈Loc∇(�). Moreover, for each transition α, gα and

μα are the guard and the resulting distribution, respectively.

181

Algorithm 2 The partition-refinement algorithm for PTA

Require: The PTA G and PTS MG = (S,Steps, L′, s0)
Ensure: The partition Π under the coarsest PTAB

1: Initialization: Get the initial partition, Π := ΠAP ;
2: Partition Π according to Refine1

d
(Π,∇).

3: Repeat
4: PHASE I – Refine Π by discrete transitions:
5: Choose some block C ∈ Π,
6: C′ = Expand(C, Π);
7: Update the distribution set Distr ′;
8: Compute the equivalence class Distr ′/Π;
9: Choose some M ∈ Distr ′/Π;

10: Π := Refine2
d
(C′, M);

11: PHASE II – Refine Π by time delays:
12: Choose some block C ∈ Π;
13: Π := Refinet(Π, C);
14: until Π does not change.
15: return Π;

For instance, there are 4 uniquely labeled transitions in the
PTA in Fig. 1.

As we have two types of transitions, there are two types
of refinements as well. For timed transitions, the time-
refinement operator is as follows:

Definition 10 (The time-refinement operator) Let Π be a
partition of S and C1, C2∈Π. Then Refinet(C1,C2) equals:

{C1 ∩ timepred(C2), C1 \ timepred(C2)} \ {∅},

where timepred(S) = {s | ∃s′ ∈ S, t ∈ R, s
t
→ s′}.

We define Refinet(Π, C2) =
⋃

C1∈Π Refinet(C1, C2).

This corresponds to PHASE II (line 11-13) in Algo. 2.

For discrete transitions, the split consists of two steps.
The first step is to differentiate the symbolic states that can
fire a discrete transition from those that cannot. In this step,
a splitter is the action set ∇, which refines a block as:

Definition 11 (The 1st discrete-refinement operator)
Let Π be a partition of S, ∇ be the action set and C ∈ Π.
Then:

Refine1
d(C,∇) = {C+, C−} \ {∅},

where C+ = {(�, Z) | ∃α ∈ ∇(�), Z ⊆ gα} and C− =
{(�, Z) | ∀α ∈ ∇(�), Z ∩ gα = ∅}.

We define Refine1
d(Π,∇) =

⋃
C∈Π Refine1

d(C,∇).

All symbolic states in C+ have an enabled discrete tran-
sition whereas none of them in C− does. Actually, C− is
the set of states that have a timelock. This is used in line
2 of the algorithm. This operator has only to be performed
once, because the further refinement won’t change the fact
of having a discrete transition.

As the second step, we can further partition C+ ac-
cording to the distributions. Suppose the current partition
Π = {C1, ..., Cn}, n ∈ N. For any block Ci, we can write
Ci = {(�1

i , Y
1
i), . . . , (�q

i , Y
q
i)} with Ci =

⋃
1�j�q(�

j
i , Y

j
i),

(�, Z)

(�1, Z)

(�2, Z)

p1

p2

(�, Z)

(�1, Z1)

(�1, Z2)

(�1, Z3)(�2, Z)

?

?

?
p2

(�, Z2)

(�1, Z1)

(�1, Z2)

(�1, Z3)

(�2, Z)

(�, Z1)

(�, Z3)

p1

p1

p1

p2

p2

p2

(a)

(b) (c)

C11

C12

C13

C2

C2

C11

C0

C ′
0

C12

C13

Figure 3. The motivation of Expand

and for any 1 � h �= k � q, �h
i �= �k

i . For index
1 � h � m, α ∈ ∇(�h

i) such that Y h
i ⊆ gα, we want

to derive the distributions induced by α.
However, it is possible that the resulting symbolic state

of a transition bestrides different blocks, where the proba-
bility μ(C) to a block C may not be well defined. For in-
stance, Fig. 3(a) illustrates a distribution from S0 = (�, Z)
to S1 = (�1, Z) and S2 = (�2, Z), where S0 ∈ C0,
S2 ∈ C2 but S1 scatters in C11, C12 and C13, as in Fig. 3(b).
Note that {Z1, Z2, Z3} is a partition of Z . The problem is
that μ(C1i) can not be defined for 1 � i � 3.

To solve this problem, we have to split a symbolic state
in such a way that each sub-symbolic state has well-defined
probabilistic transitions over the partition Π, as in Fig. 3(c).
As a result of this split, the number of blocks stays the same,
but the symbolic state space expands in terms of transitions.
In the following, we define the Expand operator formally.

For symbolic state S = (�, Z) and action α, let
Supp(μα) = {(�1, X1), . . . , (�m, Xm)} with probabilities
p1, ..., pm, respectively, where Xi ⊆ X is the reset clock set
and pi is the associated probability with

∑
1�i�m pi = 1.

For successor (�j , Xj), the resulting symbolic state is Sj =
(�j , Z[Xj := 0]). In the following, we will split Z into a
partition Z = {Z1, . . . , Zf} such that for any (sub) sym-
bolic state (�, Z ′) of S, i.e., Z ′ ∈ Z , each of its successor
states is located only in one block. For Ck ∈ {C1, ..., Cn},
define

Zk
j =

{
(�, ν) | ν ∈ Z, (�j , ν[Xj := 0]) ∈ Ck

}
.

It is possible that Zk
j = ∅. For each successor 1 � j � m,

{Z1
j , Z2

j , . . . , Zn
j } is a partition of Z . We have the follow-

ing partitions:

For 1-st successor : {Z1
1 , . . . , Zk

1 , . . . , Zn
1 },

...
For j-th successor : {Z1

j , . . . , Zk
j , . . . , Zn

j },
...

For m-th successor : {Z1
m, . . . , Zk

m, . . . , Zn
m}

182

We define
Z�k

=
⋂

1�j�m

Z
�k[j]
j ,

where for each j, 1 � �k[j] � n. Z
�k[j]
j denotes choosing

the �k[j]-th element in the j-th row, where �k is a vector of
indices. Stated in words, Z�k

is obtained by taking the inter-
section of one arbitrary element from each row in the above
“matrix”. It is not difficult to see that

{Z�k
| 1 � �k[j] � n, 1 � j � m} \ {∅}

is a partition of Z and in the worst case, this partition may
contain nm blocks.

For each Z�k
, since Z�k

⊆ Z
�k[j]
j for 1 � j � m, it must

be the case that (�j , Z�k
[Xj := 0]) ⊆ C�k[j] for each 1 � j �

m. Hence, the probability from the symbolic state (�, Z�k
)

to Ci for 1 � i � n is obtained by adding the nonzero
probabilities in the i-th column:

Pr
(
(�, Z�k

), α, Ci

)
=

∑

1�j�m,�k[j]=i

pj.

In the following, we merge those Z�k
and Z�k′

such that for each Ci ∈ Π, Pr
(
(�, Z�k

), α, Ci

)
=

Pr
(
(�, Z�k′), α, Ci

)
. The partitionZ = {Z1, ..., Zf} is then

obtained. And the expansion operator expands a block with
(possibly) more refined symbolic states as follows:

Definition 12 (The Expand operator) Let Π be a parti-
tion of S, α ∈ ∇, C ∈ Π and S = (�, Z) ∈ C. Then:

Expand(S, α, Π) = {(�, Zi) | 1 � i � f},

where Zi is defined as described above.
Expand(C, Π) =

⋃
S∈C,α∈∇ Expand(S, α, Π).

Note that for each sub-symbolic state T of S in
Expand(S, α, Π), Pr(T, α, Ck) is well-defined. Let us
denote μT,α as the distribution over Π from T via
action α. Now the distribution set is updated as
Distr ′ = {μT,α | T ∈ Expand(C, Π) with T =
(�, Y) for some �, Y and α ∈ ∇(�)}. The distribution par-
tition on Distr ′ over Π, denoted by Distr ′/Π, can thus
be updated accordingly, based on the following fact: Let
M ∈ Distr ′/Π, then ∀μ, μ′ ∈ M , μ(C) = μ′(C) for any
C ∈ Π. As the mutual-refine technique, the state partition
can in turn be refined by the distribution partition as follows:

Definition 13 (The 2nd discrete-refinement operator)
Let Π be a partition of S with C ∈ Π, C′ = Expand(C, Π)
and M ∈ Distr ′/Π. Then:

Refine2
d(C, M) = {CM , C′ \ CM} \ {∅},

where CM = {T | μT,α ∈M and T = (�, Y), α ∈ ∇(�)}.

The above steps correspond to PHASE I, line 4-10 in Algo. 2.

{�1, �3; x = 0} {�1, �3; x � t1} {�1, �3; t1 < x � t2}

{�2, �4}

τ τ

1

0.3

0.7
{a} {a} {a}

∅

Figure 4. The bisimulation quotient

Example 2 The bisimulation quotient of the PTA in Fig. 1
is shown in Fig. 4. There are four equivalence classes. The
label τ denotes that some time passes during the transition.
The intuition is that from �1 or �3 it is possible to go to a
state within a given period of time (the first τ) where either
it takes a discrete transition to the sinking state or it stays
(taking the second τ) for some time till it can take a transi-
tion back resetting its clock with probability 0.3 or it goes to
the sinking state with probability 0.7. t1 and t2 are arbitrary
time points which have been abstracted from the original
model.

Correctness and termination. It is not difficult to see
that by any of the Refine operators, we may obtain some
new blocks, where for any two states in different blocks,
they are not bisimilar and these blocks are disjoint. The cor-
rectness of the algorithm follows from standard correctness
arguments of the partition-refinement algorithm. Termina-
tion is ensured by Theorem 9. Namely, in the worst case, the
algorithm will generate the partition induced by the region
equivalence.

Complexity. We analyze the complexity of the algorithm
briefly. Since in the worst case, the region equivalence will
be obtained, our algorithm needs to refine exponentially
many times to reach the fixpoint, and thus it is an EXPTIME

algorithm. On the other hand, it is not hard to see that gen-
erally for PTAs the EXPTIME lower bound can be obtained.
However, we note that (1) for PTAs with only one clock, we
can show that the algorithm only needs polynomial many
time to reach the fixpoint. Thus in this case, we can get
a polynomial time algorithm; (2) In practice, usually, PTAs
have a much coarser partition than the one induced by the
region equivalence, and thus our algorithm is expected to
perform pretty well in this case.

5 Verification of branching-time properties

The logic PCTL. In this section we prove that PTAB pre-
serves branching-time properties specified in probabilistic
CTL [6]. The syntax and semantics of PCTL is:

Φ ::= tt | a | ¬Φ | Φ ∧ Φ | P�p(φ),

where p∈[0, 1] is a probability, a∈AP , �∈{<,�, >,�}
and φ is a path formula defined as:

183

φ ::= Φ U Φ | Φ W Φ.

The path formula Φ U Ψ asserts that Ψ is eventually sat-
isfied and that all preceding states satisfy Φ. W is the
weak counterpart of U which does not require Ψ to even-
tually become true. Most of the operators are standard,
with the exception that s |= P�p(φ) iff for any sched-
uler G ∈ W, Prob(s, φ) � p in the DTMC DG, where
Prob(s, φ) = Pr{σ ∈ Paths(s) | σ |= φ}.

Bisimulation can be lifted to paths in the following way:

Lemma 14 (Bisimulation on paths) Let s ∼ s′. Then: for

each (finite or infinite) path ω = s0
t0,μ0

→ s1
t1,μ1

→ s2 · · · ∈

Paths(s), there exists a path ω′ = s′0
t′
0
,μ′

0→ s1
t′
1
,μ′

1→ s′2 · · · ∈
Paths(s′) of the same length such that si ∼ s′i, for all i�0.

Theorem 15 Let G be a PTA and ∼ be a PTAB on G. For
any PCTL formula Φ: s ∼ s′ implies s |= Φ iff s′ |= Φ.
Proof: The proof is by induction on the structure of
Φ. Basis: If s ∼ s′, then L(s) = L(s′). The in-
teresting induction steps are for Φ = P�p(φ), where
φ = Ψ1 U Ψ2. Assume that s |= Φ, then there ex-
ists a scheduler G : Paths∗ → R × Distr(S) such
that PathsG(s, Ψ1UΨ2) = {ω ∈ PathsG(s) | ∃i �
0. ω(i, ti) |= Ψ2 ∧ ∀0 � j < i, t < tj . ω(j, t) |= Ψ1} and
Pr(PathsG(s, Ψ1UΨ2)) � p.

Assume ω ∈ PathsG(s, Ψ1UΨ2), according to
Lemma 14, there exists a probabilistic time-abstracting
bisimilar path ω′ ∈ PathsG

′

(s′, Ψ1UΨ2), and vice versa.
We can thus construct a scheduler G′ : Paths∗ → R ×
Distr(S) as follows: for ω ∈ Paths∗(s) and its bisimilar
path ω′ ∈ Paths∗(s′), if G(ω) = (μ, t), then G′(ω′) =
(μ′, t′) and μ ≡∼ μ′.

It remains to show that Pr(PathsG(s, Ψ1UΨ2)) =

Pr(Paths
G

′

(s′, Ψ1UΨ2)). Due to the fact that for each
Ψ1UΨ2 path, the probability distribution determined by G

and G′ is equivalent, the probability measure of the two
sets of paths coincides. �

The above theorem states that a PCTL formula is pre-
served by a PTAB, which indicates that all PCTL properties
can be checked on the quotient PTSs, thus all the existing
techniques, algorithms, and tools for finite MDPs can be ap-
plied.

6 Conclusion
We have investigated probabilistic time-abstracting

bisimulation for probabilistic timed automata. This equiva-
lence usually provides a much coarser partition than tradi-
tion region equivalence and preserves PCTL. We provided a
non-trivial adaptation of the traditional partition-refinement
algorithm to compute the quotient under PTAB. This algo-
rithm is symbolic in the sense that equivalence classes are
represented as polyhedra.

In future works, we would like to investigate weak prob-
abilistic time-abstracting bisimulations, including its defini-
tion and decision procedures. Experimental research of the
proposed algorithms is to be carried out. Furthermore, it is
also interesting to study the abstract-refinement and coun-
terexample generation for PTAs.

Acknowledgement. This research has been financially
supported by the Dutch Bsik project BRICKS, the Dutch
NWO project QUPES, the EU FP7 project QUASIMODO,
and partially supported by the Chinese national 863 pro-
gram (2007AA01Z178), NSFC (60736015) and JSNSF

(BK2006712).

References

[1] R. Alur, C. Courcoubetis, and D. L. Dill. Model-checking
in dense real-time. Inf. Comput., 104(1):2–34, 1993.

[2] R. Alur and D. L. Dill. A theory of timed automata. Theor.
Comput. Sci., 126(2):183–235, 1994.

[3] C. Baier, B. Engelen, and M. E. Majster-Cederbaum. Decid-
ing bisimilarity and similarity for probabilistic processes. J.
Comput. Syst. Sci., 60(1):187–231, 2000.

[4] A. Bianco and L. de Alfaro. Model checking of probabilis-
tic and nondeterministic systems. In FSTTCS, LNCS 1026,
pages 499–513, 1995.

[5] S. Derisavi, H. Hermanns, and W. H. Sanders. Optimal
state-space lumping in Markov chains. Inf. Process. Lett.,
87(6):309–315, 2003.

[6] H. Hansson and B. Jonsson. A logic for reasoning about
time and reliability. Formal Asp. Comput., 6(5):512–535,
1994.

[7] M. Z. Kwiatkowska, G. Norman, and D. Parker. Proba-
bilistic symbolic model checking with PRISM: a hybrid ap-
proach. STTT, 6(2):128–142, 2004.

[8] M. Z. Kwiatkowska, G. Norman, R. Segala, and J. Sproston.
Automatic verification of real-time systems with discrete
probability distributions. Theor. Comput. Sci., 282(1):101–
150, 2002.

[9] M. Z. Kwiatkowska, G. Norman, J. Sproston, and F. Wang.
Symbolic model checking for probabilistic timed automata.
Inf. Comput., 205(7):1027–1077, 2007.

[10] R. Lanotte, A. Maggiolo-Schettini, and A. Troina. Weak
bisimulation for probabilistic timed automata and applica-
tions to security. In SEFM, pages 34–43, 2003.

[11] R. Paige and R. E. Tarjan. Three partition refinement algo-
rithms. SIAM J. Comput., 16(6):973–989, 1987.

[12] S. Tripakis and S. Yovine. Analysis of timed systems using
time-abstracting bisimulations. Formal Methods in System
Design, 18(1):25–68, 2001.

184

