
Time-Bounded Verification of CTMCs against
Real-Time Specifications�

Taolue Chen, Marco Diciolla, Marta Kwiatkowska, and Alexandru Mereacre

Department of Computer Science, Oxford University,
Wolfson Building, Parks Road, Oxford, OX1 3QD, United Kingdom

Abstract. In this paper we study time-bounded verification of a finite
continuous-time Markov chain (CTMC) C against a real-time specification, pro-
vided either as a metric temporal logic (MTL) property ϕ, or as a timed automa-
ton (TA) A. The key question is: what is the probability of the set of timed paths
of C that satisfy ϕ (or are accepted by A) over a time interval of fixed, bounded
length? We provide approximation algorithms to solve these problems. We first
derive a bound N such that timed paths of C with at most N discrete jumps are
sufficient to approximate the desired probability up to ε. Then, for each discrete
(untimed) path σ of length at most N , we generate timed constraints over vari-
ables determining the residence time of each state along σ, depending on the real-
time specification under consideration. The probability of the set of timed paths,
determined by the discrete path and the associated timed constraints, can thus
be formulated as a multidimensional integral. Summing up all such probabilities
yields the result. For MTL, we consider both the continuous and the pointwise
semantics. The approximation algorithms differ mainly in constraints generation
for the two types of specifications.

1 Introduction

Verification of continuous-time Markov chains (CTMCs) has received much attention
in recent years [8]. Thanks to considerable improvements of algorithms, (symbolic)
data structures and abstraction techniques, CTMC model checking has emerged as a
valuable analysis technique. Aided by powerful software tools, it has been adopted by
researchers from, e.g., systems biology, queuing networks and dependability.

The focus of CTMC model checking has primarily been on checking stochastic ver-
sions of the branching-time temporal logic CTL, such as CSL [7]. The verification
of LTL properties reduces to applying well-known algorithms [33,18] to embedded
discrete-time Markov chains (DTMCs). Linear-time properties equipped with timing
constraints have only recently been considered. In particular, [16,17] treat linear real-
time specifications that are given as deterministic timed automata (DTA). These include
properties of the form, “what is the probability to reach a given target state within the
deadline, while avoiding unsafe states and not staying too long in any of the danger-
ous states on the way?”. Such properties cannot be expressed in CSL nor in its dialects
[6,19]. Model checking DTA properties can be done by a reduction to computing the

� This work is supported by the ERC Advanced Grant VERIWARE.

U. Fahrenberg and S. Tripakis (Eds.): FORMATS 2011, LNCS 6919, pp. 26–42, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Time-Bounded Verification of CTMCs against Real-Time Specifications 27

reachability probability in a piecewise deterministic Markov process, based on the prod-
uct construction between the CTMC and DTA [17,11]. It remains a challenge to tackle
more general real-time specifications like Metric Temporal Logics ([4,24], MTL), or
nondeterministic Timed Automata (TA, [1]). The main difficulty lies in the fact that one
cannot easily define a stochastic process out of the CTMC and the MTL formula (or
TA), due to the inherent nondeterminism arising from these specifications. The obstacle
is somehow fundamental, as it is known that deterministic TA are lacking expressive-
ness compared to their nondeterministic variants or MTL.

Recently, we have seen increasing emphasis on timed-bounded verification [27].
Here, “time-bounded” means restricting the modeling and verification efforts to some
bounded interval of time, which itself can be taken as a parameter. In verification,
queries are phrased over time intervals of fixed, bounded duration. Note that, differently
from bounded model checking, which restricts the total number of allowable events
(called discrete jumps in this paper), time-bounded verification restricts the total dura-
tion under consideration, but not the number of events, which can still be unboundedly
large owing to the density of time.1 Instances of time-bounded verification have been
considered in the context of stochastic and/or real-time systems [30,9,23,20] and re-
cently studied systematically [27,22]; see [29] for an introduction, where it is argued
that the restriction on total duration is very natural for real-time systems.

Inspired by this recent progress, we study the time-bounded verification problem of
a CTMC C, against a real-time specification provided as either an MTL formula ϕ, or
as a TA A. The key question is: what is the probability of the set of timed paths of C that
satisfy ϕ (or are accepted by A) over a fixed time interval [0, T] where T ∈ R>0? We
provide approximation algorithms to solve these problems. Given any ε > 0 a priori,
we first derive a bound N such that it is sufficient only to consider timed paths of C
with at most N discrete jumps to approximate the desired probability up to ε. Then,
for each discrete (untimed) path σ of C of length at most N , we generate a family of
linear constraints, S, over variables determining the residence time of each state in σ.
The discrete path σ, together with the associated timing constraints S, determines a
set of timed paths of C, each of which satisfies ϕ (or is accepted by A). The probabil-
ity of this set of timed paths can be formulated as a multidimensional integral, which
can be calculated by Laplace transforms, together with an application of the inclusion-
exclusion principle. Summing up all such probabilities yields the desired result. Notice
that, in the current paper, we consider both the continuous and the pointwise seman-
tics of MTL (see, e.g. [14]). The approximation algorithms differ mainly in constraints
generation for different types of specifications. The family of linear constraints are de-
sirable, since we can apply the efficient algorithm for computing the volumes of convex
polyhedra [25]. For MTL under the pointwise semantics and TA specifications, con-
straint generation is relatively easy, while for MTL under the continuous semantics it is
more involved. To this end, we first derive constraints in terms of first-order theory of
(R, +,−, 0, 1,≤), then the Fourier-Motzkin elimination procedure [31, pp.155-156] is

1 Readers should note that we later bound the number of discrete jumps as an approximation
technique. This owes to the definition of CTMCs and is irrelevant to the original definition of
time-bounded verification.

28 T. Chen et al.

applied to obtain desired linear constraints. We believe these results are of independent
interest, as they have potential usage in domains such as runtime verification.

The approach we take in this paper is quite different from existing results in the lit-
erature. Known results can only deal with simpler real-time properties, or are based on
deterministic property specifications (e.g. DTA). Our technique is based on path ex-
ploration of CTMCs, together with a novel analytic methodology to reduce computing
the probabilities to a multi-dimensional integral over convex polyhedra. To the best of
our knowledge, this is the first work addressing verification of CTMCs against MTL
formulas or non-deterministic timed automata.

Related work. Model checking CTMCs against linear real-time specifications has re-
ceived scant attention so far. To our knowledge, this issue has only been (partially)
addressed in [16,6,19]. Baier et al. [6] define the logic asCSL where path properties are
characterized by (time-bounded) regular expressions over actions and state formulas.
The truth value of path formulas depends not only on the available actions in a given
time interval, but also on the validity of certain state formulas in intermediate states.
asCSL is strictly more expressive than CSL [6]. Model checking asCSL is performed
by representing the regular expressions as finite-state automata, followed by computing
time-bounded reachability probabilities in the product of CTMC C and this automa-
ton. In CSLTA [19], time constraints of until modalities are specified by a single-clock
DTA; the resulting logic is at least as expressive as asCSL [19]. The combined be-
havior of C and the DTA A is interpreted as a Markov renewal process, and model
checking CSLTA is reduced to computing the reachability probabilities in a DTMC
whose transition probabilities are given by subordinate CTMCs.

Due to space restriction, all the proofs are omitted in the current paper. We refer the
readers to [15] for the full proofs, more explanation, and examples.

2 Preliminaries

2.1 Continuous-Time Markov Chains

Given a set H, let Pr: F(H) → [0, 1] be a probability measure on the measurable
space (H,F(H)), where F(H) is a σ-algebra over H. Let Distr(H) denote the set of
probability measures on this measurable space.

Definition 1 (CTMC). A (labeled) continuous-time Markov chain (CTMC) is a tuple
C = (S, AP, L, α,P, E) where S is a finite set of states; AP is a finite set of atomic
propositions; L : S → 2AP is the labeling function; α ∈ Distr(S) is the initial distri-
bution; P : S × S → [0, 1] is a stochastic matrix; and E : S → R≥0 is the exit rate
function.

In a CTMC C, state residence times are exponentially distributed. More precisely, the
residence time X of a state s ∈ S is a random variable governed by a nonnegative
exponential distribution with parameter E(s) (written as X ∼ Exp(E(s))). Hence, the
probability to exit state s in t time units (t.u. for short) is given by

∫ t

0 E(s) · e−E(s)τdτ .
Furthermore, the probability to take the transition from s to s′ in t t.u. equals P(s, s′) ·∫ t

0 E(s) · e−E(s)τdτ .

Time-Bounded Verification of CTMCs against Real-Time Specifications 29

Definition 2. Given a CTMC C = (S, AP, L, α,P, E), we define the following no-
tions.

– A (finite) discrete path σ = s0 → s1 → s2 → . . . is a (finite) sequence of states;
we define σi to be the state si, and σi to be the prefix of length i of σ.

– A (finite) timed path ρ = s0
x0−→ s1

x1−→ s2
x2−→ . . ., where xi ∈ R>0 for each

i ≥ 0, is a sequence starting in state s0; we define |ρ| to be the length of a finite
timed path ρ; ρ[n] := sn is the n-th state of ρ and ρ〈n〉 := xn is the time spent
in state sn; let ρ@t be the state occupied in ρ at time t ∈ R≥0, i.e. ρ@t := ρ[n],

where n is the smallest index such that
n∑

i=0

ρ〈i〉 ≥ t.

– Given a finite discrete path σ = s0 → s1 → · · · → sn−1 of length n and
x0, . . . , xn−1 ∈ R>0, define σ[x0, . . . , xn−1] to be the finite timed path ρ such
that ρ[i] := si and ρ〈i〉 := xi for each 0 ≤ i < n.

– Let Γ be the set of n-tuples (x0, . . . , xn−1) ∈ R
n
>0, then σ[Γ] = {σ[x0, . . . , xn−1]

| (x0, . . . , xn−1) ∈ Γ}.
– Given a finite (resp. infinite) discrete path σ and a finite (resp. infinite) timed path

ρ, we say σ is the skeleton of ρ if for each i ≥ 0, σi = ρ[i]. We write S(ρ) for the
skeleton of ρ, and for a set of (finite or infinite) timed paths Ξ , we write S(Ξ) =
{S(ρ) | ρ ∈ Ξ}.

– Given a finite discrete path σ, we define Cd(σ) = {σσ′ | σ′ is an infinite
discrete path} to be the set of all infinite discrete paths with the same common
prefix σ.

Intuitively, a timed path ρ suggests that the CTMC C starts in state s0 and stays in this
state for x0 t.u., and then jumps to state s1, staying there for x1 t.u., and then jumps to

s2 and so on. An example timed path is ρ = s0
3−→ s1

2−→ s0
1.5−→ s1

3.4−→ s2 . . . with
ρ[2] = s0 and ρ@4 = ρ[1] = s1.

Let PathsC denote the set of infinite timed paths in the CTMC C, and PathsC(s)
the set of infinite timed paths in C that start in s. Given a time bound T ∈ R≥0 and
N ∈ N ∪ {∞}, we define PathsCT,<N (s) =

{
ρ ∈ PathsC(s) | ∃k.0 ≤ k ≤ N − 1

and
∑k

i=0 ρ〈i〉 ≥ T
}

, to be the set of all timed paths with at most N−1 discrete jumps
in time interval [0, T]; and PathsCT,≥N (s) =

{
ρ ∈ PathsC(s) | ∃k.0 ≤ k ≤ N − 1,

and
∑k

i=0 ρ〈i〉 ≤ T
}

, to be the set of all timed paths with at least N jumps in [0, T].
For notational simplicity we will omit the superscript C when appropriate and also

we write PathsCT instead of PathsCT,≤∞ for the set of all timed paths with an arbi-
trary number of jumps in [0, T]. The definition of a Borel space on timed paths through
CTMCs follows [7]. A CTMC C yields a probability measure PrC on PathsC as fol-
lows. Let s0, . . . , sk ∈ S with P(si, si+1) > 0 for 0 ≤ i < k and I0, . . . , Ik−1 be
nonempty intervals in R≥0. Let C(s0, I0, . . . , Ik−1, sk) denote the cylinder set con-
sisting of all ρ ∈ Paths(s0) such that ρ[i] = si (i ≤ k), and ρ〈i〉 ∈ Ii (i < k).
F(Paths(s0)) is the smallest σ-algebra on Paths(s0) which contains all sets C(s0, I0,
. . . , Ik−1, sk) for all state sequences (s0, . . . , sk) ∈ Sk+1 with P(si, si+1) > 0 for
(0 ≤ i < k) where I0, . . . , Ik−1 range over all sequences of nonempty intervals in R≥0.

30 T. Chen et al.

The probability measure PrC on F(Paths(s0)) is the unique measure defined by induc-
tion on k by PrC(C(s0)) = α(s0) and for k > 0:

PrC(C(s0, I0, . . . , Ik−1, sk)) = PrC(C(s0, I0, . . . , Ik−2, sk−1))

×
∫

Ik−1

P(sk−1, sk)E(sk−1) · e−E(sk−1)τdτ.

In general, computing the probability of a cylinder set with k intervals I0 . . . Ik−1 (i.e.
k discrete jumps) reduces to calculating k integrals over I0 . . . Ik−1.

2.2 Metric Temporal Logic

Definition 3 (Syntax of MTL). Let AP be an arbitrary nonempty, finite set of atomic
propositions. Let I = [a, b] be an interval such that a, b ∈ N ∪ {∞}. The Metric
Temporal Logic is inductively defined as: ϕ ::= p | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1UIϕ2 , where
p ∈ AP and ϕ1, ϕ2 are MTL formulas.

We introduce two time-bounded semantics for MTL, as follows.

Definition 4 (Continuous Semantics). Given an MTL formula ϕ, a time bound T , a
timed path ρ and a variable t ∈ R≥0, the satisfaction relation (ρ, t) |=c

T ϕ is inductively
defined as follows:

(ρ, t) |=c
T p ⇔ p ∈ L(ρ@t) ∧ t ≤ T

(ρ, t) |=c
T ¬ϕ1 ⇔ (ρ, t) �|=c

T ϕ1

(ρ, t) |=c
T ϕ1 ∧ ϕ2 ⇔ (ρ, t) |=c

T ϕ1 ∧ (ρ, t) |=c
T ϕ2

(ρ, t) |=c
T ϕ1UIϕ2 ⇔ ∃t′. t ≤ t′ ≤ T s.t. t′ − t ∈ I ∧ (ρ, t′) |=c

T ϕ2 ∧
∀t′′. t ≤ t′′< t′ ⇒ (ρ, t′′) |=c

T ϕ1

where p ∈ AP and ϕ1, ϕ2 are MTL formulas.

Definition 5 (Pointwise Semantics). Given an MTL formula ϕ, a time bound T , a
timed path ρ and i ∈ N, the satisfaction relation (ρ, i) |=p

T ϕ is inductively defined as
follows:

(ρ, i) |=p
T p ⇔ p ∈ L(ρ[i]) ∧∑i

k=0 ρ〈k〉 ≤ T
(ρ, i) |=p

T ¬ϕ1 ⇔ (ρ, i) �|=p
T ϕ1

(ρ, i) |=p
T ϕ1 ∧ ϕ2 ⇔ (ρ, i) |=p

T ϕ1 ∧ (ρ, i) |=p
T ϕ2

(ρ, i) |=p
T ϕ1UIϕ2 ⇔ ∃i′. i ≤ i′ s.t.

∑i′

k=i ρ〈k〉 ∈ I ∧ (ρ, i′) |=p
T ϕ2 ∧

∀i′′. i ≤ i′′ < i′ ⇒ (ρ, i′′) |=p
T ϕ1

where p ∈ AP, ϕ1, ϕ2 are MTL formulas and i′, i′′ ∈ N.

2.3 Timed Automata

Let X = {x1, . . . , xp} be a set of nonnegative real-valued variables called clocks. An
X -valuation is a function η : X → R≥0 assigning to each variable x ∈ X a nonnegative
real value η(x). Let V(X) denote the set of all valuations over X . A clock constraint

Time-Bounded Verification of CTMCs against Real-Time Specifications 31

on X , denoted by g, is a conjunction of expressions of the form x �� c for x ∈ X ,
�� ∈ {<,≤, >,≥} and c ∈ N. Let B(X) denote the set of clock constraints over X . An
X -valuation η satisfies constraint x �� c, denoted η |= x �� c, if and only if η(x) �� c;
it satisfies a conjunction of such expressions if and only if η satisfies all of them. Let
0 denote the valuation that assigns 0 to all clocks. For a subset X ⊆ X , the reset of
X , denoted η[X := 0], is the valuation η′ such that ∀x ∈ X. η′(x) := 0 and ∀x /∈ X.
η′(x) := η(x). For δ ∈ R≥0 and X -valuation η, η + δ is the X -valuation η′′ such that
∀x ∈ X . η′′(x) := η(x) + δ, which implies that all clocks proceed at the same speed.

Definition 6 (TA). A timed automaton is a tuple A = (Σ,X , Q, q0, QF,→) where Σ
is a finite alphabet; X is a finite set of clocks; Q is a non empty finite set of locations
with initial location q0 ∈ Q; QF is a set of final locations; the relation →⊆ Q × Σ ×
B(X) × 2X × Q is an edge relation.

We refer to q
a,g,X−→ q′ as an edge, where a ∈ Σ is an input symbol, the guard g is

a clock constraint on the clocks of A, X is the set of clocks that must be reset and

q′ is the successor location. Intuitively, the edge q
a,g,X−→ q′ asserts that the TA A can

move from location q to location q′ when the input symbol is a and the guard g holds,
while the clocks in X should be reset when entering q′. In case no guard is satisfied in
a location for a given clock valuation, time can progress. For the sake of simplicity we
omit invariants from the definition of TAs. However, the results presented here can be
easily extended to TAs enhanced with invariants.

Definition 7. Given a timed automaton A, we define the following notions.

– A discrete path of A is a sequence of states w = q0 → q1 . . . → qn · · · where each
qi ∈ Q.

– A timed path of A is of the form θ = q0
a0,t0−→ q1

a1,t1−→ . . . qn−1
an−1,tn−1−→ qn · · ·

such that η0 = 0, and for all i ≥ 0, ai ∈ Σ and it holds ti > 0, ηi + ti |= gi where
gi is the guard on the i-th transition, ηi+1 = (ηi + ti)[Xi := 0], where ηi is the
clock evaluation when entering qi. We say that θ is accepting if there exists some
n ≥ 0 s.t. qn ∈ QF.

Definition 8 (Time-bounded Acceptance). Assume a CTMC C = (S, AP, L, s0,P, E)
and a TA A = (2AP ,X , Q, q0, QF,→). A CTMC timed path ρ = s0

t0−→ s1
t1−→ . . .,

is accepted by A if there exists n ∈ N>0 and a corresponding TA finite path: θ =

q0
L(s0),t0−→ q1

L(s1),t1−→ . . . qn−1
L(sn−1),tn−1−→ qn, such that qn ∈ QF and

∑n−1
i=0 ti ≤ T .

We write ρ |=T A to denote that the CTMC timed path ρ is accepted by A.

Remark 1. It is possible that a single CTMC timed path corresponds to multiple TA
accepting paths due to the nondeterminism of TA.

3 A Bound on the Number of Discrete Jumps

In this section, we give a bound on discrete jumps of paths of CTMCs such that, when
verifying an MTL formula or TA, one only needs to consider those paths whose discrete

32 T. Chen et al.

jumps number at most N . The intuition is that, for a given time interval [0, T], the
probability of the set of timed paths which “jump” very frequently is actually very
small. Throughout this section we assume a CTMC C = (S, AP, L, α,P, E).

For any n ∈ N, we define V n(s, x) : S × R≥0 → [0, 1] as follows: V 0(s, x)=1 and

V n+1(s, x) =
∫ x

0

E(s)e−E(s)τ ·
∑

s′∈S

P(s, s′) · V n(s′, x − τ)dτ .

Lemma 1. For all N ∈ N, PrC(PathsCT,≥N (s)) = V N (s, T).

We then show how to bound V N (s, T) analytically. Given a CTMC C, let Λ =

maxs∈S E(s) and ε(T, N) = e−ΛT ·
(∞∑

i=N

(ΛT)i

i!

)

.

Lemma 2. ε(T, N + 1) =
∫ T

0
Λe−Λτ · ε(T − τ, N)dτ .

Combining Lem. 1 and Lem. 2, we obtain the following.

Theorem 1. Given a CTMC C, a time bound T and N ∈ N, PrC(PathsCT,≥N) ≤
ε(T, N).

Proposition 1. Let ε ∈ R>0 and T ∈ R≥0. For any N ≥ ΛTe2 + ln(1
ε) we have that

ε(T, N) < ε.

For instance, given a CTMC C with 10 states, greatest rate Λ = 100, error bound
ε = 10−2 and T = 1000, we get that N ≥ 738911. The maximum number of paths to
consider would be 10N .

Remark 2. Readers who are familiar with Poisson distributions will immediately notice
that the bound we obtained is actually the probability that there are at least N Poisson
arrivals in an interval of time [0, T], with rate Λ. If the CTMC C is uniform (i.e., each
state of C has the same exit rate), then one could obtain the bound in a straightforward
way. However, for the general case, this cannot be achieved directly. Moreover, we
point out here that, in order to verify an MTL formula ϕ or a TA A, one cannot apply
the unformization technique, which is used only for transient probability computation.

4 MTL Specifications

In this section we study the problem of model checking CTMCs against MTL prop-
erties. Let PrCT (ϕ) := PrC({ρ ∈ PathsCT | (ρ, 0) |=c

T ϕ}) denote the probability that
the CTMC C satisfies the MTL formula ϕ, for a given time bound T . Notice that, here
the definition of PrCT (ϕ) is for the continuous semantics of MTL. However, we present
algorithms to deal with both continuous and pointwise semantics. Instead of comput-
ing PrCT (ϕ), we give a procedure to compute PrCT,<N (ϕ) := PrC(PathsCT,<N (ϕ)) for

sufficiently large N which ensures that PrCT (ϕ) − PrCT,<N (ϕ) < ε for arbitrarily small
ε ∈ R>0. This yields an approximation algorithm. The measurability of the set of
PathsCT,<N (ϕ) := {ρ ∈ PathsCT,<N | (ρ, 0) |=c

T ϕ} can be shown as in [32]. Below

we present an algorithm to compute PrCT,<N (ϕ). We first give a sketch, and provide the
crucial sub-procedures in Sec. 4.1 and Sec. 4.2.

Time-Bounded Verification of CTMCs against Real-Time Specifications 33

Choose N to get the desired error bound ε. The first step of the algorithm is to choose
the smallest N from Prop. 1 such that we get the desired error bound ε.

Compute the product C ⊗ Aϕ̃. The basic idea of this step is to exclude those CTMC
timed paths which definitely fail ϕ in order to reduce the number of paths to be analyzed.
To this end, we define an LTL formula ϕ̃ such that, if a discrete path of C fails ϕ̃, then
any timed path with the discrete path as the skeleton (see Def. 2) must fail ϕ. This is
formally stated in Lem. 3. Notice that since we consider the time-bounded semantics
of MTL, we need a variant of acceptance for an infinite discrete word and an LTL
formula ϕ̃, which is given in Def. 9. We then construct an NFA out of ϕ̃ such that only
those finite discrete CTMC paths which are accepted by the NFA are the prefixes of
the potential skeletons of timed paths satisfying ϕ. Then we apply the standard product
construction, which suffices to identify those CTMC finite discrete paths analyzed in
the next step.

Any MTL formula ϕ can be transformed into a positive normal form containing only
two temporal operators: U[a,b] and �[a,b], where (ρ, t) |=c

T �[a,b]ϕ iff ∀t′ ∈ [a, b] ⇒
(ρ, t + t′) |=c

T ϕ.

Definition 9 (Bounded Semantics of LTL). Given an LTL formula ϕ, a finite discrete
path σ and i ∈ N, the satisfaction relation (σ, i) |= ϕ is inductively defined as follows:

(σ, i) |= p ⇔ p ∈ L(σi) and i ≤ |σ|
(σ, i) |= ¬ϕ1 ⇔ (σ, i) �|= ϕ1

(σ, i) |= ϕ1 ∧ ϕ2 ⇔ (σ, i) |= ϕ1 ∧ (σ, i) |= ϕ2

(σ, i) |= ϕ1Uϕ2 ⇔ ∃i′. i ≤ i′ ≤ |σ| s.t. (σ, i′) |= ϕ2 ∧
∀i′′. i ≤ i′′ < i′ ⇒ (σ, i′′) |= ϕ1

where p ∈ AP, ϕ1, ϕ2 are LTL formulas and i′, i′′ ∈ N. For an infinite discrete
path σ, we define σ |= ϕ if there exists some k ≥ 0 such that the finite discrete path
(σk, 0) |= ϕ.

Given any MTL ϕ in positive normal form, we define an (untimed) LTL formula ϕ̃ as
follows:

ϕ = p ⇒ ϕ̃ = p
ϕ = ¬p ⇒ ϕ̃ = ¬p
ϕ = ϕ1 ∨ ϕ2 ⇒ ϕ̃ = ϕ̃1 ∨ ϕ̃2

ϕ = ϕ1 ∧ ϕ2 ⇒ ϕ̃ = ϕ̃1 ∧ ϕ̃2

ϕ = ϕ1UIϕ2 ⇒ ϕ̃ = ϕ̃1Uϕ̃2

ϕ = �Iϕ1 ⇒ ϕ̃ = TRUE Uϕ̃1

where ϕ1 and ϕ2 are MTL formulas and ϕ̃1 and ϕ̃2 are LTL formulas.

Remark 3. In the transformation from the MTL formula ϕ to LTL formula ϕ̃ we only
define the ¬ operator for atomic propositions because ϕ is already in positive normal
form. Notice that we transform �[a,b]ϕ into TRUE Uϕ̃ instead of a seemingly more
natural �ϕ, because otherwise in the next step we would not consider timed paths ρ
such that (ρ, 0) |= ϕ while S(ρ) �|= ϕ̃. Such paths do exist. For instance, consider

34 T. Chen et al.

the MTL formula �[0,2]p and the path ρ = s0
2.5−→ s1 · · · with L(s0) = {p} and

L(s1) = {¬p}. Then (ρ, 0) |=c
T �[0,2]p and S(ρ) �|= �p (but S(ρ) |= TRUE Up as

we defined). To conclude, one cannot transform �[a,b] by simply removing the time
constraints [a, b].

Lemma 3. Let ϕ be an MTL formula and ρ be a timed path in C. We have that

(ρ, 0) |=c
T ϕ ⇒ (S(ρ), 0) |= ϕ̃.

As the next step, we construct an NFA Aϕ̃ which accepts all the prefixes of infinite
paths satisfying the formula ϕ̃ according to Def. 9. The NFA can be obtained by a minor
adaptation of the well-known Vardi-Wolper construction [34]. (See [15] for details.) We
then build the product of C and Aϕ̃.

Definition 10 (Product C ⊗ Aϕ̃). Given a CTMC C = (S, AP, L, s0,P, E) and an
NFA Aϕ̃ = (Q, 2AP, δ, q0, F) we define the product C ⊗ Aϕ̃ to be the tuple C ⊗ Aϕ̃ =
(Loc, l0, LocF , �) where: Loc = S×Q; l0 = 〈s0, q0〉; LocF = S×F ; �⊆ Loc×Loc
such that

P(s, s′) > 0 ∧ q
L(s)−→ q′

〈s, q〉 � 〈s′, q′〉 .

The set of accepted timed paths in C ⊗ Aϕ̃ is defined by ♦LocF . Notice that we are
only interested in the discrete paths of C⊗Aϕ̃. Therefore, we do not assign probabilities
to the transition relation � when computing the product. The product is used to check
which discrete paths in the CTMC verify the formula ϕ̃.

Proposition 2. For any CTMC C and NFA Aϕ̃, S(PathsCT (ϕ)) ⊆ {Cd(σ) | σ ∈
♦LocF �1}, where LocF �1 is the first component of LocF .

Compute all the discrete paths of C ⊗ Aϕ̃ of length at most N and calculate the
probabilities.

1. Search the graph C ⊗ Aϕ̃ to get all the discrete accepting paths σ of C of length at
most N ;

2. Run Alg. 1 on each discrete path σ of length n ≤ N to obtain the system of linear
inequalities S;

3. Compute the probability of σ[S] (cf. Sec. 4.2);
4. Sum up all the probabilities for each discrete path to obtain PrCT,<N (ϕ).

4.1 Constraints Generation

We describe the Alg. 1 that takes as input a discrete path σ of length n and an MTL
formula ϕ. 2 The algorithm returns a family of linear constraints S =

∨
i∈I

∧
j∈Ji

cij

where cij is a linear inequality over the set of variables t0, . . . , tn−1. Given a sys-
tem of linear constraints S we define the set of feasible solutions to be the tuples
(x0, . . . , xn−1) ∈ R

n such that (x0, . . . , xn−1) ∈ S.

2 The algorithm Alg. 1 evaluates the formula ϕ for the continuous semantics.

Time-Bounded Verification of CTMCs against Real-Time Specifications 35

Algorithm 1. Constraints generation for continuous semantics
Require: A finite discrete path σ of length n > 0, an MTL formula ϕ and a time bound T
Ensure: Family of linear inequalities S over t0, . . . , tn−1

S ′ :=Constr Gen(σ,0,ϕ)
S :=Fourier Motzkin(S ′,t0,. . .,tn−1)
return S
Function Constr Gen(σ,t,ϕ)
case(ϕ) :

ϕ = p : return
(∨n

k=0 p ∈ L(σk) ∧∑k
i=0 ti ≥ t ∧∑k−1

i=0 ti < t
) ∧ t < T

ϕ = ¬ϕ1 : S ′ := ¬Constr Gen(σ,t,ϕ1)
ϕ = ϕ1 ∧ ϕ2 : S ′ :=Constr Gen(σ,t,ϕ1) ∧ Constr Gen(σ,t,ϕ2)
ϕ = ϕ1U[a,b]ϕ2 : S ′ := ∃t′.

(
t ≤ t′ < T ∧ t′−t≥a ∧ t′−t<b ∧ Constr Gen(σ,t′,ϕ2)

∧ ∀t′′. t ≤ t′′ < t′ ⇒ Constr Gen(σ,t′′,ϕ1)
)

return S ′

The negation of the family of linear constraints is defined in the standard way. First,
the algorithm executes the function Constr Gen(σ,0,ϕ). The result is a set of con-
straints S′ in first-order theory of (R, +,−, 0, 1,≤). Second, the algorithm executes the
Fourier-Motzkin procedure in order to eliminate all existential and universal quantifiers.
This results in a family of linear constraints containing only the variables t0, . . . , tn−1.

Theorem 2. Given a discrete path σ of length n, an MTL formula ϕ and a time bound
T , we have that (σ[x0, . . . , xn−1], 0) |=T ϕ iff (x0, . . . , xn−1) ∈ S, where S is re-
turned by Alg. 1.

Example 1. Let C be a CTMC and let σ be the following finite discrete path on C:
σ = s0 → s1 → s2 → s3. Let a, b ∈ AP, let L(s0) = {a}, L(s1) = {a}, L(s2) =
{a, b}, L(s3) = {∅} and let ϕ = a U[1,2]b. The first step of Alg. 1 consists of comput-
ing Constr Gen(σ,0,ϕ)which returns the following family of linear constraints S′

(the parenthesis “{” denotes the ∧ between the formulas):

∃t′. 0 ≤ t′ < T ∧ t′ ≥ 1 ∧ t′ < 2 ∧
{

t0 + t1 + t2 ≥ t′

t0 + t1 < t′ ∧ (1)

∀t′′. 0 ≤ t′′ < t′ ⇒
(

t0 ≥ t′′ ∨
{

t0 + t1 ≥ t′′

t0 < t′′ ∨
{

t0 + t1 + t2 ≥ t′′

t0 + t1 < t′′

)

. (2)

The constraints in Eq. (2) can always be verified given the constraints in Eq. (1). More-
over, after the Fourier Motzkin elimination for t′, t′′ in S′ we obtain the family of
constraints S:

S =
{

t0 + t1 < 2
t0 + t1 + t2 ≥ 1 .

The system S can be represented using the matrix notation:S := {t ∈ R
n
>0 | A · t�b},

for a given matrix A ∈ R
m×n, vector b ∈ R

m and � ∈ {<,≤}. The notation R>0

stands for the semi-closed interval (0,∞) ⊂ R. The matrices A, t and b in S are:
A ∈ R

2×3, t ∈ R
3
>0 and b ∈ R

2. More specifically:

36 T. Chen et al.

A =
[

1 1 0
−1 −1 −1

]

; t =

⎡

⎣
t0
t1
t2

⎤

⎦ ; b =
[

2
−1

]

.

In Alg. 2 we present a procedure which generates a family of linear constraints from a
given MTL formula ϕ under the pointwise semantics. Notice that we do not need to use
the Fourier Motzkin elimination procedure, as the family of constraints obtained
from Constr Gen(σ,0,ϕ) contains no quantifiers.

Algorithm 2. Constraints generation for pointwise semantics
Require: A finite discrete path σ of length n > 0, an MTL formula ϕ and a time bound T
Ensure: Family of linear inequalities S over t0, . . . , tn−1

return Constr Gen(σ,0,ϕ)

Function Constr Gen(σ,i,ϕ)
case(ϕ) :

ϕ = p : if p ∈ L(σi) return
∑i

k=0 tk ≤ T else return false
ϕ = ¬ϕ1 : S := ¬Constr Gen(σ,i,ϕ1)
ϕ = ϕ1 ∧ ϕ2 : S :=Constr Gen(σ,i,ϕ1) ∧ Constr Gen(σ,i,ϕ2)

ϕ = ϕ1U[a,b]ϕ2 : S :=
(∨n

i′=i Constr Gen(σ,i′,ϕ2) ∧ a ≤ ∑i′
k=i tk ≤ b ∧

(
∧i′−1

i′′=iConstr Gen(σ,i′′,ϕ1))
)

return S

Let S be the family of linear constraints obtained from Alg. 1 and 2. S is always
defined as a union of convex polyhedra in R

n, i.e., S =
∨

i∈I

∧
j∈Ji

cij where, for each
i ∈ I ,

∧
j∈Ji

cij is a convex polyhedron.

4.2 Computing Probabilities

Given a CTMC C, a discrete path σ of length N and the family of linear constraints
S(t0, . . . , tN−1) obtained from Alg. 1, the main task of this section is to compute the
probability of σ[S], i.e., PrC(σ[S]). To this end, we first add more constraints to S,
namely, for S =

∨
i∈I

∧
j∈Ji

cij we obtain

S=
∨

i∈I

⎛

⎝
∧

j∈Ji

cij ∧ (t0 + . . . + tN−1 > T ∧ t0 + . . . + tN−2 < T) ∧
∧

0≤k<N

tk > 0

⎞

⎠ .

These new constraints are used to ensure that there are exactly N discrete jumps during
the time interval [0, T], and that each residence time is positive.

Now we have N random variables t0, · · · , tN−1, corresponding to the residence time
of each state σi for i ≤ N . The probability PrC(σ[S]) is thus formulated as the joint
probability PrC(S(t0, · · · , tN−1)), where ti ∼ Exp(E(σi)) for each 0 ≤ i < N , and
t0, · · · , tN−1 are bounded by the family of linear constraints S . The value of the joint
probability can be computed through the following multidimensional integration:

Time-Bounded Verification of CTMCs against Real-Time Specifications 37

PrC(σ[S]) =
∫

· · ·
∫

︸ ︷︷ ︸
N

S(τ0 ,...,τN−1)

N−1∏

i=0

E(si) · P (si, si+1) × e−E(si)τidτi. (3)

Proposition 3 ([21]). Consider any family of linear inequalities S =
∨

i∈I

∧
j∈Ji

cij .
For each i ∈ I , we can write

∧
j∈Ji

cij in matrix form Ai · t � bi where � ∈ {<,≤},
and

∧
j∈Ji

cij is a polyhedron.

From Prop. 3, we have that S =
∨k

�=0 C� where each C� = {t ∈ R
n
>0|A� · t � b�}

defines a convex set. In case that the union
∨k

�=0 C� is not convex, we use the inclusion-
exclusion principle to compute PrC(σ[S]) as follows:

PrC(σ[S]) =
k∑

�=0

PrC(σ[C�]) −
∑

i,j:0≤i<j≤k

PrC(σ[Ci ∧ Cj]) +

∑

i,j,h:0≤i<j<h≤k

PrC(σ[Ci ∧ Cj ∧ Ch]) − · · · + (−1)k−1PrC(σ[C0 ∧ · · · ∧ Ck])

Remark 4. In our case, the difference between < and ≤ in the constraints is marginal,
as they would yield the same probability, which can be seen from Eq. (3).

For an index set L ⊆ {0, . . . , k} we write D =
∧

�∈L C�, where C� defines a polyhe-
dron. By Prop.3, D defines a polyhedron as well. We rewrite PrC(σ[D]) as:

PrC(σ[D]) =
N−1∏

i=0

E(si) · P (si, si+1) ·
∫

· · ·
∫

︸ ︷︷ ︸
N

D

N−1∏

i=0

e−E(si)τidτi

=
N−1∏

i=0

E(si) · P (si, si+1) ·
∫

· · ·
∫

︸ ︷︷ ︸
N

D

e−E·τdτ ,

where E = [E(s0), . . . , E(sN−1)], τ = [τ0, . . . , τN−1] and E · τ =
∑N−1

i=0 E(si) · τi.
We use the algorithm of [25] (Sec. 5) to compute efficiently the multidimensional inte-
gral

∫ · · · ∫
D

e−E·τ dτ based on the Laplace transform. An example of how to compute
the integral

∫ · · · ∫D e−E·τdτ for a convex set D is given in [15]. The time complexity
of solving the multidimensional integral is O(nm), where n is the number of constraints
and m is the number of variables in D.

Remark 5. Admittedly, it is costly to apply the inclusion-exclusion principle to compute
the probabilities. In the worst case, any union of two components is not convex. Notice
that efficient algorithms to decide whether the union of two polyhedra is convex there
exist; see e.g. [12].

38 T. Chen et al.

4.3 Main Algorithm and Correctness

We summarize the time-bounded verification algorithm for a CTMC C against an MTL
formula ϕ in Alg. 3. Recall that Λ is the maximal exit rate appearing in C.

Algorithm 3. Time-bounded verification of a CTMC C against an MTL formula ϕ

Require: C, ϕ, T and ε
Ensure: PrCT,<N (ϕ)

Choose an integer N ≥ ΛTe2 + ln(1
ε
)

Transform ϕ into ϕ̃ and generate NFA Aϕ̃ out of ϕ̃
Compute the product C ⊗ Aϕ̃

for each discrete path σ of (C ⊗Aϕ̃) �1 of length n < N do
Generate the family of linear constraints S(t0, . . . , tn−1) using Alg. 1 (or Alg. 2)
Calculate the probability p of σ[S]
PrCT,<N (ϕ) := PrCT,<N(ϕ) + p

end for
return PrCT,<N (ϕ)

For the correctness, we first note that the error is bounded by PrCT,≥N (ϕ), which is in
turn bounded by the probability of the set of timed paths with at least N discrete jumps
in [0, T]. Then Lem. 4 yields the bound, as follows.

Lemma 4. Given a CTMC C, an MTL formula ϕ, a time bound T and N ∈ N

PrCT (ϕ) − PrCT,<N (ϕ) ≤ ε(T, N).

Theorem 3. Alg. 3 computes PrCT,<N (ϕ).

5 TA Specifications

In this section, we show how the procedure outlined in the previous section can be
adapted to verify TA specifications on CTMCs. Formally, we intend to compute PrCT (A)
:= PrC({ρ ∈ PathsCT | ρ |=T A}). As in the case of MTL specifications, we bound
PrCT (A) by PrCT,<N (A) := PrC(PathsCT,<N (A)), such that PrCT (A)−PrCT,<N (A) < ε

for ε > 0. The measurability of the set of paths PathsCT,<N (A) := {ρ ∈ PathsCT,<N |
ρ |=T A} can be shown as in [17].

5.1 Constraints Generation

Alur et. al. in [5] show how to, given a discrete path π of TA A, construct a graph G
such that A has a run over π if and only if G has no negative cost cycle. The graph G has
exactly n nodes and the number of edges of G depends on the numbers of guards and
invariants in A (see [5] for details). Each edge e = (i, j) (connecting node i to node j)
is labeled with a value c such that c ∈ H where

H = {. . . − 2,−1, 0, 1, 2, . . .} ∪ {. . . − 2−,−1−, 0−, 1−, 2−, . . .} ∪ {−∞,∞}
The set H is used to characterize strict and non-strict constraints in A.

Time-Bounded Verification of CTMCs against Real-Time Specifications 39

For each discrete path σ of the CTMC C we define Πσ = {π | πi
L(σi)−→ πi+1 for all

0 ≤ i ≤ n − 1}.

Theorem 4. Given a discrete path σ of length n, a TA A and a time bound T , we have
that σ[t0, . . . , tn−1] is accepted by A iff (t0, . . . , tn−1) ∈ S, where S is returned by
Alg. 4.

Algorithm 4. Constraints generation for a TA
Require: A finite discrete path σ of length n > 0 and a TA A
Ensure: Family of linear constraints S
1: For the discrete path σ compute the set Πσ

2: for each π ∈ Πσ do
3: Generate the graph G
4: Sπ := ∅

5: for each edge e(i, j) ∈ G labeled with c do
6: Sπ := Sπ ∧ ti − tj < c
7: end for
8: S := S ∨

(
Sπ ∧ (t0 + . . . + tn−1 > T ∧ t0 + . . . + tn−2 < T) ∧ ∧

0≤k<n tk > 0
)

9: end for
10: return S

5.2 Algorithm for TA

Given a timed automaton A we write Ā to denote the NFA obtained by removing all
the guards, clocks and invariants from A. The product C ⊗Ā follows Def. 10. Similarly
to Prop. 2, we have that

Proposition 4. For any CTMC C and NFA Ā, S(PathsCT (A)) ⊆ {Cd(σ) | σ ∈
♦LocF �1}, where LocF is the set of final locations in C ⊗ Ā.

The approximation algorithm for time-bounded verification of a TA specification A is
given in Alg. 5.

Lemma 5. Given a CTMC C, a TA specification A, a time bound T and N ∈ N

PrCT (A) − PrCT,<N (A) ≤ ε(T, N).

Theorem 5. Alg. 5 computes PrCT,<N (A).

Algorithm 5. Time-bounded verification of a TA specification A against a CTMC C
Require: C, A, T and ε
Ensure: PrCT,<N (A)
1: Choose an integer N ≥ ΛTe2 + ln(1

ε
)

2: for each discrete path σ of (C ⊗ Ā) �1 of length n < N do
3: Calculate the family of linear constraints S(t0, . . . , tn−1) with Algorithm 4
4: Calculate the probability p of σ[S]
5: PrCT,<N (A) := PrCT,<N (A) + p
6: end for
7: return PrCT,<N(A)

40 T. Chen et al.

6 Conclusion

In this paper we have studied time-bounded verification of CTMCs against real-time
specifications. In particular, we presented effective procedures to approximate the prob-
ability of the set of timed paths of CTMCs that satisfy real-time specifications over a
time interval of fixed bounded length, arbitrarily closely. For the real-time specifica-
tions, we focused on MTL under both the continuous and pointwise semantics, and
general timed-automata.

The aim of the current paper is to provide effective approximation algorithms. We
leave the precise complexity as future work. Notice that, for MTL, the satisfiability
problem over CTMCs is undecidable for continuous semantics [2] while it has non-
primitive recursive complexity for pointwise semantics [28]. These results do not carry
over directly to CTMCs, as they do not involve nondeterminism. Moreover, we mention
that since our algorithms involve computation over reals, it might make more sense to
consider different computation models (e.g. the BSS model [13]) and the complexity
theory therein, rather than the standard Turing model. Notice that one could also apply
discretization to solve the problem. However, it is not clear how the probabilities are
preserved in the discretized model.

Recently [26] showed that, under the bounded-variability assumption (BVA), an
MTL formula can be transformed into a deterministic timed automaton. Roughly, a
timed path satisfies the BVA if there exist Δ and k such that, for every interval of the
form [t, t + Δ], the number of discrete jumps is at most k. Clearly, this is related to
the bound on discrete jumps in [0, T]. However, the BVA is a “global” assumption over
[0,∞), so it does not apply to time-bounded verification. Also, it is not clear for us how
to bound the error under this assumption. It would be interesting to investigate whether
one could obtain a DTA out of MTL under our assumption of finitely many jumps over
[0, T], which could yield an alternative way to solve the problem, based on previous
work of two authors [17]. A natural question is how to tackle the traditional (time-
unbounded) verification. The scheme introduced in this paper still works. However, one
cannot guarantee an approximation to stay within the given error bound ε, which means
that the resulting procedure is not an approximation algorithm any more. It is also inter-
esting to tackle real-time specifications given as alternating timed automata [22] or as
TPTL formulas [3,10], as they subsume MTL. We claim that the scheme can be applied
in a straightforward way. However, one needs new constraints generation procedures.
We leave them as future work.

Acknowledgement. We are grateful to Klaus Dräger, Joost-Pieter Katoen, and anony-
mous referees for fruitful discussions and constructive comments.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235 (1994)
2. Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. J. ACM 43(1),

116–146 (1996)
3. Alur, R., Henzinger, T.A.: A Really Temporal Logic. J. ACM 41(1), 181–204 (1994)
4. Alur, R., Henzinger, T.A.: Real-time logics: Complexity and expressiveness. In: LICS, pp.

390–401 (1990)

Time-Bounded Verification of CTMCs against Real-Time Specifications 41

5. Alur, R., Kurshan, R.P., Viswanathan, M.: Membership questions for timed and hybrid au-
tomata. In: IEEE Real-Time Systems Symposium, pp. 254–263 (1998)

6. Baier, C., Cloth, L., Haverkort, B.R., Kuntz, M., Siegle, M.: Model checking Markov chains
with actions and state labels. IEEE Trans. Software Eng. 33(4), 209–224 (2007)

7. Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.-P.: Model-checking algorithms for
continuous-time Markov chains. IEEE Trans. Software Eng. 29(6), 524–541 (2003)

8. Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.-P.: Performance evaluation and model
checking join forces. Commun. ACM 53(9), 76–85 (2010)

9. Baier, C., Hermanns, H., Katoen, J.-P., Haverkort, B.R.: Efficient computation of time-
bounded reachability probabilities in uniform continuous-time Markov decision processes.
Theor. Comput. Sci. 345(1), 2–26 (2005)

10. Bouyer, P., Chevalier, F., Markey, N.: On the expressiveness of TPTL and MTL. Inf. Com-
put. 208(2), 97–116 (2010)

11. Barbot, B., Chen, T., Han, T., Katoen, J.-P., Mereacre, A.: Efficient CTMC model checking
of linear real-time objectives. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS,
vol. 6605, pp. 128–142. Springer, Heidelberg (2011)

12. Bemporad, A., Fukuda, K., Torrisi, F.D.: Convexity recognition of the union of polyhedra.
Comput. Geom. 18(3), 141–154 (2001)

13. Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and real computation. Springer, Hei-
delberg (1998)

14. Bouyer, P.: From Qualitative to Quantitative Analysis of Timed Systems. Mémoire
d’habilitation, Université Paris 7, Paris, France (January 2009)

15. Chen, T., Diciolla, M., Kwiatkowska, M., Mereacre, A.: Time-bounded verification of
CTMCs against real-time specifications. Tech. Rep. RR-11-06, Department of Computer Sci-
ence, University of Oxford (2011)

16. Chen, T., Han, T., Katoen, J.-P., Mereacre, A.: Quantitative model checking of continuous-
time Markov chains against timed automata specifications. In: LICS, pp. 309–318 (2009)

17. Chen, T., Han, T., Katoen, J.-P., Mereacre, A.: Model checking of continuous-time Markov
chains against timed automata specifications. Logical Methods in Computer Science 7(1–2),
1–34 (2011)

18. Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification. J.
ACM 42(4), 857–907 (1995)

19. Donatelli, S., Haddad, S., Sproston, J.: Model checking timed and stochastic properties with
CSLTA. IEEE Trans. Software Eng. 35(2), 224–240 (2009)

20. Hahn, E.M., Hermanns, H., Wachter, B., Zhang, L.: Time-bounded model checking of
infinite-state continuous-time Markov chains. Fundam. Inform. 95(1), 129–155 (2009)

21. Hiriart-Urruty, J., Lemaréchal, C.: Convex Analysis and Minimization Algorithms I.: Funda-
mentals. Springer, Heidelberg (1994)

22. Jenkins, M., Ouaknine, J., Rabinovich, A., Worrell, J.: Alternating timed automata over
bounded time. In: LICS, pp. 60–69. IEEE Computer Society, Los Alamitos (2010)

23. Katoen, J.-P., Zapreev, I.S.: Safe on-the-fly steady-state detection for time-bounded reacha-
bility. In: QEST, pp. 301–310 (2006)

24. Koymans, R.: Specifying real-time properties with metric temporal logic. Real-Time Sys-
tems 2(4), 255–299 (1990)

25. Lasserre, J.B., Zeron, E.S.: A Laplace transform algorithm for the volume of a convex poly-
tope. J. ACM 48(6), 1126–1140 (2001)

26. Nickovic, D., Piterman, N.: From MTL to deterministic timed automata. In: Chatterjee, K.,
Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp. 152–167. Springer, Heidel-
berg (2010)

27. Ouaknine, J., Rabinovich, A., Worrell, J.: Time-bounded verification. In: Bravetti, M., Zavat-
taro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 496–510. Springer, Heidelberg (2009)

42 T. Chen et al.

28. Ouaknine, J., Worrell, J.: On the decidability and complexity of metric temporal logic over
finite words. Logical Methods in Computer Science 3(1) (2007)

29. Ouaknine, J., Worrell, J.: Towards a theory of time-bounded verification. In: Abramsky, S.,
Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010 Part II.
LNCS, vol. 6199, pp. 22–37. Springer, Heidelberg (2010)

30. Roux, O., Rusu, V.: Verifying time-bounded properties for ELECTRE reactive programs with
stopwatch automata. In: Antsaklis, P.J., Kohn, W., Nerode, A., Sastry, S.S. (eds.) HS 1994
Part II. LNCS, vol. 999, pp. 405–416. Springer, Heidelberg (1995)

31. Schrijver, A.: Theory of linear and integer programming. Wiley-Interscience series in discrete
mathematics and optimization. Wiley, Chichester (1999)

32. Sharma, A., Katoen, J.-P.: Weighted lumpability on Markov chains. In: 8th Ershov Informat-
ics Conference. LNCS (2011)

33. Vardi, M.Y.: Automatic verification of probabilistic concurrent finite-state programs. In:
FOCS, pp. 327–338 (1985)

34. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program verification
(preliminary report). In: LICS, pp. 332–344 (1986)

	Time-Bounded Verification of CTMCs against Real-Time Specifications
	Introduction
	Preliminaries
	Continuous-Time Markov Chains
	Metric Temporal Logic
	Timed Automata

	A Bound on the Number of Discrete Jumps
	MTL Specifications
	Constraints Generation
	Computing Probabilities
	Main Algorithm and Correctness

	TA Specifications
	Constraints Generation
	Algorithm for TA

	Conclusion
	References

