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Abstract We present automatic verification techniques for the modelling and analysis of
probabilistic systems that incorporate competitive behaviour. These systems are modelled
as turn-based stochastic multi-player games, in which the players can either collaborate or
compete in order to achieve a particular goal. We define a temporal logic called rPATL for
expressing quantitative properties of stochastic multi-player games. This logic allows us to
reason about the collective ability of a set of players to achieve a goal relating to the proba-
bility of an event’s occurrence or the expected amount of cost/reward accumulated. We give
an algorithm for verifying properties expressed in this logic and implement the techniques
in a probabilistic model checker, as an extension of the PRISM tool. We demonstrate the ap-
plicability and efficiency of our methods by deploying them to analyse and detect potential
weaknesses in a variety of large case studies, including algorithms for energy management
in Microgrids and collective decision making for autonomous systems.

Keywords Quantitative verification · Probabilistic model checking · Stochastic
multi-player games · Probabilistic temporal logic

T. Chen · V. Forejt · M. Kwiatkowska · A. Simaitis (�)
Department of Computer Science, University of Oxford, Oxford, UK
e-mail: aistis.simaitis@cs.ox.ac.uk

T. Chen
e-mail: taolue.chen@cs.ox.ac.uk

V. Forejt
e-mail: vojfor@cs.ox.ac.uk

M. Kwiatkowska
e-mail: Marta.Kwiatkowska@cs.ox.ac.uk

D. Parker
School of Computer Science, University of Birmingham, Birmingham, UK
e-mail: d.a.parker@cs.bham.ac.uk

mailto:aistis.simaitis@cs.ox.ac.uk
mailto:taolue.chen@cs.ox.ac.uk
mailto:vojfor@cs.ox.ac.uk
mailto:Marta.Kwiatkowska@cs.ox.ac.uk
mailto:d.a.parker@cs.bham.ac.uk


Form Methods Syst Des

1 Introduction

Automatic verification techniques for probabilistic systems have been successfully applied
in a variety of fields, from wireless communication protocols to dynamic power management
schemes to quantum cryptography. These systems are inherently stochastic, because of, for
example, unreliable communication media, faulty components or the use of randomisation.
Automatic techniques such as probabilistic model checking provide a means to model and
analyse these systems against a range of quantitative properties. In particular, when systems
also exhibit nondeterministic behaviour, for example due to concurrency, underspecification
or control, the subtle interplay between the probabilistic and nondeterministic aspects of the
system often makes a manual analysis difficult and error-prone.

When modelling open systems, the designer also has to account for the behaviour of
components it does not control, and which could have differing or opposing goals, giving
rise to competitive behaviour. This occurs in many cases, such as algorithms and protocols
for distributed consensus, energy management, sensor network co-ordination or security. In
such situations, it is natural to adopt a game-theoretic view, modelling a system as a game
between different players. Automatic verification has been successfully deployed in this
context, e.g. in the analysis of security [27] or communication protocols [36].

In this paper, we present an extensive framework for modelling and automatic verification
of systems with both probabilistic and competitive behaviour, using stochastic multi-player
games (SMGs). We introduce a probabilistic alternating-time temporal logic with rewards
(rPATL) for expressing quantitative properties of this model and develop model checking al-
gorithms for it. We then build a probabilistic model checker, based on the PRISM tool [28],
which provides a high-level language for modelling SMGs and implements rPATL model
checking for their analysis. Finally, to illustrate the applicability of our framework, we de-
velop several large case studies in which we identify potential weaknesses and unexpected
behaviour that would have been difficult to find with existing probabilistic verification tech-
niques.

We model competitive stochastic systems as turn-based SMGs, where, in each state of
the model, one player chooses between several actions, the outcome of which can be prob-
abilistic. Turn-based games are a natural way to model many real-life applications. One
example is when modelling several components executing concurrently under the control of
a particular (e.g. round-robin, randomised) scheduler; in this case, nondeterminism in the
model arises due to the choices made by each individual component. Another example is
when we choose to explicitly model the (possibly unknown) scheduling of components as
one player and the choices of components as other players.

The logic rPATL is an extension of the logic PATL [18], which is itself a probabilistic
extension of ATL [2], a widely used logic for reasoning about multi-player games and multi-
agent systems. rPATL allows us to state that a coalition of players has a strategy which can
ensure that either the probability of an event’s occurrence or an expected reward measure
meets some threshold, e.g. for a network protocol: “can nodes 1 and 2 collaborate so that the
probability of the protocol terminating within 45 seconds is at least 0.95, whatever nodes 3
and 4 do?”

We place particular emphasis on reward (or, equivalently, cost) related measures. This
allows us to reason quantitatively about a system’s use of resources, such as time spent or
energy consumed; or, we can use rewards as an algorithm design mechanism to validate,
benchmark or synthesise strategies for components by rewarding or penalising them for
certain behaviour. rPATL can state, for example, “can sensor 1 ensure that the expected
energy used, if the algorithm terminates, is less than 75 mJ, for any actions of sensors 2, 3,
and 4?”. To the best of our knowledge, this is the first logic able to express such properties.
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We include in rPATL three different cumulative expected reward operators. Cumulative
properties naturally capture many useful system properties, as has been demonstrated for
verification of other types of probabilistic models [24], and as proves to be true for the sys-
tems we investigate. Indicative examples from our case studies are “the maximum expected
execution cost of a task in a Microgrid” and “the minimum expected number of messages
required to reach a consensus”. Several other reward-based objectives exist that we do not
explicitly consider, including discounted rewards (useful, e.g., in economics, but less so for
the kind of systems we target) and long-run average reward (also useful, but practical im-
plementations become complex in stochastic games [23]). We also mention that discounted
reward objectives could be expressed within our framework by modifying the underlying
game.

We present model checking algorithms for rPATL. A practical advantage of the logic is
that, like for ATL, model checking reduces to analysing zero-sum two-player games. rPATL
properties referring to the probability of an event are checked by solving simple stochastic
two-player games, for which efficient techniques exist [19, 23]. We also describe model
checking for the extended logic, rPATL∗, again by reducing to known methods for two-
player games [15]. For the reward operators of rPATL, we devise new algorithms.

Lastly, we implement our model checking techniques in a prototype tool and then develop
and analyse several large case studies. In particular, we study algorithms for smart energy
management [26] and distributed consensus in a sensor network [33]. In the first case, we
use our techniques to reveal a weakness in the algorithm: we show that users may have a
high incentive to deviate from the original algorithm, and propose modifications to solve the
problem. For the consensus algorithm, we identify unexpected trade-offs in the performance
of the algorithm when using our techniques to evaluate possible strategies for sensors.

Contributions In summary, the contributions of this paper are:

– A comprehensive framework for analysis of competitive stochastic systems;
– A logic rPATL for specifying quantitative properties of stochastic multi-player games

including, in particular, novel operators for costs and rewards, and their model checking
algorithms;

– Implementation of a tool for modelling and rPATL model checking of SMGs;
– Development and analysis of several large new case studies.

This paper is an extended version of [16], which adds, in particular, the extended logic
rPATL∗, reward-bounded properties and operators for deciding the existence of price-
bounded coalitions to satisfy an rPATL formula. We also provide proofs for the results and
algorithms in the paper.

Paper structure The remainder of the paper is structured as follows. In the next section,
we review related work in this area. Then, Sect. 2 provides some background material on
stochastic multi-player games. Section 3 introduces the logic rPATL and its extensions. The
corresponding model checking algorithms are presented in Sect. 4. Section 5 describes an
implementation of our model checking framework and its application to several large case
studies. Proofs for the main results in the paper are contained in the appendix.

1.1 Related work

There are various theoretical results relating to probabilistic temporal logics in a game-
theoretic setting [1, 5, 10, 18, 34, 37, 38] but, to our knowledge, this is the first work to
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consider a practical implementation, as well as modelling and automated verification of
case studies. The logics PATL and PATL∗, which we extend in this paper, were first intro-
duced in [18], where the complexity of model checking for these logics was studied using
a reduction to probabilistic parity games. In [37], simulation relations for stochastic games
are proposed and shown to preserve fragments of PATL; an algorithm for computing such
simulations is given in [38]. In [1], the logic PATL∗ is used in a theoretical framework
for analysing security protocols. Various extensions of PATL have also been considered:
[10] studies alternative semantics for the logic, using the notion of prediction denotation
functions; [34] gives decidability and complexity results for a more expressive logic that
incorporates partial information; and [5] presents (un)decidability results for another richer
logic, with emphasis on the subtleties of nested properties. We note that all of the above,
except [5], use concurrent, rather than turn-based, games and none consider reward proper-
ties. Turn-based games can be viewed as a special case of concurrent games where only one
player has a choice of actions in every state.

There has been much research on algorithms to solve stochastic games, e.g. [12, 15, 19,
23, 35], but these do not consider a modelling framework, implementation or case studies.
Moreover, the reward-based properties that we introduce in this paper have not been studied
in depth. Probabilistic model checking for a multi-agent system (a negotiation protocol) is
considered in [7], using PRISM [28], but this is done by fixing a particular probabilistic
strategy and analysing a Markov chain rather than a stochastic game. In [32], a quantitative
generalisation of the μ-calculus is proposed, and shown to be able to encode stochastic
parity games. The techniques are illustrated using a model of futures market investor, to
which we will apply our techniques in Sect. 5. We will also analyse a model of a team
formation protocol taken from [17], which performs probabilistic model checking using
Markov chains and Markov decisions processes, as well as analysing simple properties of
stochastic two-player games.

Stochastic games are also useful for synthesis, as in, for example, [11], which synthe-
sises concurrent programs operating under randomised schedulers. Related to this is the tool
GIST [14], a stochastic game solver with support for qualitative ω-regular objectives via a
reduction to (non-probabilistic) two-player games. This is targeted specifically at synthesis
problems, rather than general modelling and verification of competitive systems, as we do
here. Finally, we also mention the tools MCMAS [30] and MOCHA [3], which are powerful
model checkers for non-probabilistic multi-agent systems. In addition to the logic ATL, the
former includes support for epistemic operators that reason about the knowledge of agents,
a direction that we do not consider in this paper.

2 Preliminaries

We begin with some background on stochastic multi-player games. For a finite set X, we
denote by D(X) the set of discrete probability distributions over X.

Definition 1 (SMG) A (turn-based) stochastic multi-player game (SMG) is a tuple G =
〈Π,S,A, (Si)i∈Π,�,AP, χ〉, where: Π is a finite set of players; S is a finite, non-empty
set of states; A is a finite, non-empty set of actions; (Si)i∈Π is a partition of S; � : S ×
A → D(S) is a (partial) transition function; AP is a finite set of atomic propositions; and
χ : S → 2AP is a labelling function.

In each state s ∈ S of the SMG G , the set of available actions is denoted by A(s)
def=

{a ∈ A | �(s, a)�=⊥}. We assume that A(s) �= ∅ for all s. The choice of action to take in
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Fig. 1 Example SMG

s is under the control of exactly one player, namely the player i ∈ Π for which s ∈ Si .
Once action a ∈ A(s) is selected, the successor state is chosen according to the probability
distribution �(s, a). A path of G is a possibly infinite sequence λ = s0a0s1a1 . . . such that
aj ∈ A(sj ) and �(sj , aj )(sj+1) > 0 for all j . We use stλ to denote s0s1 . . ., and stλ(j) for sj .
Also, by λi we denote the suffix of the path λ starting in state si , e.g. λ1 = s1a1s2 · · · . The
set of all infinite paths in G is ΩG and the set of infinite paths starting in state s is ΩG,s .
Similarly, we use Ω+

G and Ω+
G,s to denote the sets of finite paths.

A strategy for player i ∈ Π in G is a function σi : (SA)∗Si → D(A) which, for each
path λ·s ∈ Ω+

G where s ∈ Si , selects a probability distribution σi(λ·s) over A(s). The set
of all strategies for player i is denoted Σi . A strategy σi is called memoryless if σi(λ·s) =
σi(λ

′·s) for all paths λ·s, λ′·s ∈ Ω+
G , and deterministic if σi(λ·s) is a Dirac distribution for

all λ·s ∈ Ω+
G . A strategy profile σ = σ1, . . . , σ|Π | comprises a strategy for all players in the

game. Under a strategy profile σ , the behaviour of G is fully probabilistic and we define
a probability measure PrσG,s over the set of all paths ΩG,s in standard fashion (see, e.g.
[12]). Given a random variable X : ΩG,s → R, we define the expected value of X to be

E
σ
G,s[X] def= ∫

ΩG,s
X dPrσG,s .

We also augment games with reward structures r : S → Q≥0, which are labelling func-
tions mapping each state to a non-negative rational reward. To simplify presentation, we only
use state rewards, but note that transition/action rewards can easily be encoded by adding an
auxiliary state per transition/action to the model.

Example 1 Consider the SMG shown in Fig. 1, with Π = {1,2,3}. The player i controlling
a state s is shown as i:s in the figure, i.e. S1 = {s0, s3}, S2 = {s1}, S3 = {s2}. We have actions
A = {a, b} and, e.g., �(s0, a)(s1) = 0.7. State s3 is labelled with atomic proposition t , and
all others are labelled with no atomic propositions. An example of an infinite path is λ =
s0as0bs1bs2bs3(as3)

ω; if player actions were chosen without the use of randomisation, the
measure of this path would be 0.15 (i.e. 0.3 × 0.5).

3 Property specification: the logic rPATL

3.1 rPATL

We now present a temporal logic called rPATL (Probabilistic Alternating-time Temporal
Logic with Rewards) for expressing quantitative properties of SMGs. Throughout the sec-
tion, we assume a fixed SMG G = 〈Π,S,A, (Si)i∈Π,�,AP, χ〉.

Definition 2 (rPATL) The syntax of rPATL is given by the grammar:

φ ::= � | a | ¬φ | φ ∧ φ | 〈〈C〉〉P��q[ψ] | 〈〈C〉〉Rr
��x

[
F�φ

]

ψ ::= Xφ | φ U≤k φ | φ Uφ
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where a ∈ AP, C ⊆ Π , ��∈ {<,≤,≥,>}, q ∈ Q ∩ [0,1], x ∈ Q≥0, r is a reward structure,
� ∈ {0,∞, c} and k ∈ N.

rPATL is a CTL-style branching-time temporal logic, where we distinguish between state
formulae (φ) and path formulae (ψ ). We adopt the coalition operator 〈〈C〉〉 of ATL [2],
combining it with the probabilistic operator P��q and path formulae from PCTL [8, 25] and
a generalisation of the reward operator Rr��x from [24].

An example of typical usage of the coalition operator is 〈〈{1,2}〉〉P≥0.5[ψ], which means
“players 1 and 2 have a strategy to ensure that the probability of path formula ψ being
satisfied is at least 0.5, regardless of the strategies of other players”. As path formulae, we
allow the standard temporal operators X (“next”), U≤k (“bounded until”) and U (“until”). As
usual, we can derive other common temporal operators such as Fφ ≡ �Uφ (“eventually”).

3.2 Rewards

Before presenting the semantics of rPATL, we discuss the reward operators in the logic. We
focus on the expected cumulative reward to reach a target, i.e. the expected sum of rewards
cumulated along a path until a state from a specified set T ⊆ S is reached. To cope with the
variety of different properties encountered in practice, we introduce three variants, which
differ in the way they handle the case where T is not reached. The three types are denoted
by the parameter �, one of 0, ∞ or c. These indicate that, when T is not reached, the reward
is zero, infinite or equal to the cumulated reward along the whole path, respectively.

The motivation for selecting these particular types of rewards stems from our experi-
ence of devising rPATL specifications for practical case studies (which we present later in
Sect. 5). Each reward type is applicable in different situations. If our goal is, for example, to
minimise the expected time for algorithm completion, then it is natural to assume a value of
infinity upon non-completion (� = ∞). Consider, on the other hand, the case where we try
to optimise a distributed algorithm by designing a reward structure that incentivises certain
kinds of behaviour and then maximising it over the lifetime of the algorithm’s execution.
In this case, we might opt for type � = 0 to avoid favouring situations where the algorithm
does not terminate. In other cases, e.g. when modelling algorithm’s resource consumption,
we might prefer to use type � = c, to compute resources used regardless of termination.

We formalise these notions of rewards by defining reward functions that map each pos-
sible path in the game G to a cumulative reward value.

Definition 3 (Reward Function) For an SMG G , a reward structure r , type � ∈ {0,∞, c}
and a set T ⊆ S of target states, the reward function rew(r, �, T ) : ΩG → R≥0 is a random
variable defined as follows. For λ ∈ ΩG :

rew(r, �, T )(λ)
def=

{
g(�) if ∀j ∈ N : stλ(j) /∈ T ,

∑k−1
j=0 r(stλ(j)) otherwise, where k = min{j | stλ(j) ∈ T },

and where g(�) = � if � ∈ {0,∞} and g(�) = ∑
j∈N

r(stλ(j)) if � = c. The expected reward
from a state s ∈ S of G under a strategy profile σ is the expected value of the reward function,
E

σ
G,s[rew(r, �, T )].

3.3 Semantics of rPATL

Now, we define the semantics of rPATL. Formulae are interpreted over states of a game

G ; we write s |= φ to indicate that state s of G satisfies the formula φ and define Sat(φ)
def=
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{s ∈ S | s |= φ} as the set of states satisfying φ. The meaning of atomic propositions and logi-
cal connectives is standard. For the 〈〈C〉〉P��q and 〈〈C〉〉Rr��x operators, we give the semantics
via a reduction to a two-player game called a coalition game.

Definition 4 (Coalition Game) For a coalition of players C ⊆ Π of SMG G , we de-
fine the coalition game of G induced by C as the stochastic two-player game GC =
〈{1,2}, S,A, (S ′

1, S
′
2),�,AP, χ〉 where S ′

1 = ⋃
i∈C Si and S ′

2 = ⋃
i∈Π\C Si .

Definition 5 (rPATL Semantics) The satisfaction relation |= for rPATL is defined induc-
tively for each state s of G , as follows:

s |= � always

s |= a ⇔ a ∈ χ(s)

s |= ¬φ ⇔ s �|= φ

s |= φ1 ∧ φ2 ⇔ s |= φ1 and s |= φ2

s |= 〈〈C〉〉P��q[ψ] ⇔ In coalition game GC,∃σ1 ∈ Σ1 such that ∀σ2 ∈ Σ2

Prσ1,σ2
GC,s (ψ) �� q

s |= 〈〈C〉〉Rr��x[F�φ] ⇔ In coalition game GC,∃σ1 ∈ Σ1 such that ∀σ2 ∈ Σ2

E
σ1,σ2
GC,s [rew(r, �,Sat(φ))] �� x

where Prσ1,σ2
GC,s (ψ)

def= Prσ1,σ2
GC,s ({λ ∈ ΩGC,s | λ |= ψ}) and for any path λ in ΩG :

λ |= Xφ ⇔ stλ(1) |= φ

λ |= φ1 U≤k φ2 ⇔ stλ(i) |= φ2 for some i ≤ k and stλ(j) |= φ1 for 0 ≤ j < i

λ |= φ1 Uφ2 ⇔ λ |= φ1 U≤k φ2 for some k ∈ N.

Example 2 Consider again the example SMG in Fig. 1. The rPATL formula 〈〈{1,3}〉〉P≥0.5[Ft]
is satisfied in states s0, s2 and s3, i.e. players 1 and 3 can ensure that the probability of reach-
ing t is at least 0.5, by both taking action b in their states. For example, from s0, the measure
of path s0bs2bs3(as3)

ω is 0.5, achieving the required bound. The formula 〈〈{1,2}〉〉P≥0.5[Ft],
on the other hand, is satisfied only in s3 because player 3 can always take action a in state
s2 ensuring that the t -labelled state s3 is never reached from any other state.

Let r be a reward structure that assigns i to state si , i.e. r(s0) = 0, r(s1) = 1, r(s2) = 2
and r(s3) = 3. rPATL formula 〈〈{1,3}〉〉Rr

≤2[F∞t] is true in states s2 (player 3 taking ac-
tion b, ensuring the expected cumulated reward is exactly 2) and s3 (expected reward is 0
by definition of F∞). Formula 〈〈{1}〉〉Rr≥q[F0t] is false in all states for any q > 0 because
players 2 and 3, by both taking action a, can guarantee that s3 is never reached from states
other than s3. However, 〈〈∅〉〉Rr≥q [Fct] is true in all states for any q > 0, because any set of
paths in the game which has positive measure also has infinite reward, i.e. the only path that
has finite reward is s0(as0)

ω , but the measure of this path is 0.

3.4 Equivalences and extensions

We can handle negated path formulae in a 〈〈C〉〉P��q operator by inverting the probability
threshold, e.g.:

〈〈C〉〉P≥q[¬ψ] ≡ 〈〈C〉〉P≤1−q[ψ].
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This allows us to derive, for example, the G (“globally”) and R (“release”) operators, using
the equivalences Gφ ≡ ¬(F¬φ) ≡ ¬(�U¬φ) and φ1 Rφ2 ≡ ¬(¬φ1 U¬φ2). This is done in
the same way as for PCTL [8, 25] (but, interestingly, cannot be done for ATL, as shown in
[29]).

In addition, from the determinacy result of [31] for zero-sum stochastic two-player games
with Borel measurable payoffs, it follows that, e.g.:

〈〈C〉〉P≥q[ψ] ≡ ¬〈〈Π \ C〉〉P<q[ψ]. (1)

It is also useful to consider “quantitative” versions of the 〈〈C〉〉P��q and 〈〈C〉〉Rr��x operators,
in the style of PRISM [28], which return numerical values. For the probabilistic operator,
we have:

〈〈C〉〉Pmin=?[ψ] def= Prmin,max
GC,s (ψ)

def= inf
σ1∈Σ1

sup
σ2∈Σ2

Prσ1,σ2
GC,s (ψ)

〈〈C〉〉Pmax=?[ψ] def= Prmax,min
GC,s (ψ)

def= sup
σ1∈Σ1

inf
σ2∈Σ2

Prσ1,σ2
GC,s (ψ)

and for the reward operator:

〈〈C〉〉Rr
min=?

[
F�φ

] def= E
min,max
GC,s

[
rew

(
r, �,Sat(φ)

)]

def= inf
σ1∈Σ1

sup
σ2∈Σ2

E
σ1,σ2
GC,s

[
rew

(
r, �,Sat(φ)

)]

〈〈C〉〉Rr
max=?

[
F�φ

] def= E
max,min
GC,s

[
rew

(
r, �,Sat(φ)

)]

def= sup
σ1∈Σ1

inf
σ2∈Σ2

E
σ1,σ2
GC,s

[
rew

(
r, �,Sat(φ)

)]
.

3.5 Reward-bounded properties and price-bounded coalitions

Next, we consider two extensions of rPATL which provide additional ways to reason about
bounded rewards and coalition prices.

Reward-bounded properties So far, rPATL’s reward-based operators only allow us to rea-
son about the existence of a coalition strategy to achieve a given bound on expected rewards.
These do not, however, rule out the possibility of paths in the game that accumulate arbi-
trarily large (or even infinite) rewards, which may be undesirable when modelling resource
consumption. Here, we take another view on the rewards by asking the question: does there
exist a strategy for the coalition to achieve a given rPATL property using bounded resources?
In particular, we extend the syntax of rPATL (see Definition 2) with the reward-bounded un-
til temporal operator φ1 Ur≤x φ2, where r is a reward structure, x ∈ Q≥0, and φ1 and φ2 are

rPATL state formulae. Satisfaction by a path λ is defined as:

λ |= φ1 Ur
≤x φ2 ⇔ there exists k ≥ 0 such that stλ(k) |= φ2, stλ(j) |= φ1 for

0 ≤ j < k and
k∑

i=0

r
(
stλ(i)

) ≤ x.

For example, rPATL formula 〈〈C〉〉P>0.9[�Ur
≤100 success] means that coalition C has a strat-

egy to guarantee that, with probability greater than 0.9, a state satisfying success is reached
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whilst consuming no more than 100 units of reward r . We will describe how to model check
such formulae in Sect. 4.4.

Price-bounded coalitions Next, we consider more general queries about the existence of
coalition strategies. In addition to asking whether there exists a strategy for a given coalition
to ensure that a specified probability or reward bound is met, it is also natural to ask whether
there exists a coalition of a certain size, for example, that has such a strategy. To formulate
queries of this kind, we assume that each player i ∈ Π has a prescribed non-negative price
p(i), and we define the price of a coalition C ⊆ Π to be the sum of the prices of its players.
We then extend the syntax of rPATL to allow the following price-bounded state formulae:

〈〈?〉〉≤y P��q[ψ] and 〈〈?〉〉≤y Rr
��x

[
F�φ

]

where y ∈ Q≥0 and the other parameters are as in Definition 2. Intuitively, these formulae are
true if there is a coalition whose price is at most y and which can ensure that the probability
or expected reward satisfies the given bound. Formally, for a state s ∈ S, the semantics is
defined as:

s |= 〈〈?〉〉≤y P��q[ψ] ⇔ ∃C :
∑

i∈C

p(i) ≤ y and s |= 〈〈C〉〉P��q[ψ]

s |= 〈〈?〉〉≤y Rr
��x

[
F�φ

] ⇔ ∃C :
∑

i∈C

p(i) ≤ y and s |= 〈〈C〉〉Rr
��x

[
F�φ

]

We will consider model checking for these formulae in Sect. 4.4.

3.6 rPATL∗

Finally, in this section, we discuss the logic rPATL∗, which extends rPATL in the same way
that PCTL∗ extends PCTL [8]. In particular, this allows LTL formulae to be provided as
path formulae within the 〈〈C〉〉P operator. The syntax of rPATL∗ is given by the following
grammar:

φ ::= � | a | ¬φ | φ ∧ φ | 〈〈C〉〉P��q[ψ] | 〈〈C〉〉Rr
��x

[
F�φ

]

ψ ::= φ | ¬ψ | ψ ∧ ψ | Xψ | ψUψ

where a ∈ AP, C ⊆ Π , ��∈ {<,≤,≥,>}, q ∈ Q ∩ [0,1], x ∈ Q≥0, r is a reward structure
and � ∈ {0,∞, c}. Note that, for simplicity, we omit here the bounded variant of the until
operator.

The semantics for state formulae are the same as for rPATL. The semantics for path
formulae are as follows. For path λ ∈ ΩG :

λ |= φ ⇔ stλ(0) |= φ

λ |= ¬ψ ⇔ λ �|= ψ

λ |= ψ1 ∧ ψ2 ⇔ λ |= ψ1 and λ |= ψ2

λ |= Xψ ⇔ λ1 |= ψ

λ |= ψ1Uψ2 ⇔ λi |= ψ2 for some i ∈ N and λj |= ψ1 for 0 ≤ j < i.

Examples of rPATL∗ formulae include:

– 〈〈{1,3}〉〉P≥1[GFrecharge]—players 1 and 3 have a strategy to make sure that a “recharge”
state is visited infinitely often with probability 1;
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– 〈〈{4}〉〉P>0.5[(Gsafe) ∧ (FGsuccess)]—player 4 has a strategy such that, with probability
greater than 0.5, the system ends up and remains in “success” states, while only visiting
“safe” states, for any strategies of the other players.

We will describe model checking for rPATL∗ in Sect. 4.5.

4 Model checking for rPATL

We now discuss model checking for rPATL, the key part of which is computation of proba-
bilities and expected rewards for stochastic two-player games. The complexity of the rPATL
model checking problem can be stated as follows.

Theorem 1 (a) Model checking an rPATL formula with no 〈〈C〉〉Rr��x[F0φ] operator and
where k for the temporal operator U≤k is given in unary is in NP ∩ CONP. (b) Model check-
ing an arbitrary rPATL formula is in NEXP ∩ CONEXP.

We give a proof of Theorem 1 in Appendix C. Note that our problem is at least as hard
as solving simple stochastic two-player games, which is known to be in NP ∩ CONP [19]
and for which the existence of polynomial time algorithms is a long-standing open prob-
lem. Nevertheless, we present efficient and practically usable algorithms for model check-
ing rPATL, in which computation of numerical values is done by evaluating fixpoints up to
a desired level of convergence (in the style of well-known value iteration algorithms [19]).
In fact, this is the usual approach taken in probabilistic verification tools for simpler classes
of models such as Markov chains and Markov decision processes.

It is possible to establish some complexity results for value iteration. For example, it was
shown in [19] that it can be decided precisely whether the values being computed exceed
a given threshold after a sufficiently large number of iterations. However, the best known
lower bound on the number of iterations is exponential in the size of the game. A detailed
discussion of the number of iterations needed to obtain a given precision can also be found in
[13]. In practice, in our implementation, we decide when to terminate fixpoint computations
based on a simple test of numerical convergence. We discuss this in more detail in Sect. 5.1.

4.1 The Basic Model Checking Algorithm

The basic algorithm for model checking an rPATL formula φ on an SMG G proceeds as for
other branching-time logics, determining the set Sat(φ) recursively. Furthermore, as can be
seen from the semantics, computing this set for atomic propositions or logical connectives
is trivial. Thus, we only consider the 〈〈C〉〉P��q and 〈〈C〉〉Rr��x operators. Model checking of
these reduces to computation of optimal probabilities or expected rewards, respectively, on
the coalition game GC . For example, if � ∈ {≥,>}, then:

s |= 〈〈C〉〉P�q[ψ] ⇔ Prmax,min
GC,s (ψ) � q

s |= 〈〈C〉〉Rr�x[F�φ] ⇔ E
max,min
GC,s

[
rew

(
r, �,Sat(φ)

)] � x.

Analogously, for operators ≤ and <, we simply swap min and max in the above. The fol-
lowing sections describe how to compute probabilities (Prmax,min

GC,s (ψ)) and expected rewards

(Emax,min
GC,s [rew(r, �,Sat(φ))]) for the coalition game GC .
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4.2 Computing probabilities

Below, we show how to compute the probabilities Prmax,min
GC,s (ψ) where ψ is each of the tem-

poral operators X, U≤k and U. We omit the dual case since, thanks to determinacy (see (1)),
we have that Prmin,max

GC,s (ψ) = Prmax,min
GΠ\C,s (ψ). The following results follow in near identical

fashion to the corresponding statements for Markov decision processes [6]. We let opts de-
note either max or min, depending on whether state s of GC is controlled by player 1 or 2:

opts =
{

max if s ∈ S1

min if s ∈ S2.

Then, for the X operator and state s ∈ S:

Prmax,min
GC,s (Xφ) = optsa∈A(s)

∑

s′∈Sat(φ)

�(s, a)
(
s ′).

Probabilities for the U≤k operator can be computed recursively. We have that
Prmax,min

GC,s (φ1 U≤k φ2) is equal to: 1 if s ∈ Sat(φ2); 0 if s /∈ (Sat(φ1) ∪ Sat(φ2)); 0 if k = 0
and s ∈ Sat(φ1)\Sat(φ2); and otherwise:

Prmax,min
GC,s

(
φ1 U≤k φ2

) = optsa∈A(s)

∑

s′∈S

�(s, a)
(
s ′) · Prmax,min

GC,s′
(
φ1 U≤k−1 φ2

)
.

The unbounded case can be computed via value iteration [19], i.e. using:

Prmax,min
GC,s (φ1 Uφ2) = lim

k→∞
Prmax,min

GC,s

(
φ1 U≤k φ2

)
.

In practice, this computation is terminated with a suitable convergence check (see Sect. 5.1).
In addition, we mention that, for the case Fφ ≡ �Uφ, the computation can also be reduced
to quadratic programming [23].

4.3 Computing rewards

Now, we discuss computation for the expected reward operators. We remark that, although
phrased here in terms of rPATL model checking for SMGs, the techniques presented have
general applicability for stochastic two-player games.

We show how to compute the optimal values E
max,min
GC,s [rew(r, �,Sat(φ))] for all three types

� ∈ {0,∞, c}. As above, we omit the dual case where max and min are swapped. In this
section, we fix a coalition game GC , a reward structure r , and a target set T = Sat(φ). We
first make the following modifications to GC :

– fresh atomic propositions t and arew are added to target and positive reward states: AP :=
AP ∪ {t, arew}, ∀s ∈ T : χ(s) := χ(s) ∪ {t} and ∀s ∈ S. r(s) > 0 : χ(s) := χ(s) ∪ {arew};

– target states are made absorbing: ∀s ∈ T : A(s) := {a},�(s, a)(s) = 1, r(s) = 0.

Our algorithms, like the ones for similar properties on simpler models [6], rely on computing
fixpoints of certain sets of equations. As in the previous section, we assume that this is done
by value iteration with an appropriate convergence criterion. As above, we let opts denote
max if s ∈ S1 and min if s ∈ S2.
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An important observation here is that optimal expected rewards for � ∈ {∞, c} can be
achieved by memoryless, deterministic strategies (see Appendix A.2). For � = 0, however,
finite-memory strategies are needed (see Appendix A.1).

4.3.1 The case � = c

First, we use the results of [22] to identify the states from which the expected reward is
infinite:

I := {
s ∈ S | ∃σ1∈Σ1 ∀σ2∈Σ2 Prσ1,σ2

GC,s

(
inf (arew)

)
> 0

}

where inf (arew) is the set of all paths that visit a state satisfying arew infinitely often. The
states in I are assigned infinite reward. To compute values for the remaining states, we
remove the states in I from GC before continuing. We then compute the least fixpoint of the
following equations:

f (s) =
{

0 if s ∈ T

r(s) + optsa∈A(s)

∑
s′∈S �(s, a)(s ′) · f (s ′) otherwise

(2)

and let E
max,min
GC,s [rew(r, c, T )] = f (s). For a proof of correctness of the procedure, see Ap-

pendix B.1.

4.3.2 The case � = ∞

Again, we start by identifying and removing states with infinite expected reward; in this
case: I := {s ∈ S | s |= 〈〈{1}〉〉P<1[Ft]}. Then, for all other states s, we compute the greatest
fixpoint, over R, of (2). The need for the greatest fixpoint arises because, in the presence
of zero-reward cycles, multiple fixpoints may exist. For the previous case (� = c), a least
fixpoint of (2) gives the correct solution for such cases; here, the reward should be infinite.
The computation is over R since, e.g., the function mapping all non-target states to ∞ may
also be a fixpoint, which is not the one we are interested in.

To find the greatest fixpoint over R, we first compute an over-approximation by changing
all zero rewards to any ε > 0 and then evaluating the least fixpoint of (2) for the modified
reward. Starting from the new initial values, value iteration now converges from above to
the correct fixpoint (for a proof, see Appendix B.2). For the simpler case of Markov deci-
sion processes, an alternative approach based on removal of zero-reward end-components is
possible [21], but this cannot be adapted efficiently to stochastic games.

4.3.3 The case � = 0

As mentioned above, it does not suffice to consider memoryless strategies in this case.
The optimal strategy may depend on the reward accumulated so far, which we denote as

r(λ)
def= ∑

s∈stλ
r(s) for history λ. However, this is only needed until a certain reward bound

B is reached, after which the optimal strategy picks actions that maximise the probability
of reaching T (if multiple such actions exist, it picks the one with the highest expected re-
ward). The bound B can be computed efficiently using algorithms for � = c and Prmax,min

GC,s (ψ)

and, in the worst case, can be exponential in the size of G and the reward structure r (see
Appendix B.3).
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For clarity, we assume that rewards are integers.1 Let R(s,k) be the maximum expectation
of rew(r,0, T ) in state s after history λ with r(λ) = k:

R(s,k)
def= max

σ1∈Σ1
min

σ2∈Σ2

[
k · Prσ1,σ2

GC,s (Ft) + E
σ1,σ2
GC,s

[
rew(r,0, T )

]]
,

and rmax = maxs∈S r(s). The algorithm works as follows:

1. Using the results of [22], identify the states that have infinite reward:

I := {
s ∈ S | ∃σ1∈Σ1 ∀σ2∈Σ2 Prσ1,σ2

GC,s

(
inf t (arew)

)
> 0

}

where inf t (arew) is the set of all paths that visit a state satisfying P>0[Ft] ∧ arew infinitely
often. Then, assign infinite reward to states in I and remove them from the game.

2. For B ≤ k ≤ B + rmax − 1 and for each state s:
(a) Assign new reward r ′(s) = r(s) · Prmax,min

GC,s (Ft);

(b) Remove from A(s) actions a that are sub-optimal for Prmax,min
GC,s (Ft), i.e.:

∑

s′∈S

�(s, a)
(
s ′) · Prmax,min

GC,s′ (Ft) < Prmax,min
GC,s (Ft);

(c) Compute R(s,k) using the algorithm for rew(r ′, c, T ):

R(s,k) = k · Prmax,min
GC,s (Ft) + E

max,min
GC,s

[
rew

(
r ′, c, T

)]
.

3. Find, for all 0 ≤ k < B and states s, the least fixpoint of the equations:

R(s,k) =
{

k if s ∈ T

optsa∈A(s)

∑
s′∈S �(s, a)(s ′) · R(s′,k+r(s)) otherwise.

4. The required values are then E
max,min
GC,s [rew(r,0, T )] = R(s,0).

For a proof of correctness of the procedure, see Appendix B.3.

4.4 Reward-bounded properties and price-bounded coalitions

Next, we consider the problem of model checking the reward- and price-bounded rPATL
formulae presented in Sect. 3.5.

Reward bounded properties In a similar fashion to the bounded until operator (see
Sect. 4.2), probabilities for the φ1 Ur≤x φ2 operator can be computed recursively. We have that

Prmax,min
GC,s (φ1Ur≤xφ2) is equal to: 1 if s ∈ Sat(φ2); 0 if s /∈ (Sat(φ1) ∪ Sat(φ2)); 0 if x < r(s)

and s ∈ Sat(φ1)\Sat(φ2); and otherwise:

Prmax,min
GC,s

(
φ1 Ur

≤x φ2

) = optsa∈A(s)

∑

s′∈S

�(s, a)
(
s ′) · Prmax,min

GC,s′
(
φ1 Ur

≤x−r(s) φ2

)
.

1Rational values can be handled by re-scaling all rewards by the lowest common multiple of the denominators
of rewards appearing in the game. Note that re-scaling does not increase the size of the model, so the stated
complexity results are not affected.
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Note that model checking a reward-bounded until operator is equivalent to model-checking
an unbounded until operator on an extended model that encodes the accummulated reward
in its state. As in Sect. 4.3.3 above, we can assume that rewards in the model and the reward
bound r are all integer values (to treat rational values, we re-scale by the lowest common
multiple of their denominators). The state space of the extended model remains finite since
rewards never need to exceed the bound r . A similar approach is taken in [4] for bounded-
reward model-checking on the simpler model of discrete-time Markov chains.

Price-bounded coalitions It follows from results for ATL [9] that the model checking prob-
lem for rPATL extended with formulae of the form 〈〈?〉〉≤y P��q[ψ] is NP-hard. We argue that
the problem lies within the class PNP of the polynomial hierarchy if the logic is extended
with formulae 〈〈?〉〉≤y P��q[ψ] and 〈〈?〉〉≤yRr��x[F�φ], but there are no formulae of the form
〈〈C〉〉Rr��x[F0φ] or 〈〈?〉〉≤y Rr��x[F0φ].

To see this, it suffices to realise that verifying any formula containing only one temporal
operator (without 〈〈C〉〉Rr��x[F0φ]) is in NP, because there is a polynomial witness compris-
ing the optimal coalition together with a winning strategy of all coalition players. Hence, for
a formula containing multiple temporal operators, we can run the model checking algorithm
described earlier, where we compute the set Sat(φ) using the NP oracle. For the case where
the logic contains all operators, including 〈〈C〉〉Rr��x[F0φ] and 〈〈?〉〉≤y Rr��x[F0φ], the problem
is in NEXP ∩ CONEXP. In this case, we can reuse the idea of the proof of Theorem 1 (see
Appendix C) by showing that there is an exponential size certificate. We give the proof in
Appendix D.

4.5 Model checking for rPATL∗

Finally, in this section, we discuss model checking for the extended logic rPATL∗ introduced
in Sect. 3.6. This can be done in a similar fashion to the logic PCTL∗ for Markov decision
processes [8]. Model checking for an rPATL∗ formula φ can be performed as follows. Let
φ1, φ2, . . . , φn be a sequence of all (state) subformulae of φ, partially ordered by subsump-
tion and where φn = φ. We compute Sat(φi) for each subformula φi in turn, starting from φ1.
If ψi is an rPATL formula, then we apply the rPATL model checking algorithm described
above. Otherwise, it must be of the form 〈〈C〉〉P��q[ψ], where ψ is an LTL formula.

For the latter case, we need to compute the optimal probabilities of satisfying LTL for-
mula ψ for all states of the coalition game GC and then compare these values with the
bound q . Computing probabilities can be done in the following (standard) way. First, we
translate ψ into a deterministic parity automaton with O(22|ψ |

) states and O(2|ψ |) indices.
Then, we build the product of the game GC and the deterministic parity automaton, resulting
in a stochastic two player zero-sum game with parity winning conditions. From the results

of [15], we can compute the optimal value in O((|GC | · 22|ψ |
)2|ψ |

) = O(|GC |2|ψ | · 222|ψ |
) time,

which entails that model checking ψ can be done in 2EXPTIME. Hence, model checking
rPATL∗ is 2EXPTIME-complete (where the lower bound follows from the fact that model
checking LTL formulae for Markov decision processes is 2EXPTIME-hard [20]).

5 Implementation and case studies

Based on the techniques in this paper, we have built a probabilistic model checker for
stochastic multi-player games, called PRISM-games,2 which is an extension of the PRISM

2The tool is currently available from: http://www.prismmodelchecker.org/games/.

http://www.prismmodelchecker.org/games/
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tool [28]. For modelling of SMGs, we have adapted the PRISM modelling language.
This allows multiple parallel components (called modules), which can either operate asyn-
chronously or by synchronising over common action labels. Now, a model also includes a
set of players, each of which controls transitions for a disjoint subset of the modules and/or
action labels. Essentially, we retain the existing PRISM language semantics (for Markov
decision processes), but, in every state, each nondeterministic choice belongs to one player.
For the current work, we detect and disallow the possibility of concurrent decisions between
players.

Our tool constructs an SMG from a model description and then executes the algorithms
from Sect. 4 to check rPATL formulae. Currently, we have developed an explicit-state model
checking implementation, which we show to be efficient and scalable for various large mod-
els. It would also be relatively straightforward to adapt PRISM’s symbolic model checking
engines for our purpose, if required.

5.1 Experimental results

We have applied our tool to the analysis of four large case studies:

– mdsm: microgrid demand-side management;
– cdmsn: collective decision making for sensor networks;
– investor: the futures market investor example of [32];
– team-form: the team formation protocol of [17].

The first two of these case studies were developed solely for this work; the other two have
been adapted from existing models.3 Experimental results from the two new case studies
are described in detail in the following sections. First, we show some statistics regarding
the performance of our tool on a representative sample of models from the four case stud-
ies.

Table 1 shows model statistics (number of players, states and transitions) for three
SMGs taken from each case study. It also gives the execution time for model check-
ing a sample property on each one, divided into the time for model construction (build-
ing an SMG from its high-level modelling language description) and for executing the
model checking algorithms of Sect. 4. Experiments were run on a 2.80 GHz PC with
32 GB RAM. Our aim here is not to provide a detailed analysis of the time required
to model check different classes of rPATL formulae, but simply to give an indication
of the scalability and efficiency of our algorithms and their implementation in PRISM-
games.

We also briefly discuss how the performance of our model checking algorithms is af-
fected by the speed of convergence of the underlying numerical computation methods. As
mentioned in Sect. 4 above, our algorithms are mostly based on the evaluation of numerical
fixpoints, termination of which is decided using a simple convergence test. More precisely,
if Xk

s denotes the value computed for a state s in iteration k and ε represents a pre-specified
convergence threshold, we terminate the computation when the maximum difference be-
tween values for successive iterations falls below ε, i.e. when:

max
s∈S

∣
∣Xk

s − Xk−1
s

∣
∣ < ε

3Models and properties are at: http://www.prismmodelchecker.org/files/fmsd-smg/.

http://www.prismmodelchecker.org/files/fmsd-smg/
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Table 1 Performance statistics for a representative set of models

Case study
[parameters]

SMG statistics Model checking

Players States Transitions Property type Constr. (s) Check (s)

mdsm [N ] 5 5 743,904 2,145,120 〈〈C〉〉Rr
max=?[F∞φ] 14.5 61.9

6 6 2,384,369 7,260,756 55.0 221.7

7 7 6,241,312 19,678,246 210.7 1,054.8

cdmsn [N ] 3 3 1,240 6,240 〈〈C〉〉P��q [F≤kφ] 0.2 0.2

4 4 11,645 73,948 0.8 0.8

5 5 100,032 760,430 3.2 6.4

investor [vmax] 10 2 10,868 34,264 〈〈C〉〉Rr
min=?[Fcφ] 1.4 0.7

100 2 750,893 2,474,254 9.8 121.8

200 2 2,931,643 9,688,354 45.9 820.8

team-form [N ] 3 3 12,475 15,228 〈〈C〉〉Pmax=?[Fφ] 0.8 0.2

4 4 96,665 116,464 1.6 0.9

5 5 907,993 1,084,752 13.6 11.2

Fig. 2 Performance of
numerical computation
algorithms (number of iterations)
for varying convergence
thresholds ε

Figure 2 illustrates, for several of the models from Table 1, how the total number of iterations
of numerical computation required varies for different values of the convergence threshold ε.
For the cdmsn example, we check a property of the form 〈〈C〉〉P��q[Fφ] since the bounded
property in Table 1 always requires exactly k iterations. We omit results for the team-form
example since the corresponding SMGs do not contain cycles, meaning that varying ε has
no effect. From the plots in Fig. 2, a consistent pattern emerges: after (in some cases) initial
irregularity for large values of ε, values of ε = 10−n for increasing values of n result in only
a linear increase in the number of iterations required.
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Fig. 3 MDSM energy demand
curve from [26] and its piecewise
approximation

5.2 MDSM: microgrid demand-side management

Microgrid is an increasingly popular model for the future energy markets where neighbour-
hoods use electricity generation from local sources (e.g. wind/solar power) to satisfy local
demand. The success of microgrids is highly dependent on demand-side management: active
management of demand by users to avoid peaks. Thus, the infrastructure has to incentivise
co-operation and discourage abuse in an environment which is highly decentralised and
gives a high degree of control to users. Such systems are usually analysed using simulation
studies, but these approaches can fail to uncover important features or weaknesses of the
models. In this case study, we use rPATL model checking to analyse the MDSM infrastruc-
ture of [26] and identify an important incentive-related weakness.

The algorithm The system in [26] consists of N households connected to a single dis-
tribution manager (DM). At every time-step, the DM randomly contacts a household for
submission of a load for execution. Each load has an energy cost that is required for its exe-
cution. The probability of it generating a load is determined by a daily demand curve from
[26] (see Fig. 3). The duration of a load is random, between 1 and D time-steps. The cost of
executing a load for a single step is the number of tasks currently running. Hence, the total
cost increases quadratically with households executing more loads in a single step.

Each household follows a very simple algorithm, the essence of which is that, when it
generates a load, if the cost is below an agreed limit clim, it executes it, and otherwise it only
does so with a pre-agreed probability Pstart. In [26], the value for each household in a time-

step is measured by V = loads executing
cost of execution and it is shown (through simulations) that, provided

every household sticks to this algorithm, the peak demand and the total cost of energy are
reduced significantly while still providing a good (expected) value V for each household.

Modelling and analysis We modelled the system as an SMG with N players, one per
household. We vary N ∈ {2, . . . ,7} (the size of the underlying SMG model is exponential
in N and so we are unable to analyse systems with more than 7 households) and fix D = 4
and clim = 1.5. We analyse a period of 3 days, each consisting of 16 time-steps (using a
piecewise approximation of the daily demand curve, shown in Fig. 3). First, as a benchmark,
we assume that all households follow the algorithm of [26]. We define a reward structure ri
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Fig. 4 Expected value per household for MDSM. The bold line shows all households following the algorithm
of [26]; the dotted line shows the case without DSM. Horizontal dashes show deviations by collaborations of
increasing size (shortest dash: individual deviation; longest dash: deviation of all households)

for the value V for household i at each step, and let rC = ∑
i∈C ri be the total reward for a

set of households C. To compute the expected value per household, we use the rPATL query:

1

|C| 〈〈C〉〉RrC
max=?

[
F0 time = max_time

]

Initially, we fix C to be the set Π of all N players (households). We use this to determine
the optimal value of Pstart achievable by a memoryless strategy for each player, which we
will then fix. These results are shown by the bold lines in Fig. 4. We also plot (as a dotted
line) the values obtained if no demand-side management is applied.

Next, we consider the situation where the set of households C is allowed to deviate
from the pre-agreed strategy, by choosing to ignore the limit clim if they wish. We check
the same rPATL query as above, but now varying C to be coalitions of different sizes,
C ∈ {{1}, {1,2}, . . . ,Π}. The resulting values are also plotted in Fig. 4(a), shown as hori-
zontal dashes of width proportional to |C|: the shortest dash represents individual deviation,
the longest is a collaboration of all households. The former shows the maximum value that
can be achieved by following the optimal collaborative strategy, and in itself presents a
benchmark for the performance of the original algorithm. The key result is that deviations
by individuals or small coalitions guarantee a better expected value for the households than
any larger collaboration: a highly undesired weakness for an MDSM system.

Fixing the algorithm We propose a simple punishment mechanism that addresses the prob-
lem: we allow the DM to cancel one job per step if the cost exceeds clim. The intuition is that,
if a household is constantly abusing the system, its job could be cancelled. Results for the
same set of rPATL queries on a revised model that incorporates the punishment mechanism
are shown in Fig. 4(b). We see that the modification of the algorithm inverts the incentives.
The best option now is full collaboration and small coalitions who deviate cannot guarantee
better expected values any more.

5.3 CDMSN: collective decision making for sensor networks

Sensor networks comprise a set of low-power, autonomous devices which must act collabo-
ratively in order to achieve a particular goal. Strategic analysis of such systems can help to
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establish performance boundaries (e.g., find the best value achievable by the sensor network
assuming full collaboration) and analyse performability (e.g., look at the performance of
the system in the presence of failure or unexpected behaviour of some nodes). In this case
study, we illustrate the use of rPATL model checking to aid the analysis and design of such
systems by studying a distributed consensus algorithm for sensor networks [33].

The algorithm There are N sensors deployed in an environment having a set of targets
K = {k1, k2, . . . }, each with quality Qkj

∈ [0,1]. The goal is for the sensors to agree on a
target with maximum Qkj

. Each sensor i stores a preferred target pi ∈ K , its quality Qpi

and an integer li ∈ {1, . . . ,L} to represent confidence in the preference. The algorithm has
the following non-linearity parameters:

– η, which affects the relative perceived quality of targets when a sensor is comparing one
to the other;

– λ, which affects the relative perceived quality of targets when two sensors are comparing
their preferred targets;

– γ , which affects the relative weight of the confidence level when two sensors are compar-
ing their preferred targets.

A sensor has three actions: sleep, explore and communicate. As proposed by [33], each sen-
sor repeatedly sleeps for a random time t and then either explores (with probability Pexp)
or communicates. For the explore action, sensor i picks a target k ∈ K uniformly at random
and with probability Pk = Q

η

k/(Q
η

k + Qη
pi

) switches its preference (pi ) to k and resets con-
fidence to 1. To communicate, it compares its preference with that of a random sensor j . If
they agree, both confidences are increased. If not, with probability

Ps =
Qλ

pj
l
γ

j

Qλ
pj

l
γ

j + Qλ
pi

l
γ

i

,

sensor i switches preference to pj , resets confidence to 1 and increases sensor j ’s confi-
dence; with probability 1−Ps, the roles of sensors i and j are swapped, i.e. sensor j switches
preference to pi , resets confidence to 1 and increases sensor i’s confidence.

The purpose of the system is to locate and agree upon the target having the best quality
by striking a balance between exploration of the environment (i.e., sensing) and commu-
nication with other sensors. Intuitively, a ‘good’ strategy for sensors should be to actively
communicate when they believe they have found the best quality target and to explore oth-
erwise. An example of an antagonistic strategy could be one which actively communicates
to advertise a low quality target, thus not only polluting the system with false information,
but also draining the resources of the sensor network.

Modelling and analysis We have modelled the system as an SMG with N players, one per
sensor. We consider models with N = 3,4,5, three targets K = {k1, k2, k3} with qualities
Qk1 = 1, Qk2 = 0.5, Qk3 = 0.25 and two confidence levels li ∈ {1,2}. As in [33], we assume
a random scheduling and fix parameters η = 1 and λ = 1. In [33], two key properties of the
algorithm are studied: speed of convergence and robustness. We use our rPATL framework
to evaluate both of these and explore alternative strategies for sensors (i.e. allowing sensors
to execute any action when active). We also assume that only a subset C of the sensors are
under our control, e.g. because the others are faulty. We use rPATL queries (with coalition C)
to optimise performance, under the worst-case assumption about the other sensors.
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Fig. 5 Expected running time until the selection of the best quality target for different models and increasing
sizes of coalition C. Dotted lines show optimal performance that can be achieved using the original algorithm
from [33]

First, we study the speed of convergence and the influence of parameter γ upon it. In [33],
it is shown that increasing γ improves the speed of convergence to a decision and stability
of it. Figure 5 shows the expected running time to reach the best decision (i.e. select k1) for
various values of γ and sizes of the coalition C. We use the reward structure: r(s) = 1 for
all s ∈ S and rPATL query:

〈〈C〉〉Rr
min=?

[

F∞
|Π |∧

i=1

pi = k1

]

,

where C ∈ {{1}, {1,2}, . . . ,Π}. Figure 5 also shows the performance of the original algo-
rithm [33] (line ‘det’). We make several important observations. First, if we lose control of
a few sensors (e.g. because a fault occurs), we can still guarantee a good convergence time,
indicating the fault tolerance potential of the system. On the other hand, the original version
performs almost as well as the optimal case for large coalitions.

Secondly, we consider robustness: the ability of the coalition C to recover from a ‘bad’

state (i.e.
∧|Π |

i=1 pi = k3) to a ‘good’ state in n steps; this can be specified by rPATL formula

〈〈C〉〉Pmax=?[F≤nφgood], where φgood represents ‘good’ states. Below, we give two interpreta-
tions of a ‘good’ state and show that the results for them are quite different. Note that the
formulae below characterise a strategy for coalition C that consists of two parts: first, the
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Fig. 6 Minimum probability to recover from a state where all sensors prefer the lowest quality target, k3,
within n steps for different coalition sizes. Graphs (a) and (b) show results for two types of recovery state
(see captions), with γ = 2

strategy from the outer 〈〈C〉〉 recovers to a ‘good’ state; and second, once the ‘good’ state is
reached, the strategy of the coalition switches to the one defined by the inner 〈〈C〉〉 operator.

(1) For a ‘good’ state, there exists a strategy for coalition C to make all sensors, with prob-
ability > 0.9, select k1 within 10 steps. So robustness in rPATL is:

〈〈C〉〉Pmax=?

[

F≤n〈〈C〉〉P>0.9

[

F≤10
|Π |∧

i=1

pi = k1

]]

.

(2) For a ‘good’ state, there exists a strategy for coalition C to make all sensors select
k1 while using less than 0.5 mJ of energy. We use a reward structure rC representing
energy usage by sensors in C: power consumption is 10 mW for each communication
and 1 mW for each exploration, and each activity takes 0.1 s. Then, robustness in rPATL
is:

〈〈C〉〉Pmax=?

[

F≤n〈〈C〉〉RrC
<50

[

Fc

|Π |∧

i=1

pi = k1

]]

.

Figure 6 shows, for each definition and for a range of values of n, the worst-case (minimum)
value for the rPATL query from all possible ‘bad states’. For (1), the results are intuitive:
the larger the coalition, the faster it recovers. For (2), however, the one-sensor coalition
outperforms all others. Also, we see that, in the early stages of recovery, 2-sensor coalitions
outperform larger ones. This shows that small coalitions can be more resource efficient in
achieving certain goals.

Note that the performance results detailed here are in a complete-information setting,
which implicitly assumes that the members of the coalition (i.e., non-faulty sensors) have
knowledge of which sensors are faulty and can adjust their behaviour accordingly, and there-
fore the values provided by our analysis are upper bounds on the performance that can be
achieved.
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6 Conclusions

We have designed and implemented a framework for automatic verification of systems with
both probabilistic and competitive behaviour, based on stochastic multi-player games. We
proposed a new temporal logic rPATL, designed model checking algorithms, implemented
them in a tool and then used our techniques to identify unexpected behaviour in several large
case studies.

There are many interesting directions for future work in this area. Firstly, we plan to fur-
ther develop our probabilistic model checker PRISM-games, including synthesis of strate-
gies for rPATL and analysis of wider classes of properties for SMGs (e.g., reward operators
dealing with limit averages and discounted sums). Secondly, we would like to investigate
extensions of our techniques to incorporate partial-information strategies or more complex
solution concepts such as Nash, subgame-perfect or secure equilibria. We would also like to
explore the applicability of our work as an underlying solution framework for more complex
analysis of multi-agent systems.
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Appendix: Proofs

This appendix contains proofs for the results stated in the text. We begin by stating some
known results that we will require later.

Theorem 2 [6, 12] The following statements hold:

1. Memoryless deterministic strategies suffice for achieving minimum/maximum values in
a state for extended reachability, Büchi, and coBüchi objectives in stochastic two-player
zero-sum games.

2. Finding minimum/maximum values in a state for Markov decision processes (MDPs) for
extended reachability, Büchi, and coBüchi objectives can be done in polynomial time.

Appendix A: Proofs for optimality of expected rewards

A.1 Finite-memory strategies for � = 0

We first show that finite-memory strategies are required for optimality of expected rewards
of type � = 0, i.e. for optimal values of E

max,min
GC,s [rew(r,0, T )]. Later, in the proof of Lemma 3

we show that the finite memory is indeed sufficient. Let us consider the following example:
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The target set is T = {s1} and the reward structure r assigns 1 to s0 and 0 to the other states.
We analyse the optimal value of rew(r,0, T ) in s0. Let σ be a memoryless strategy that in s0

picks a with probability x and b with probability 1 − x. The reward obtained is then:

∞∑

i=1

i · 0.9i−1 · (1 − x)i−1 · x

= x

(0.9 − 0.9 · x)
·

∞∑

i=1

i · (0.9 − 0.9 · x)i

= x

(0.9 − 0.9 · x)
· (0.9 − 0.9 · x)

(1 − (0.9 − 0.9 · x))2

= x

(0.1 + 0.9 · x)2

which, for any x, is lower than 25
9 .

Now consider the strategy σ ′ that is deterministic, and picks b on the first 8 visits to s0

and then a on the 9th visit. The value under this strategy is:

9 · 0.98 ≈ 3.8 >
25

9

Remark An optimal (memoryless deterministic) strategy in s0 for both � = ∞ and � = c is
to take the action b and thus achieve values ∞ and 10, respectively.

A.2 Memoryless strategies for � = {∞, c}
Secondly, we prove that memoryless (deterministic) strategies suffice for optimality of the
expected reward E

max,min
GC,s [rew(r, �, T )] for types � = {∞, c}.

If the expected value is infinite, then memoryless deterministic strategies suffice by Theo-
rem 2 because this cases reduces to the problem of reaching a state where the expected value
is infinite with positive probability. The states s ∈ T get value 0 by definition. Otherwise,
the values E

max,min
GC,s [rew(r, �, T )] satisfy:

E
max,min
GC,s

[
rew(r, �, T )

] = r(s) + optsa∈A(s)

∑

s′∈S

�(s, a)
(
s ′) · E

max,min
GC,s′

[
rew(r, �, T )

]
(3)

Let Aopt(s) be the set of actions that realise the optimum in s, where opt is max or min, for
players 1 and 2, respectively; similarly opts is max if s ∈ S1 and min if s ∈ S2.

We first analyse the case � = ∞. Any strategy σ∞
1 ∈ Σ1 that in s picks the action from

Aopt(s) is optimal. For player 2, any strategy σ∞
2 ∈ Σ2 is optimal if it picks the action from

Aopt(s) in s such that T is reached almost surely under any counter-strategy for player 1.
Next, assume � = c and let T0 = {s | E

max,min
GC,s [rew(r, c, T )] = 0}. To optimise rew(r, c, T ),

we fix σ c
1 ∈ Σ1 that uses an action Aopt(s) in s and ensures that T0 is reached almost surely.

For player 2, any strategy σ c
2 ∈ Σ2 is optimal if it picks an action from Aopt(s) in s.

Proof of correctness of definitions of strategies Given a state s and a strategy σ1 for
player 1, we denote:

errσ1(s) = minσ2∈Σ2 E
σ1,σ2
GC,s [rew(r, �, T )]

E
max,min
GC,s

[
rew(r, �, T )

]
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where we assume errσ1(s) = 1 if the denominator is 0. Observe that we have errσ1(s) ·
E

max,min
GC,s [rew(r, �, T )] = minσ2∈Σ2 E

σ1,σ2
GC,s [rew(r, �, T )].

Let � = c. We prove that the maximiser’s strategy σ = σ c
1 defined above is optimal.

Assume, for a contradiction, that it is not, i.e. errσ (s) < 1 for some s. For all s, we have:

errσ (s) · E
max,min
GC,s

[
rew(r, c, T )

]

= r(s) +
∑

s′∈S

�
(
s, σ (s)

)(
s ′) · errσ

(
s ′) · E

max,min
GC,s′

[
rew(r, c, T )

]
(4)

and, for all s ∈ S2, there must be an action a such that:

errσ (s) · E
max,min
GC,s

[
rew(r, c, T )

]

= r(s) +
∑

s′∈S

�(s, a)
(
s ′) · errσ

(
s ′) · E

max,min
GC,s′

[
rew(r, c, T )

]
(5)

Fix s such that errσ (s) < 1 is minimal. Thanks to (3), (4) and (5), we get that the value must
also be minimal for all successors of s. However, this implies that T0 is not reached with
probability equal to 1 because, in every s ′ ∈ T0, we have errσ (s ′) = 1.

The other cases (σ c
2 , σ∞

1 and σ∞
1 ) can be proved analogously.

Appendix B: Proofs of correctness for Sect. 4.3

In this section, we prove the correctness of the methods given in Sect. 4.3 for computing
rew(r, �, T ) for the cases � = {c,∞,0}.

B.1 Proof of correctness for � = c

Let us first consider the states with infinite value. Recall that we denote by inf (arew) the set
of paths that visit a state with positive reward infinitely often (and thus get infinite reward).
If, for a state s, there is σ1 ∈ Σ1 such that the probability Prσ1,σ2

GC,s (inf (arew)) is positive for all

σ2 ∈ Σ2, then the strategy σ1 itself yields the infinite reward. In the other direction, suppose
that for every σ1 ∈ Σ1 there is some σ2 ∈ Σ2 such that Prσ1,σ2

GC,s (inf (arew)) is equal to zero.

It is straightforward to extend the results of [22] and prove that, for every σ1, a strategy σ2

exists which in addition ensures that the expected number of visits to a state satisfying arew

is finite and bounded from above. The rest follows easily because the rewards assigned to
states are also bounded from above.

Let us now consider finite values. Because of the assumption that no reward is accumu-
lated after visiting a target state, we can change the random variable and use

∑
j∈N

r(stλ(j))

instead of rew(r, c, T ). It can be shown by induction that the expected value w.r.t. this vari-
able can be obtained as limi→∞ fs(i) where:

fs(i) =
{

0 if i = 0

r(s) + optsa∈Act(s)

∑
s′∈aS

�(s, a)(s ′) · fs′(i − 1) otherwise
(6)

We can then apply the Kleene fixpoint theorem and prove that limi→∞ fs(i) is equal to the
least fixpoint of (2).
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B.2 Proof of correctness for � = ∞

First, observe that if a state s is assigned infinite value in the initial step, then we in-
deed have E

max,min
GC,s [rew(r,∞, T )] = ∞ by definition. We prove the correctness for the

other values. Let u : S → Q be a function that assigns to each s a value such that
u(s) ≥ E

max,min
GC,s [rew(r,∞, T )]. Recall that we compute values of (2) by value iteration, i.e.

we compute:

f (s)(i) =

⎧
⎪⎨

⎪⎩

0 if s ∈ T

u(s) if i = 0

r(s) + optsa∈A(s)

∑
s′∈S �(s, a)(s ′) · f (s ′)(i − 1) otherwise

for sufficiently large i, and we show that limi→∞ f (s)(i) = E
max,min
GC,s [rew(r,∞, T )].

Let us consider auxiliary functions rewi
u which assign numbers to paths as follows:

rewi
u(λ) =

⎧
⎨

⎩

∑
j<k r(stλ(j)) ∃k ≤ i : stλ(k) ∈ T ∧ ∀j < k : stλ(j) /∈ T ,

∑
j<i r(stλ(j)) + u(stλ(i)) otherwise.

Intuitively, the function rewi
u alters the definition of rew(r,∞, T ) by assigning rewards given

by r for the first i steps, and then assigning the reward given by u, if the target has not
been reached yet. One can easily prove by induction that the value of f (s)(i) is equal to
E

max,min
GC,s [rewi

u].
We need to show that limi→∞ f (s)(i) ≥ E

max,min
GC,s [rew(r,∞, T )]. This can be done by

inductively showing that f (s)(i) ≥ E
max,min
GC,s [rew(r,∞, T )] for every i. The base case i = 0

follows from the definition of f and u, and the inductive steps follow by monotonicity of
the function f .

Furthermore, we show that limi→∞ f (s)(i) ≤ E
max,min
GC,s [rew(r,∞, T )]. Let σmin ∈ Σ2 be

a memoryless strategy satisfying maxσ∈Σ1 E
σ,σmin
GC,s [rew(r,∞, T )] = E

max,min
GC,s [rew(r,∞, T )],

i.e. σmin is the optimal minimising strategy for player 2. Let τ(i) = minσ∈Σ1 Prσ,σmin
s ({λ ∈

ΩGC,s | ∃j ≤ i : stλ(j) ∈ T }) be the minimal probability with which we end in T

within i steps when playing according to σmin. We have limi→∞ τ(i) = 1, because oth-
erwise player 1 would have a strategy to prevent the target from being reached almost
surely and the reward obtained would be infinite. Thus, we have maxσ∈Σ1 E

σ,σmin
s [rewi

u] ≤
E

max,min
GC,s [rew(r,∞, T )] + (1 − τ(i)) · K where K = maxs∈S u(s). As we let i go to ∞, the

second summand diminishes, and so f (s)(i) = E
max,min
GC,s [rewi

u] ≤ E
max,min
GC,s [rew(r,∞, T )].

B.3 Proof of correctness for � = 0

Lemma 1 supσ1∈Σ1
infσ2∈Σ2 E

σ1,σ2
s [rew(r,0, T )] = ∞ iff there is σ1∈Σ1 such that for all

σ2∈Σ2 Prσ1,σ2
GC,s (inf t (arew)) > 0.

Proof In the direction ⇐, let q ∈ R be any number. Player 1’s strategy σ to ensure that
the expected reward achieved is at least q works as follows. Suppose σ1 is such that
Prσ1,σ2

GC,s (inf t (arew)) > p for all σ2. By [22], we can safely assume that p > 0. The strategy
σ mimics a strategy σ1 ∈ Σ1 if the history λ satisfies r(λ) <

q

p·x|S| where x is the minimal
probability that occurs in the game. When r(λ) exceeds this bound and the formula P>0[Ft]
is satisfied in the last state of λ, the strategy σ changes its behaviour and maximises the
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probability to reach T . Because memoryless deterministic strategies are sufficient for both
players for reachability queries, σ can ensure that T is reached with probability at least x |S|
from λ. The rest is a simple computation.

Let us analyse the direction ⇒. Similarly to the � = c case, we can show that, if for
every σ1 ∈ Σ1 there is σ2 ∈ Σ2 such that Prσ1,σ2

GC,s (inf (at
rew)) is equal to zero, then there is σ2

which ensures that the expected number of visits to a state satisfying at
rew is finite. The rest

follows as in � = c; we only need to further consider that if the state satisfies arew but not
P>0[Ft] (i.e. it gets nonzero reward but is not labelled with at

rew), then the reward achievable
by player 1 in such a state is 0. �

Given the state s, we denote the set of actions which can be taken by the strategy which
achieved maximum probability to reach T by A(s,T ). We first show that, if player 1 wants
to maximise the expected reward w.r.t. rew(r,0, T ) using only actions from A(s,T ) in each
state, he can do so using a memoryless deterministic strategy.

Lemma 2 Let ΣT
1 ⊆ Σ1 contain all strategies that use only the actions from A(s,T ) and

∀σ1 ∈ ΣT
1 :minσ2∈Σ2 Prσ1,σ2

GC,s (Ft) = Prmax,min
GC,s (Ft). There is a memoryless deterministic strat-

egy σ ∗
1 ∈ ΣT

1 satisfying:

min
σ2∈Σ2

E
σ∗

1 ,σ2
GC,s

[
rew(r,0, T )

] = max
σ1∈ΣT

1

min
σ2∈Σ2

E
σ1,σ2
GC,s

[
rew(r,0, T )

]
.

Proof Assume the game is restricted so that the only actions available in s are A(s,T ) for
all s. We first create a new reward structure r ′ defined by r ′(s) = r(s) · Prmax,min

GC,s (Ft). We

show that, for all σ1 ∈ ΣT
1 and σ2 ∈ Σ2 with Prσ1,σ2

GC,s (Ft) = Prmax,min
GC,s (Ft), we have that:

E
σ1,σ2
GC,s

[
rew

(
r ′, c, T

)] = E
σ1,σ2
GC,s

[
rew(r,0, T )

]
,

from which the lemma follows directly, as memoryless deterministic strategies suffice for
achieving the optimal value of rew(r ′, c, T ) (see the proof in Appendix A.2).

Let ΩGC,s(T )
def= {λ ∈ ΩGC,s | ∃i : stλ(i) ∈ T }, and t (λ) = mini∈N stλ(i) ∈ T . For any strat-

egy profile σ1, σ2 such that Prσ1,σ2
GC,s (Ft) = Prmax,min

GC,s (Ft),

E
σ1,σ2
GC,s

[
rew(r,0, T )

]

=
∫

ΩGC,s

rew(r,0, T )(λ)dPrσ1,σ2
GC,s

=
∫

ΩGC,s (T )

t (λ)∑

n=0

r
(
stλ(n)

)
dPrσ1,σ2

GC,s

=
∫

ΩGC,s (T )

∞∑

n=0

r
(
stλ(n)

)
dPrσ1,σ2

GC,s

=
∞∑

n=0

∫

ΩGC,s (T )

r
(
stλ(n)

)
dPrσ1,σ2

GC,s

=
∞∑

n=0

∑

s′∈S

r
(
s ′) · Prσ1,σ2

GC,s

(
stλ(n) = s ′ ∧ λ |= Ft

)
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=
∞∑

n=0

∑

s′∈S

r
(
s ′) · Prσ1,σ2

GC,s

(
stλ(n) = s ′) · Prσ1,σ2

GC,s

(
λ |= Ft | stλ(n) = s ′)

=
∞∑

n=0

∑

s′∈S

r
(
s ′) · Prσ1,σ2

GC,s

(
stλ(n) = s ′) · Prmax,min

GC,s′ (Ft)

=
∞∑

n=0

∑

s′∈S

r ′(s ′) · Prσ1,σ2
GC,s

(
stλ(n) = s ′)

=
∞∑

n=0

∫

ΩGC,s

r ′(stλ(n)
)
dPrσ1,σ2

GC,s

=
∫

ΩGC,s

rew
(
r ′, c, T

)
(λ)dPrσ1,σ2

GC,s

= E
σ1,σ2
GC,s

[
rew

(
r ′, c, T

)]
.

This completes the proof. �

Below, given a path h, we use E
σ1,σ2
GC,s [rew(r,0, T ) | h] to denote the conditional expecta-

tion of rew(r,0, T ) on infinite paths initiated in h, i.e.:

E
σ1,σ2
GC,s

[
rew(r,0, T ) | h] =

∫
{λ|λ starts with h} r(λ) dPrσ1,σ2

GC,s

Prσ1,σ2
GC,s ({λ | λ starts with h}

Lemma 3 For each state s ∈ S, there exists a finite-memory strategy σ ∗ for player 1 which
maximises the expected reward rew(r,0, T ) from the state s. In particular, there exists some
bound B such that for r(h) ≥ B , σ ∗(h) becomes memoryless.

Proof Fix two strategies σ1 ∈ Σ1 and σ2 ∈ Σ2. For each state s ∈ S and a path h =
s0a0s1 . . . sn ending in s ′ we have that:

E
σ1,σ2
GC,s

[
rew(r,0, T ) | h] = E

σh
1 ,σh

2
GC,s

[
rew(r,0, T ) + r(h)

]

=
∫

{λ∈ΩGC,s |λ|=Ft}
r(h)dPrσ1,σ2

s + E
σh

1 ,σh
2

GC,sn

[
rew(r,0, T )

]

= Pr
σh

1 ,σh
2

GC,sn
(Ft) · r(h) + E

σh
1 ,σh

2
GC,sn

[
rew(r,0, T )

]

where rew(r,0, T ) + r(h) is a random variable assigning rew(r,0, T )(λ) + r(h) to a path h

reaching T , and 0 otherwise; and where σh
i (h′) = σi(s0a0s1 . . . sn−1an−1·h′).

Given a state s, we use PRmax
s to denote the maximal reachability probability to reach T

under the strategies for which at s, actions in A(s,T ) are disallowed for a single step, i.e.:

PRmax
s = max

a∈A(s)\A(s,T )

∑

s′∈S

�(s, a)
(
s ′) · Prmax,min

GC,s′ (Ft)
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Intuitively, PRmax
s denotes the “second” maximal reachability probability. Below, we assume

that A(s,T ) �= �(s). Define:

Bs = E
max,min
GC,s [rew(r, c, T )]

Prmax,min
GC,s (Ft) − PRmax

s

Let B = maxs∈S Bs . We show that, on paths h ending in s and satisfying r(h) > B , no
optimal strategy of player 1 can use actions from A(s)\A(s,T ) and, together with Lemma 2,
we obtain the statement of this lemma.

Let h be a path ending in sn ∈ S1 and satisfying r(h) > B . Assume σ1(h) determinis-
tically chooses action from A(s) \ A(s,T ) (for randomised choices the argument follows
analogously). By above we have, for any σ2 ∈ Σ2:

E
σ1,σ2
GC,s

[
rew(r,0, T ) | h]

= Pr
σh

1 ,σh
2

GC,s (Ft) · r(h) + E
σh

1 ,σh
2

GC,sn

[
rew(r,0, T )

]

≤ PRmax
s · r(h) + E

σh
1 ,σh

2
GC,sn

[
rew(r,0, T )

]

= Prmax,min
GC,sn

(Ft) · r(h) − (
Prmax,min

GC,sn
(Ft) − PRmax

sn

) · r(h) + E
σh

1 ,σh
2

GC,sn

[
rew(r,0, T )

]

< Prmax,min
GC,sn

(Ft) · r(h) − (
Prmax,min

GC,sn
(Ft) − PRmax

sn

) · B + E
σh

1 ,σh
2

GC,sn

[
rew(r,0, T )

]

≤ Prmax,min
GC,sn

(Ft) · r(h) − E
max,min
GC,sn

[
rew(r, c, T )

] + E
σh

1 ,σh
2

GC,sn

[
rew(r,0, T )

]

≤ E
max,min
GC,s

[
rew(r,0, T ) | h]

which contradicts that σ1 is optimal.
Clearly, the strategy optimising rew(r,0, T ) is of finite-memory with upper bound B on

the memory needed. �

By the equalities from the proof of Lemma 2 and by Lemma 3, the procedure described
in step 2 of the algorithm on page 13 is correct. The procedure from step 3 of the algorithm
is correct because, for all paths h, we have that:

E
σ1,σ2
GC,s

[
rew(r,0, T ) | h] = max

a∈A(s)

∑

s′∈S

�(s, a)
(
s ′) · E

σ1,σ2
GC,s

[
rew(r,0, T ) | h·a·s ′].

Appendix C: Proof of Theorem 1

Theorem 1(a) Let ϕ be a rPATL formula with no 〈〈C〉〉Rr��x[F0φ] operator and where k for
the temporal operator U≤k is given in unary. The problem of deciding whether the formula
is satisfied in s is in NP ∩ CONP.

Proof By equivalences such as the one in equation (1) on page 8, we can assume that all
probabilistic and reward operators only contain bounds ≥ or >, so in the proof we assume
��∈ {>,≥}.

Let ϕ1, ϕ2, . . . , ϕn be the sequence of all state formulae occurring in ϕ. Also, if ϕi ’s
outermost operator is temporal, let Ci denote the outermost coalition in ϕi , and ΣC

j denote
the set of all memoryless deterministic strategies for player j in the coalition game GC .
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We show that the problem is in NP ∩ CONP by describing a polynomial-size certificate
c that allows us to check that a formula is (not) satisfied. The certificate c is a function that
assigns an element of Σ

Ci

1 ∪ Σ
Ci

2 to each tuple (i, s) where s ∈ S and ϕi is a formula whose
outermost operator is temporal:

– If ϕi ≡ 〈〈C〉〉P��q[ψ] and s |= ϕi , then:
c(i, s) = σ1 for σ1 ∈ ΣC

1 such that minσ2∈Σ2 Prσ1,σ2
GC,s (ψ) �� q holds.

– If ϕi ≡ 〈〈C〉〉P��q[ψ] and s �|= ϕi , then:
c(i, s) = σ2 for σ2 ∈ ΣC

2 such that maxσ1∈Σ1 Prσ1,σ2
GC,s (ψ) �� q does not hold.

– If ϕi ≡ 〈〈C〉〉Rr��x[F�φ] and s |= ϕi , then:
c(i, s) = σ1 for σ1 ∈ ΣC

1 such that minσ2∈Σ2 E
σ1,σ2
GC,s [rew(r, �,Sat(φ))] �� x holds.

– If ϕi ≡ 〈〈C〉〉Rr��x[F�φ] and s �|= ϕi , then:
c(i, s) = σ2 for σ2 ∈ ΣC

2 such that maxσ1∈Σ1 E
σ1,σ2
GC,s [rew(r, �,Sat(φ))] �� x does not hold.

The existence of the strategies assigned by c follows from Theorem 2 and from Ap-
pendix A.2.

To check the certificate in polynomial time, we compute Sat(ϕ′) for all state subformulae
ϕ′ of ϕ, traversing the parse tree of ϕ bottom-up. Suppose that we are analysing a formula
ϕ′ and that we have computed Sat(ϕ′′) for all state subformulae ϕ′′ of ϕ′. If ϕ′ is an atomic
proposition or its outermost operator is a boolean connective, we construct Sat(ϕ′′) in the
obvious way. Otherwise:

Sat
(
ϕ′) = {

s | c(i, s) is a strategy for the first player in the coalition game
}
.

We verify that our choice of Sat(ϕ′) is correct as follows. For all s ∈ Sat(ϕ′), we construct
an MDP from the appropriate coalition game by fixing the decisions of the first player ac-
cording to c(i, s), and in polynomial time we check that the minimal probability (or reward)
in the resulting MDP exceeds the bound given by the outermost operator of ϕ′ (see Theo-
rem 2). If s /∈ Sat(ϕ′), then we fix the decisions of the second player according to c(i, s) and
proceed analogously, computing the maximal probabilities. �

Theorem 1(b) Model checking an arbitrary rPATL formula is in NEXP ∩ CONEXP.

Proof The proof is similar to that for Theorem 1(a) above. We only need to extend the certifi-
cate from the proof to provide a witnessing strategy for formulae of the form 〈〈C〉〉Rr��x[F0φ].
This is straightforward since, in the proof of Lemma 3, we showed that players need only
strategies of exponential size.

In Lemma 3 we have shown that, for the optimal strategy, it suffices to play a determin-
istic memoryless strategy after a certain reward bound B has been reached and, before that,
the strategy needs to remember only the reward accumulated along the history. The rewards
are integers, therefore, the strategy in a state may need a different action for each value of
reward below B , and one action for reward which is greater or equal to B . So, the overall
size of the memory will be O(|S| × B). A deterministic strategy suffices in this case; ob-
serve that one could ‘embed’ the memory into the game by constructing a new game where
the set of states is S × {0, . . . ,B + rmax − 1} ∪ {sf }. The transition relation is preserved for
states (s, k) where k < B , and states (s, k) where k ≥ B have a transition to sf only. The
reward structure r assigns reward R(s,k) to states where k ≥ B , which can be computed using
step 2 of the algorithm for � = 0 in Sect. 4, and 0 to all other states. Then, the deterministic
memoryless strategy that maximises rew(r, c, {sf }) in this new game will also be an optimal
strategy in the original game (but requiring memory of size B). The size of B can be at most
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exponential in the size of G , i.e. from Lemma 3 it follows that the size of B for a state s is
bounded by

Bs = E
max,min
GC,s [rew(r, c, T )]

Prmax,min
GC,s (Ft) − PRmax

s

. (7)

We claim that all E
max,min
GC,s [rew(r, c, T )], Prmax,min

GC,s (Ft) and PRmax
s can be represented as frac-

tions of integers whose binary representation is polynomial in the size of the input, from
which the bound on the size of Bs follows. For E

max,min
GC,s [rew(r, c, T )] (or Prmax,min

GC,s (Ft),
PRmax

s ), fixing the optimal strategies for both players we can construct a linear pro-
gram whose size is polynomial in the size of input, and whose solution is equal to
E

max,min
GC,s [rew(r, c, T )] (or Prmax,min

GC,s (Ft), PRmax
s , respectively). Because the solution of the

linear program can be represented as a fraction of two integers of polynomial binary repre-
sentations, we get the claim. Therefore, Bs is at most exponential in the size of G . �

Appendix D: Proof of correctness for Sect. 4.4

Price-bounded coalitions In the proof of Theorem 1 (when all coalitions were fixed), we
exploited the fact that there is an exponential size certificate c, which is a function that
assigns an element of Σ

Ci

1 ∪ Σ
Ci

2 to each tuple (i, s) where s ∈ S and ϕi is a formula whose
outermost operator is temporal.

We extend this approach by changing the certificate c so that it returns an element of
ΣC

1 ∪ ΣC
2 to each tuple (i, s,C), where s ∈ S, ϕi is a formula whose outermost operator is

temporal, C ⊆ Π , and ��∈ {>,≥}:
– If ϕi ≡ 〈〈C〉〉P��q[ψ] or ϕi ≡ 〈〈?〉〉≤y P��q[ψ], and s |= 〈〈C〉〉P��q[ψ], then:

c(i, s,C) = σ1 for σ1 ∈ ΣC
1 such that minσ2∈Σ2 Prσ1,σ2

GC,s (ψ) �� q holds.
– If ϕi ≡ 〈〈C〉〉P��q[ψ] or ϕi ≡ 〈〈?〉〉≤y P��q[ψ] , and s �|= 〈〈C〉〉P��q[ψ], then:

c(i, s,C) = σ2 for σ2 ∈ ΣC
2 such that maxσ1∈Σ1 Prσ1,σ2

GC,s (ψ) �� q does not hold.
– If ϕi ≡ 〈〈C〉〉Rr��x[F�φ] or ϕi ≡ 〈〈?〉〉≤y Rr��x[F�φ], and s |= 〈〈C〉〉Rr��x[F�φ], then:

c(i, s,C) = σ1 for σ1 ∈ ΣC
1 such that minσ2∈Σ2 E

σ1,σ2
GC,s [rew(r, �,Sat(φ))] �� x holds.

– If ϕi ≡ 〈〈C〉〉Rr��x[F�φ] or ϕi ≡ 〈〈?〉〉≤y Rr��x[F�φ], and s �|= 〈〈C〉〉Rr��x[F�φ], then:
c(i, s,C) = σ2 for σ2∈ΣC

2 such that maxσ1∈Σ1 E
σ1,σ2
GC,s [rew(r, �,Sat(φ))] �� x does not hold.

– If ϕi ≡ 〈〈C ′〉〉P��q[ψ] ϕi ≡ 〈〈C ′〉〉P��q[ψ], ϕi ≡ 〈〈C ′〉〉Rr��x[F�φ], or ϕi ≡ 〈〈C ′〉〉Rr��x[F�φ],
and C ′ �= C, then c(i, s,C) returns an arbitrary memoryless deterministic strategy from
ΣC′

1 ∪ ΣC′
2 .

As before, the existence of strategies assigned by c follows from Theorem 2 and from Ap-
pendix A.2: for all formulae but 〈〈C〉〉Rr��x[F0φ] and 〈〈?〉〉Rr��x[F0φ], memoryless determinis-
tic strategies exist; and, for the aforementioned formulae, exponential memory deterministic
strategies suffice.

To check the certificate in polynomial time (in the worst-case size of c, which is ex-
ponential in the size of the model), we compute Sat(ϕ′) for all state subformulae ϕ′ of ϕ,
traversing the parse tree of ϕ bottom-up. Suppose that we are analysing a formula ϕ′ and that
we have computed Sat(ϕ′′) for all state subformulae ϕ′′ of ϕ′. If ϕ′ is an atomic proposition
or its outermost operator is a boolean connective, we construct Sat(ϕ′) in the obvious way.
Otherwise, if the outermost coalition in ϕ′ is fixed to C:

Sat
(
ϕ′) = {

s | c(i, s,C) ∈ ΣC
1

}
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and, if the outermost coalition in ϕ′ is not specified, but a coalition of price ≤ y is required:

Sat
(
ϕ′) =

{

s | ∃C ⊆ Π :
∑

γ∈C

p(γ ) ≤ y and c(i, s,C) ∈ ΣC
1

}

.

We verify that our choice of Sat(ϕ′) is correct as follows. For all s ∈ Sat(ϕ′), we con-
struct an MDP from the appropriate coalition game by fixing the decisions of the first player
according to c(i, s,C) and in polynomial time we check that the minimal probability (or
reward) in the resulting MDP exceeds the bound given by the outermost operator of ϕ′ (see
Theorem 2). If s /∈ Sat(ϕ′), and the outermost coalition of ϕ′ is C, then we fix the deci-
sions of the second player according to c(i, s,C) and proceed analogously, computing the
maximal probabilities. If s /∈ Sat(ϕ′), and the outermost coalition of ϕ′ is not specified, but
required to be of price at most y, we need to construct MDPs from the coalition games GC for
all C where

∑
γ∈C p(γ ) ≤ y by fixing the decisions of the second player and computing the

maximal probabilities. There are only polynomially many (in the size of c) possible choices
of C (the number of different coalitions is exponential in the size of G , but the certificate is
exponential in G too), and each choice can be checked in polynomial time.
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