
Quantitative Model Checking of Continuous-Time Markov Chains
Against Timed Automata Specifications

Taolue Chen1 Tingting Han2,3 Joost-Pieter Katoen2,3 Alexandru Mereacre2

1CWI, NL 2MOVES, RWTH Aachen University, DE 3 FMT, University of Twente, NL

Abstract

We study the following problem: given a continuous-
time Markov chain (CTMC) C, and a linear real-time
property provided as a deterministic timed automaton
(DTA) A, what is the probability of the set of paths of
C that are accepted by A (C satisfies A)? It is shown
that this set of paths is measurable and computing its
probability can be reduced to computing the reachability
probability in a piecewise deterministic Markov process
(PDP). The reachability probability is characterized
as the least solution of a system of integral equations
and is shown to be approximated by solving a system
of partial differential equations. For the special case
of single-clock DTA, the system of integral equations
can be transformed into a system of linear equations
where the coefficients are solutions of ordinary differ-
ential equations.

1 Introduction

Continuous-time Markov chains (CTMCs) are one
of the most important models in performance and de-
pendability analysis. They are exploited in a broad
range of applications, and constitute the underlying
semantical model of a plethora of modeling formalisms
for real-time probabilistic systems such as Markovian
queueing networks, stochastic Petri nets, stochastic
variants of process algebras, and, more recently, cal-
culi for system biology. CTMC model checking has
been focused on the temporal logic CSL (Continuous
Stochastic Logic [3, 7]), a variant of timed CTL where
the CTL path quantifiers are replaced by a probabilis-
tic operator. CSL model checking proceeds — like
CTL model checking — by a recursive descent over
the parse tree of the formula. One of the key ingredi-
ents is that reachability probabilities for time-bounded
until-formulae can be approximated arbitrarily closely
by a reduction to transient analysis in CTMCs. This

results in a polynomial-time algorithm that has been
realized in model checkers such as PRISM and MRMC.

This paper concerns the problem of verifying
CTMCs versus linear real-time specifications, which
are based on timed automata. Concretely speaking,
we explore the following problem: given a CTMC C,
and a linear real-time property provided as a deter-
ministic timed automaton [1] (DTA) A, what is the
probability of the set of paths of C which are accepted
by A (C |= A)? We set off to show that this problem is
well-defined in the sense that the path set is measur-
able. Computing its probability can then be reduced
to computing the reachability probability in a piecewise
deterministic Markov process (PDP) [12], a model that
is used in, e.g., stochastic control theory and financial
mathematics. This result relies on a product construc-
tion of CTMC C and DTA A, denoted C ⊗ A, yield-
ing deterministic Markov timed automata (DMTA), a
variant of DTA in which, besides the usual ingredients
of timed automata, like guards and clock resets, the lo-
cation residence time is exponentially distributed. We
show that the probability of C |= A coincides with the
reachability probability of accepting paths in C ⊗ A.
The underlying PDP of a DMTA is obtained by a
slight adaptation of the standard region construction.
The desired reachability probability is characterized as
the least solution of a system of integral equations that
is obtained from the PDP. Finally, this probability
is shown to be approximated by solving a system of
partial differential equations (PDEs). For single-clock
DTA, we show that the system of integral equations
can be transformed into a system of linear equations,
where the coefficients are solutions of some ordinary
differential equations (ODEs), which can either have
an analytical solution (for small state space) or an ar-
bitrarily closely approximated solution efficiently.

Related work is model checking of asCSL [6] and
CSLTA [13]. asCSL allows to impose a time constraint
on action sequences described by regular expressions;
its model-checking algorithm is based on a determin-
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istic Rabin automaton construction. In CSLTA, time
constraints (of until modalities) are specified by single-
clock DTA. In [13], C⊗A is interpreted as a Markov re-
newal processes and model checking CSLTA is reduced
to computing reachability probabilities in a DTMC
whose transition probabilities are given by subordi-
nate CTMCs. This technique cannot be generalized
to multiple clocks. Our approach does not restrict the
number of clocks and supports more specifications than
CSLTA. For the single-clock case, our approach pro-
duces the same result as [13], but yields a conceptually
simpler formulation whose correctness can be derived
from the simplification of the system of integral equa-
tions obtained in the general case. Moreover, measur-
ability has not been addressed in [13]. Other related
work [4, 5, 9] provides a quantitative interpretation to
timed automata where delays and discrete choices are
interpreted probabilistically. In this approach, delays
of unbounded clocks are governed by exponential dis-
tributions like in CTMCs. Decidability results have
been obtained for almost-sure properties [5] and quan-
titative verification [9] for (a subclass of) single-clock
timed automata.

The proofs can be found in the technical report [10].

2 Preliminaries

Given a set H, let Pr : F(H) → [0, 1] be a probabili-
ty measure on the measurable space (H,F(H)), where
F(H) is a σ-algebra over H. Let Distr(H) denote the
set of probability measures on this measurable space.

2.1 Continuous-time Markov chains

Definition 1 [CTMC] A (labeled) continuous-
time Markov chain (CTMC) is a tuple
C = (S,AP, L, α,P, E) where S is a finite set of
states; AP is a finite set of atomic propositions;
L : S → 2AP is the labeling function; α ∈ Distr(S) is
the initial distribution; P : S ×S → [0, 1] is a stochas-
tic transition probability matrix ; and E : S → R�0 is
the exit rate function.

The probability to exit state s as well as to take the
transition s → s′ in t time units is

∫ t

0
E(s)·e−E(s)τdτ

and P(s, s′)·∫ t

0
E(s)·e−E(s)τdτ , respectively. A state

s is absorbing if P(s, s) = 1. The embedded discrete-
time Markov chain (DTMC) of CTMC C is obtained
by deleting the exit rate function E, i.e., emb(C) =
(S,AP, L, α,P).

Definition 2 [Timed paths] Let C be a CTMC.
PathsCn := S × (R>0 × S)n is the set of paths of length

n in C; the set of finite paths in C is defined by
PathsC� =

⋃
n∈N

PathsCn and PathsCω := (S × R>0)
ω is

the set of infinite paths in C. PathsC = PathsC�∪PathsCω
denotes the set of all paths in C.

We denote a path ρ ∈ PathsC(s0) (ρ ∈ Paths(s0) for
short) as the sequence ρ = s0

t0−−→ s1
t1−−→ s2 · · · starting

in state s0 such that for n � |ρ| (|ρ| is the number of
transitions in ρ if ρ is finite); ρ[n] := sn is the n-th
state of ρ and ρ〈n〉 := tn is the time spent in state sn.
Let ρ@t be the state occupied in ρ at time t ∈ R�0,
i.e. ρ@t := ρ[n] where n is the smallest index such that∑n

i=0 ρ〈i〉 > t. We assume w.l.o.g. that the time to
stay in any state is strictly greater than 0.

The definition of a Borel space on paths through
CTMCs follows [15, 7]. A CTMC C with initial state
s0 yields a probability measure PrC on paths as fol-
lows: Let s0, · · ·, sk ∈ S with P(si, si+1) > 0 for
0 � i < k and I0, · · ·, Ik−1 nonempty intervals in R�0,
C(s0, I0, · · ·, Ik−1, sk) denotes the cylinder set consist-
ing of all paths ρ ∈ Paths(s0) such that ρ[i] = si

(i � k), and ρ〈i〉 ∈ Ii (i < k). F(Paths(s0)) is
the smallest σ-algebra on Paths(s0) which contains
all sets C(s0, I0, · · ·, Ik−1, sk) for all state sequences
(s0, · · ·, sk) ∈ Sk+1 with P(si, si+1) > 0 (0 � i < k)
and I0, · · ·, Ik−1 range over all sequences of nonempty
intervals in R�0. The probability measure PrC on
F(Paths(s0)) is the unique measure defined by induc-
tion on k by PrC(C(s0)) = α(s0) and for k > 0:

PrC
(
C(s0, I0, · · ·, Ik−1, sk)

)
= PrC

(
C(s0, I0, · · ·, Ik−2, sk−1)

)
·
∫

Ik−1

P(sk−1, sk)E(sk−1)·e−E(sk−1)τdτ. (1)

Example 1 An example CTMC is illustrated in
Fig. 2(b) (page 6), where AP = {a, b, c} and s0 is the
initial state, i.e., α(s0) = 1 and α(s) = 0 for any s �= s0.
The exit rates and transition probabilities are as shown.

2.2 Deterministic timed automata

(Clock) variables and valuations Let X =
{x1, . . ., xn} be a set of variables in R. An X -valuation
is a function η : X → R assigning to each variable x a
value η(x). Let V(X ) denote the set of all valuations
over X . A constraint over X , denoted by g, is a sub-
set of R

n. Let B(X ) denote the set of constraints over
X . An X -valuation η satisfies constraint g, denoted as
η |= g if (η(x1), . . . , η(xn)) ∈ g.

Occasionally we use a special case of nonnegative
variables, called clocks. We write �0 for the valuation
that assigns 0 to all clocks. For a subset X ⊆ X , the
reset of X, denoted η[X := 0], is the valuation η′ such
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that ∀x ∈ X. η′(x) := 0 and ∀x /∈ X. η′(x) := η(x). For
δ ∈ R�0, η + δ is the valuation η′′ such that ∀x ∈ X .
η′′(x) := η(x)+ δ, which implies that all clocks proceed
at the same speed, or equivalently, ∀xi ∈ X . ẋi = 1.
A clock constraint on X is an expression of the form
x 	
 c, or x − y 	
 c, or the conjunction of any clock
constraints, where x, y ∈ X , 	
 ∈ {<,�, >,�} and
c ∈ N.

Definition 3 [DTA] A deterministic timed automa-
ton (DTA) is a tuple A = (Σ,X , Q, q0, QF ,→) where
Σ is a finite alphabet ; X is a finite set of clocks; Q is
a nonempty finite set of locations; q0 ∈ Q is the initial
location; QF ⊆ Q is a set of accepting locations; and
→ ∈ (Q \ QF )×Σ×B(X )×2X×Q is an edge relation1

satisfying: q a,g,X−−−−→ q′ and q a,g′,X′−−−−−→ q′′ with g �= g′

implies g ∩ g′ = ∅.

We refer to q a,g,X−−−−→ q′ as an edge, where a ∈ Σ is
the input symbol, the guard g is a clock constraint on
the clocks of A, X ⊆ X is a set of clocks to be reset and
q′ is the successor location. The intuition is that the
DTA A can move from location q to location q′ when
the input symbol is a and the guard g holds, while the
clocks in X should be reset when entering q′. As a
convention, we assume each location q ∈ QF is a sink.
An example DTA is shown in Fig. 2(c).

A finite timed path in A is of the form θ =
q0

a0,t0−−−−→ q1 · · · qn
an,tn−−−−→ qn+1, for ti > 0 (0 � i � n).

All the definitions on paths in CTMCs can be adapted
here. A timed path θ is accepted by A if there ex-
ists some 0 � i � |θ| such that θ[i] ∈ QF and for
all 0 � j < i, it holds that η0 = �0, ηj + tj |= gj

and ηj+1 = (ηj + tj)[Xj := 0], where ηj is the clock
evaluation on entering qj . We say that an infinite
timed path ρ = s0

t0−−→ s1
t1−−→· · · in CTMC C is ac-

cepted by A if there exists some n∈N such that the
finite fragment of ρ, i.e. s0

t0−−→ s1 · · · sn−1
tn−1−−−−→ sn

gives rise to an augmented timed path ρ̂ =
q0

L(s0),t0−−−−−−→ q1 · · · qn−1
L(sn−1),tn−1−−−−−−−−−→ qn, which is ac-

cepted by A.

2.3 Piecewise-deterministic Markov processes

PDPs constitute a general framework that can
model virtually any stochastic system without diffu-
sions [12] and for which powerful analysis and control
techniques exist. A PDP consists of a finite set of
locations each with a location invariant over a set of
variables. A PDP can jump between locations either

1N.B.: We don’t consider diagonal constraints like x − y ��
c in DTA. However, it is known that this does not harm the
expressiveness of a TA [8].

randomly, in which case the residence time of a lo-
cation is governed by an exponential distribution, or
when the location invariant is violated. While staying
in a location, a PDP evolves deterministically accord-
ing to a flow function (which is the solution of a system
of ODEs). A state of the PDP consists of a location
and a valuation of the variables. The target state of the
jump is determined by a probability measure depend-
ing on the source state. The process is Markovian as
the current state contains all the information to predict
the future progress of the process.

Definition 4 [PDP [12]] A piecewise-deterministic
(Markov) process (PDP) is a tuple Z =
(Z,X , Inv , φ,Λ, μ) with:

• Z and X , a finite set of locations and variables,
respectively;

• Inv : Z → B(X ), an invariant function;
• φ : Z × V(X ) × R → V(X ), a flow function2;
• Λ : S → R�0, an exit rate function;

• μ : S̊ ∪ ∂S → Distr(S), the transition probability
function, where:

S := {ξ := (z, η) | z ∈ Z, η |= Inv(z)} is the state space
of the PDP Z, S̊ is the interior of S and ∂S =⋃

z∈Z{z}×∂Inv(z) is the boundary of S with ∂Inv(z) =
Inv(z)\ ˚Inv(z) as the boundary of Inv(z), ˚Inv(z) the in-
terior of Inv(z) and Inv(z) the closure of Inv(z). Func-
tions Λ and μ satisfy the following conditions:

• ∀ξ ∈ S. ∃ε(ξ) > 0. function t → Λ(ξ ⊕ t) is inte-
grable on [0, ε(ξ)[, where ξ ⊕ t =

(
z, φ(z, η, t)

)
, for

ξ = (z, η);
• Function ξ → μ(ξ,A)3 is measurable for any A ∈
F(S), where F(S) is a σ-algebra generated by the
countable union

⋃
z∈Z{z} × Az with Az being a

subset of F(Inv(z)) and μ(ξ, {ξ}) = 0.

A PDP is only allowed to stay in location z when
the constraint Inv(z) is satisfied. If e.g., Inv(z) is
x2

1 − 2x2 � 1.5 ∧ x3 > 2, then its interior ˚Inv(z) is
x2

1 − 2x2 < 1.5 ∧ x3 > 2 and its closure Inv(z) is x2
1 −

2x2 � 1.5 ∧ x3 � 2, and the boundary ∂Inv(z) is
x2

1 − 2x2 = 1.5 ∧ x3 = 2. When the variable valua-
tion satisfies the boundary (η |= ∂Inv(z)), the PDP is
forced to jump and leave the current location z. The
flow function φ defines the time-dependent behavior in
a single location, in particular, how the variable val-
uations change when time elapses. State ξ ⊕ t is the
timed successor of state ξ (on the same location) given

2The flow function is assumed to be the solution of a system
of ODEs with a Lipschitz continuous vector field.

3μ(ξ, A) is a shorthand for (μ(ξ))(A).
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that t time units have passed. The PDP is piecewise-
deterministic because in each location (one piece) the
behavior is deterministically determined by φ. In sum-
mary, when a new state ξ = (z, η) is entered and Inv(z)
is valid, i.e., ξ ∈ S, the PDP can either delay to state
ξ′ = (z, η′) ∈ S ∪ ∂S according to both the flow func-
tion φ and the time delay t (in this case ξ′ = ξ ⊕ t); or
take a Markovian jump to state ξ′′ = (z′′, η′′) ∈ S with
probability μ(ξ, {ξ′′}). Note that the residence time of
a location is exponentially distributed. When Inv(z) is
invalid, i.e., ξ ∈ ∂S, ξ will be forced to take a boundary
jump to ξ′′ with probability μ(ξ, {ξ′′}).

The embedded discrete-time Markov process
(DTMP) emb(Z) of the PDPZ has the same state
space S as Z. The (one-jump) transition probability
from a state ξ to a set A ⊆ S of states (on different
locations as ξ), denoted μ̂(ξ,A), is given by [12]:

μ̂(ξ,A) =
∫ �(ξ)

0

(Q1A)(ξ ⊕ t)·Λ (ξ ⊕ t) e−
� t
0 Λ(ξ⊕τ)dτdt (2)

+ (Q1A)(ξ ⊕ �(ξ))·e−
� �(ξ)
0 Λ(ξ⊕τ)dτ , (3)

where �(ξ) = inf{t > 0 | ξ ⊕ t ∈ ∂S} is the mini-
mal time to hit the boundary if such time exists;
�(ξ) = ∞ otherwise. (Q1A)(ξ) =

∫
S
1A(ξ′)μ(ξ, dξ′)

is the accumulative (one-jump) transition probabi-
lity from ξ to A and 1A(ξ) is the characteristic
function such that 1A(ξ) = 1 when ξ ∈ A and
1A(ξ) = 0 otherwise. Term (2) specifies the proba-
bility to delay to state ξ ⊕ t (on the same location)

z0

x < 2
ẋ = 1

1
3

z1

x ∈ R

ẋ = 1

z2

x ∈ R

ẋ = 1

2
3

Figure 1. An example PDP

and take a
Markovian
jump from
ξ ⊕ t to A.
Note the

delay t can take a value from [0, �(ξ)[. Term (3) is the
probability to stay in the same location for �(ξ) time
units and then it is forced to take a boundary jump
from ξ ⊕ �(ξ) to A since Inv(z) is invalid.

Example 2 Fig. 1 depicts a 3-location PDP Z with
one variable x, where Inv(z0) is x < 2 and Inv(z1),
Inv(z2) are both x ∈ [0,∞[. Solving ẋ = 1 gives the
flow function φ(zi, η(x), t) = η(x) + t for i = 0, 1, 2.
The state space of Z is {(z0, η) | 0 < η(x) < 2} ∪
{(z1, R)} ∪ {(z2, R)}. Let exit rate Λ(ξ) = 5 for any
ξ ∈ S. For η |= Inv(z0), let μ

(
(z0, η), {(z1, η)}) := 1

3 ,
μ
(
(z0, η), {(z2, η)}) := 2

3 and the boundary measure
μ
(
(z0, 2), {(z1, 2)}) := 1. Given state ξ0 = (z0, 0) and

the set of states A = (z1, R), the time for ξ0 to hit
the boundary is �(ξ0) = 2. Then (Q1A)(ξ0 ⊕ t) = 1

3 if
t < 2, and (Q1A)(ξ0 ⊕ t) = 1 if t = 2. In emb(Z), the

transition probability from state ξ0 to A is:

μ̂(ξ0, A) =
∫ 2

0

1
3
·5·e−

� t
0 5 dτ dt+1·e−

� 2
0 5 dτ =

1
3
+

2
3
e−10.

3 Model checking DTA specifications

In this section, we deal with model checking lin-
ear real-time properties specified by DTA. The aim
of model checking is to compute the probability of the
set of paths in CTMC C accepted by a DTA A. We
prove that this can be reduced to computing the reach-
ability probability in the product of C and A (The-
orem 2), which can be further reduced to computing
the reachability probability in a corresponding PDP
(Theorem 3). To simplify the notations, we assume
w.l.o.g. that a CTMC has only one initial state s0,
i.e., α(s0) = 1, and α(s) = 0 for s �= s0.

3.1 Deterministic Markovian timed automata

To model check a DTA specification, we will exploit
the product of a CTMC and a DTA, which is a deter-
ministic Markovian timed automaton:

Definition 5 [DMTA] A deterministic Markovian
timed automaton (DMTA) is a tuple M =
(Loc,X , �0, LocF , E,�), where Loc is a finite set of
locations; X is a finite set of clocks; �0 ∈ Loc is the
initial location; LocF ⊆ Loc is the set of accepting lo-
cations; E : Loc → R�0 is the exit rate function; and
� ⊆ Loc × B(X ) × 2X × Distr(Loc) is an edge relation
satisfying (�, g,X, ζ), (�, g′,X ′, ζ ′) ∈� with g �= g′ im-
plies g ∩ g′ = ∅.

The set of clocks X and the related concepts, e.g.,
clock valuation, clock constraints are defined as for

DTA. We refer to �
g,X �������� ζ for distribution ζ ∈

Distr(Loc) as an edge and refer to �
� g,X

ζ(�′)
�� �′ as a

transition of this edge. The intuition is that when
entering location �, the DMTA chooses a residence
time which is governed by the exponential distribu-
tion, i.e. the probability to leave � in t time units is
1 − e−E(�)t. When it decides to jump, at most one

edge, say �
g,X �������� ζ , due to the determinism, is en-

abled and the probability to jump to �′ is given by
ζ(�′). The DMTA is deterministic as it has a unique
initial location and disjoint guards for all edges ema-
nating from any location.

Example 3 The DMTA in Fig. 2(a) has initial lo-
cation �0 with two edges, with guards x < 1 and
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1 < x < 2. Assume t time units elapsed. If t < 1,
then the upper edge is enabled and the probability to
go to �1 in time t is (1 − e−r0t)·1, where E(�0) = r0;
no clock is reset. The process is similar for 1 < t < 2,
except that x will be reset. Location �3 is accepting.

Paths in DMTAs Given a DMTA M and a finite
symbolic path

�0
�g0,X0

p0
�� �1 · · · �n−1

�gn−1,Xn−1

pn−1
�� �n ,

where pi = ζi(�i+1) is the transition probability of

�i
� gi,Xi

ζi(�i+1)
�� �i+1 , the induced finite paths in M are of

the form σ = �0
t0−−→ �1 · · · �n−1

tn−1−−−−→ �n and have the
property that η0 = �0, (ηi + ti) |= gi, and ηi+1 =
(ηi + ti)[Xi := 0] where 0 � i < n and ηi is the clock
valuation of X in M on entering location �i. Finite
path σ is accepting if �n ∈ LocF . All definitions on
paths in CTMCs can be carried over to DMTA paths.

Given DMTA M, C(�0, I0, · · ·, In−1, �n) is the cylin-
der set where (�0, · · ·, �n) ∈ Locn+1 and Ii ⊆ R�0. It
denotes a set of paths σ in M such that σ[i] = �i

and σ〈i〉 ∈ Ii. Now we define the measure PrMη0
,

which is the probability of C(�0, I0, · · ·, In−1, �n) such
that the initial clock valuation in location �0 is η0 as
PrMη0

(C(�0, I0, · · ·, In−1, �n)) := P
M
0 (η0). Here P

M
i (η)

for 0�i�n is defined as: P
M
n (η) = 1 and for 0�i<n,

we note that there exists a transition from �i to �i+1

with �i
� gi,Xi

pi

�� �i+1 (0 � i < n) and thus we define

P
M
i (η) =

∫
Ii

1gi
(η + τ)·pi·E(�i)·e−E(�i)τ︸ ︷︷ ︸

(�)

·PM
i+1(η

′)︸ ︷︷ ︸
(��)

dτ,

where η′ := (η + τ)[Xi := 0] and the characteristic
function 1gi

(η + τ) = 1, if η + τ |= gi; 0, otherwise.
Intuitively, P

M
i (ηi) is the probability of the suffix cylin-

der set starting from �i and ηi to �n. It is recursively
computed by the product of the probability of taking a
transition from �i to �i+1 in time interval Ii (cf. (�)) and
the probability of the suffix cylinder set from �i+1 and
ηi+1 on (cf. (��)), where (�) is computed by first ruling
out the paths that do not belong to the cylinder set by
1gi

(η + τ) and then computing the transition proba-
bility using the density function pi·E(�i)·e−E(�i)τ as in
CTMCs. It follows that the characteristic function is
Riemann integrable as it is bounded and its support is
an interval, and thus P

M
i (η) is well-defined.

3.2 Product DMTAs

Given a CTMC C and a DTA A, the product C⊗A
is a DMTA defined by:

Definition 6 [Product of CTMC and DTA] Let
C = (S,AP, L, s0,P, E) be a CTMC and A =
(2AP,X , Q, q0, QF ,→) be a DTA. We define C ⊗ A =
(Loc,X , �0, LocF , E,�) as the product DMTA, where
Loc := S × Q; �0 := 〈s0, q0〉; LocF := S × QF ;
E(〈s, q〉) := E(s); and � is defined as the smallest
relation defined by the rule:

P(s, s′) > 0 ∧ q
L(s),g,X−−−−−−→ q′

〈s, q〉 g,X �������� ζ

, s.t. ζ(〈s′, q′〉) = P(s, s′).

Example 4 Let CTMC C and DTA A be in Fig. 2(b)
and 2(c), the product DMTA C⊗A is as in Fig. 2(a).

Remark 1 It is easy to see from the construction that
C ⊗ A is indeed a DMTA. The determinism of the
DTA A guarantees that the induced product is also de-
terministic. In C ⊗ A, there is at most one “action”
possible, viz. L(s), from each location � = 〈s, q〉, prob-
ably via different edges, but with disjoint guards. We
can thus omit it from the product DMTA.

We denote PathsC⊗A(♦LocF ) := {σ ∈ PathsC⊗A
� |

σ is accepted by C⊗A} as the set of accepted paths
in C⊗A, and PathsC(A) := {ρ ∈ PathsC� |
ρ is accepted by DTA A} as the set of paths in CTMC
C that are accepted by DTA A. For any n-ary tuple
J , let J�i denote the i-th entry in J , for 1 � i � n. For
a C ⊗ A path σ = 〈s0, q0〉 t0−−→ · · · tn−1−−−−→〈sn, qn〉, let
σ�1 := s0

t0−−→ · · · tn−1−−−−→ sn, and for any set Π of C ⊗A
paths, let Π�1 =

⋃
σ∈Π σ�1.

Lemma 1 For any CTMC C and DTA A,
PathsC(A) = PathsC⊗A(♦LocF )�1.

Theorem 1 For any CTMC C and DTA A,
PathsC(A) is measurable.

We remark that the set of time-convergent paths in a
CTMC has probability measure 0 (see [7]). The fol-
lowing theorem establishes the link between CTMC C
and DMTA C ⊗ A.

Theorem 2 For any CTMC C and DTA A,

PrC
(
PathsC(A)

)
= PrC⊗A

�0

(
PathsC⊗A(♦LocF )

)
.

3.3 Region construction for DMTA

In the remainder of this section, we focus
on how to compute the probability measure
PrC⊗A

�0

(
PathsC⊗A(♦LocF )

)
in an effective way.
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Figure 2. Example product construction of CTMC C and DTA A

We start with adopting the standard region construc-
tion [1] to DMTA. As we will see, this allows us to
obtain a PDP from a DMTA in a natural way.

As usual, a region is a constraint. For regions
Θ,Θ′ ∈ B(X ), Θ′ is the successor region of Θ if for
all η |= Θ there exists δ ∈ R>0 such that η + δ |= Θ′

and for all δ′ < δ, η + δ′ |= Θ ∨ Θ′. A region Θ satis-
fies a guard g (denoted Θ |= g) iff ∀η |= Θ. η |= g. A
reset operation on region Θ is defined as Θ[X := 0] :=
{η[X := 0] | η |= Θ}.

Definition 7 [Region graph of DMTA] Given
DMTA M = (Loc,X , �0, LocF , E,�), the region
graph G(M) = (V, v0, VF ,Λ, ↪→) with V := Loc×B(X )
is a finite set of vertices, consisting of a location �
in M and a region Θ; v0 ∈ V is the initial vertex
if (�0,�0) ∈ v0; VF := {v | v�1 ∈ LocF } is the set of
accepting vertices; ↪→ ⊆ V × ((

[0, 1] × 2X
) ∪ {δ})×V

is the transition (edge) relation, such that:

• v
δ

↪→ v′ is a delay transition if v�1 = v′�1 and v′�2
is a successor region of v�2;

• v
p,X
↪→ v′ is a Markovian transition if there exists

some transition v�1 � g,X

p
�� v′�1 in M such that

v�2 |= g and v�2[X := 0] |= v′�2; and

Λ : V → R�0 is the exit rate function where Λ(v) :=

E(v�1) if there exists a Markovian transition from v, 0
otherwise.

Note that in the obtained region graph, Markovian
transitions emanating from any boundary region do not
contribute to the reachability probability as the time
to hit the boundary is always zero (cf. (5)). Therefore,
we can remove all the Markovian transitions emanating
from boundary regions and then collapse each of them
with its unique non-boundary (direct) successor. In the
sequel we still denote this collapsed region graph G(M)
by slightly abusing the notation.

We now define the underlying PDP of a DMTA by
using the region graph G(M):

Definition 8 [PDP for DMTA] For DMTA
M = (Loc,X , �0, LocF , E,�) and region graph
G(M) = (V, v0, VF ,Λ, ↪→), let PDP Z(M) =
(V,X , Inv , φ,Λ, μ) where for any v ∈ V ,

• Inv(v) := v�2 and the state space S := {(v, η) |
v ∈ V, η ∈ Inv(v)};

• φ(v, η, t) := η + t for η |= Inv(v);

• Λ(v, η) := Λ(v) is the exit rate of state (v, η);

• [boundary jump] for each delay transition v
δ

↪→ v′

in G(M) we have μ(ξ, {ξ′}) := 1, where ξ = (v, η),
ξ′ = (v′, η) and η |= ∂Inv(v);
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Figure 3. Example of a region graph

• [Markovian jump] for each Markovian transition

v
p,X
↪→ v′ in G(M) we have μ(ξ, {ξ′}) := p, where

ξ = (v, η), η |= Inv(v) and ξ′ = (v′, η[X := 0]).

From now on we write Λ(v) instead of Λ(v, η) as they
coincide.

Example 5 For the DMTA C⊗A in Fig. 3(a), the
reachable part (forward reachable from the initial ver-
tex and backward reachable from the accepting ver-
tices) of the collapsed region graph G(C⊗A) is in
Fig. 3(b). The accepting vertices are sinks.

3.4 Characterizing reachability probabilities

Computing PrC⊗A
�0

(
PathsC⊗A(♦LocF )

)
is now re-

duced to computing the (time-unbounded) reach-
ability probability in the PDP Z(C ⊗ A), given
the initial state (v0,�0) and the set of goal states
{(v, η) | v ∈ VF , η ∈ Inv(v)} (

(VF , ·) for short
)
. Reach-

ability probabilities of untimed events in a PDP Z can
be computed in the embedded DTMP emb(Z). Note
that the set of locations of Z and emb(Z) are equal.
In the sequel, let D denote emb(Z).

For each vertex v ∈ V , we define recursively
ProbD

(
(v, η), (VF , ·)) (

or shortly ProbDv (η)
)

as the
probability to reach the goal states (VF , ·) in D from
state (v, η).

– for the delay transition v
δ

↪→ v′,

ProbD
v,δ(η) = e−Λ(v)�(v,η) · ProbD

v′
�
η + �(v, η)

�
. (4)

Recall that �(v, η) is the minimal time for (v, η) to
hit the boundary ∂Inv(v).

– for the Markovian transition v
p,X
↪→ v′,

ProbD
v,v′(η) =

� �(v,η)

0

p·Λ(v)·e−Λ(v)τ ·ProbD
v′
�
(η+τ)[X := 0]

�
dτ.

(5)
Overall, for each vertex v ∈ V , we obtain:

ProbD
v (η) =

�
ProbD

v,δ(η) +
�

v
p,X
↪→ v′ProbD

v,v′(η), if v /∈ VF

1, otherwise
.

(6)

Note that here the notation η is slightly abused. It
represents a vector of clock variables (see Example 6).
Eq. (4) and (5) are derived based on (3) and (2), re-
spectively. In particular the multi-step reachability
probability is computed using a sequence of one-step
transition probabilities.

Hence we obtain a system of integral equations
(6). One can read (6) either in the form f(ξ) =∫

Dom(ξ)
K(ξ, ξ′)f(dξ′), where K is the kernel and

Dom(ξ) is the domain of integration depending on
the continuous state space S; or in the operator form
f(ξ) = (Jf)(ξ), where J is the integration operator.
Generally, (6) does not necessarily have a unique so-
lution. It turns out that the reachability probability
ProbDv0

(�0) coincides with the least fixpoint of the opera-
tor J (denoted by lfpJ ) i.e., ProbDv0

(�0) = (lfpJ )(v0,�0).
Formally, we have:

Theorem 3 For any CTMC C and DTA A,
PrC⊗A

�0

(
PathsC⊗A(♦LocF )

)
is the least solution of

ProbDv0
(·), where D is the embedded DTMP of C ⊗A.

Remark 2 Clock valuations η and η′ in region Θ may
induce different reachability probabilities. The reason is
that η and η′ may have different periods of time to hit
the boundary, thus the probability for η and η′ to either
delay or take a Markovian transition may differ. This
is in contrast with the traditional timed automata the-
ory as well as probabilistic timed automata [14], where
η and η′ are not distinguished.

Example 6 For the region graph in Fig. 3(b), the sys-
tem of integral equations for v1 in location �0 is as
follows for 1 � x1 = x2 < 2:

ProbDv1
(x1, x2) = ProbDv1,δ(x1, x2) + ProbDv1,v3

(x1, x2),

where ProbDv1,δ(x1, x2) = e−(2−x1)r0 ·ProbDv2
(2, 2) and

ProbDv1,v3
(x1, x2) =

∫ 2−x1

0
r0·e−r0τ ·ProbDv3

(0, x2 +τ) dτ

where ProbDv3
(0, x2 + τ) = 1. The integral equations

for v2 can be derived in a similar way.

3.5 Approximating reachability probabilities

Finally, we discuss how to obtain a solution of (6).
The integral equations (6) are Volterra equations of the
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second type [2]. For a general reference on solutions
to Volterra equations, cf., e.g. [11]. As an alternative
option to solve (6), we proceed to give a general for-
mulation of PrC

(
PathsC(A)

)
using a system of par-

tial differential equations (PDEs). Let the augmented
DTA A[tf ] be obtained from A by adding a new clock
variable y which is never reset and a clock constraint
y < tf on all edges entering the accepting locations in
LocF , where tf is a finite (and usually very large) in-
teger. The purpose of this augmentation is to ensure
that the value of all clocks reaching LocF is bounded.
It is clear that PathsC(A[tf ]) ⊆ PathsC(A). More pre-
cisely, PathsC(A[tf ]) coincides with those paths which
can reach the accepting states of A within the time
bound tf . Note that limtf→∞ PrC(PathsC(A[tf ])) =
PrC(PathsC(A)). We can approximate PrC(PathsC(A))
by solving the PDEs with a large tf as follows:

Proposition 1 Given a CTMC C, an augmented
DTA A[tf ] and the underlying PDP Z(C ⊗ A[tf ]) =

(V,X , Inv , φ,Λ, μ), PrC
(
PathsC(A[tf ])

)
= �v0(0,�0)

(which is the probability to reach the final states in Z
starting from initial state (v0,�0X∪{y}4)) is the unique
solution of the following system of PDEs:

∂�v(y, η)

∂y
+

|X|�
i=1

∂�v(y, η)

∂η(i)
+

Λ(v)·
�

v
p,X
↪→ v′

p·(�v′(y, η[X := 0]) − �v(y, η)) = 0,

where v ∈ V \ VF , η |= Inv(v), η(i) is the i’th clock
variable and y ∈ [0, tf [. For every η |= ∂Inv(v) and

transition v
δ

↪→ v′, the boundary conditions take the
form: �v(y, η) = �v′(y, η). For every vertex v ∈ VF ,
η |= Inv(v) and y ∈ [0, tf [, we have the following PDE:

∂�v(y, η)

∂y
+

|X|�
i=1

∂�v(y, η)

∂η(i)
+ 1 = 0.

The final boundary conditions are that for every vertex
v ∈ V and η |= Inv(v) ∪ ∂Inv(v), �v(tf , η) = 0.

4 Single-clock DTA specifications

For single-clock DTA specifications, we can simplify
the system of integral equations obtained in the previ-
ous section to a system of linear equations where the
coefficients are a solution of a system of ODEs that
can be calculated efficiently.

Given a DMTA M, we denote the set of constants
appearing in the clock constraints of M as {c0, . . . , cm}

4denoting the valuation η with η(x) = 0 for x ∈ X ∪ {y}.

with c0 = 0. We assume the following order: 0 = c0 <
c1 < · · · < cm. Let Δci = ci+1 − ci for 0 � i <
m. Note that for one clock DMTA, the regions in the
region graph G(M) can be represented by the following
intervals: [c0, c1), . . . , [cm,∞). We partition the region
graph G(M) = (V, v0, VF ,Λ, ↪→), or G for short, into a
set of subgraphs Gi = (Vi, VFi,Λi, {Mi, Fi, Bi}), where
0 � i � m and Λi(v) = Λ(v), if v ∈ Vi, 0 otherwise.
These subgraphs are obtained by partitioning V , VF

and ↪→ as follows:

• V =
⋃

0�i�m{Vi}, where Vi = {(�,Θ) ∈ V | Θ ⊆
[ci, ci+1)};

• VF =
⋃

0�i�m{VFi}, where v ∈ VFi iff v ∈ Vi∩VF ;

• ↪→=
⋃

0�i�m{Mi ∪ Fi ∪ Bi}, where Mi is the set
of Markovian transitions (without reset) between
vertices inside Gi; Fi is the set of delay transitions
from the vertices in Gi to that in Gi+1 (Forward)
and Bi is the set of Markovian transitions (with
reset) from Gi to G0 (Backward). It is easy to see
that Mi, Fi, and Bi are pairwise disjoint.

Since the initial vertex of G0 is v0 and the initial ver-
tices of Gi for 0 < i � m are implicitly given by
Fi−1, we omit them in the definition. As an ex-
ample, the vertices in Fig. 4 are partitioned by the
ovals and the Mi edges are unlabeled while the Fi

and Bi edges are labeled with δ and “reset”, respec-
tively. The VF vertices (double circles) may appear
in any Gi. Actually, if v = (�, [ci, ci+1)) ∈ VF , then
v′ = (�, [cj , cj+1)) ∈ VF for i < j � m. This is true
because VF = {(�, true) | � ∈ LocF }. It implies that
for each final vertex not in the last region, there is a
delay transition from it to the next region, see the fi-
nal vertex in Gi+1 in Fig. 4. The exit rate functions
and the probabilities on Markovian edges are omitted
in the graph.

Given a subgraph Gi (0�i�m) of G with ki states, let
the probability vector �Ui(x) = [u1

i (x), . . . , uki
i (x)]

	 ∈
R

ki×1 where uj
i (x) is the probability to go from vertex

vj
i ∈ Vi to vertices in VF (in G) at time x. Starting

from (4-6), we provide a set of integral equations for
�Ui(x) which we later on reduce to a system of linear
equations. Distinguish two cases:
Case 0 � i < m: �Ui(x) is given by:

�Ui(x) =
∫ Δci−x

0

Mi(τ)�Ui(x + τ)dτ (7)

+
∫ Δci−x

0

Bi(τ)dτ · �U0(0) (8)

+ Di(Δci − x) · Fi
�Ui+1(0), (9)

where x ∈ [0,Δci] and
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Figure 4. Partitioning the region graph

• Di(x) ∈ R
ki×ki is the delay probability matrix,

where for any 0 � j � ki, Di(x)[j, j] = e−E(vj
i )x

(the off-diagonal elements are zero);
• Mi(x) = Di(x)·Ei·Pi ∈ R

ki×ki is the probability
density matrix for the Markovian transitions in-
side Gi, where Pi and Ei are the transition prob-
ability matrix and exit rate matrix for vertices in-
side Gi, respectively;

• Bi(x) ∈ R
ki×k0 is the probability density matrix

for the reset edges Bi, where Bi(x)[j, j′] indicates
the probability density function to take the Marko-
vian jump with reset from the j-th vertex in Gi to
the j′-th vertex in G0; and

• Fi ∈ R
ki×ki+1 is the incidence matrix for delay

edges Fi. More specifically, Fi[j, j′] = 1 indicates
that there is a delay transition from the j-th vertex
in Gi to the j′-th vertex in Gi+1; 0 otherwise.

Let us explain these equations. Eq. (9) is obtained from
(4) where Di(Δci−x) indicates the probability to delay
until the “end” of region i, and Fi

�Ui+1(0) denotes the
probability to continue in Gi+1 (at relative time 0). In
a similar way, (7) and (8) are obtained from (5); the
former reflects the case where clock x is not reset, while
the latter considers the reset of x (and returning to G0).

Case i = m: �Um(x) is simplified as follows:

�Um(x)=
∫ ∞

0

M̂m(τ)�Um(x+τ)dτ+�1F +
∫ ∞

0

Bm(τ)dτ ·�U0(0)

(10)
where M̂m(τ)[v, ·] = Mm(τ)[v, ·] for v /∈ VF , 0 other-
wise. �1F is a vector such that �1F [v] = 1 if v ∈ VF ,
0 otherwise. We note that �1F stems from the second
clause of (6), and M̂m is obtained by setting the cor-
responding elements of Mm to 0. Also note that as
the last subgraph Gm involves infinite regions, it has
no delay transitions.

Before solving the system of integral equations (7-
10), we first make the following observations:

(i) Due to the fact that inside Gi there are only
Markovian jumps with neither resets nor delay tran-
sitions, Gi with (Vi,Λi,Mi) forms a CTMC Ci, say.
For each Gi we define an augmented CTMC Ca

i with
state space Vi ∪ V0, such that all V0-vertices are made
absorbing in Ca

i . The edges connecting Vi to V0 are
kept and all the edges inside C0 are removed. The aug-
mented CTMC is used to calculate the probability to
start from a vertex in Gi and take a reset edge in a
certain time.

(ii) Given any CTMC C with k states and rate ma-
trix P · E, the matrix Π(x) is given by:

Π(x) =
∫ x

0

M(τ)Π(x − τ)dτ + D(x). (11)

Intuitively, Π(t)[j, j′] indicates the probability to start
from vertex j and reach j′ at time t.

The following proposition states the close relation-
ship between Π(x) and the transient probability vector:

Proposition 2 Given a CTMC C with initial distri-
bution α, rate matrix P·E and Π(t), �π(t) satisfies the
following two equations:

�π(t) = α · Π(t), (12)
d�π(t)

dt
= �π(t) · Q, (13)

where Q = P·E − E is the infinitesimal generator.

�π(t) is the transient probability vector with �π(t)[s] indi-
cating the probability to be in state s at time t given the
initial probability distribution α. Eq. (13) is the cele-
brated forward Chapman-Kolmogorov equations. Ac-
cording to this proposition, solving the integral equa-
tion Π(t) boils down to selecting the appropriate initial
distribution vector α and solving the system of ODEs
(13), which can be done very efficiently using the uni-
formization technique.

Prior to exposing how to solve the system of integral
equations by solving a system of linear equations, we
define Π̄a

i ∈ R
ki×k0 for an augmented CTMC Ca

i to
be part of Πa

i , where Π̄a
i only keeps the probabilities

starting from Vi and ending in V0. Actually,

Πa
i (x) =

(
Πi(x) Π̄a

i (x)
0 I

)
,

where 0 ∈ R
k0×ki is the matrix with all elements zero

and I ∈ R
k0×k0 is the identity matrix.

Theorem 4 For subgraph Gi of G with ki states, it
holds for 0 � i < m that:

�Ui(0) = Πi(Δci) · Fi
�Ui+1(0) + Π̄a

i (Δci) · �U0(0), (14)
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where Πi(Δci) and Π̄a
i (Δci) are for CTMC Ci and the

augmented CTMC Ca
i , respectively. For case i = m,

�Um(0) = P̂i · �Um(0) +�1F + B̂m · �U0(0), (15)

where P̂i(v, v′) = Pi(v, v′) if v /∈ VF ; 0 otherwise and
B̂m =

∫ ∞
0

Bm(τ)dτ .

Since the coefficients of the linear equations are all
known, solving the system of linear equations yields
�U0(0), which contains the probability Probv0(0) of
reaching VF from initial vertex v0.

Now we explain how (14) is derived from (7)-(9).
The term Πi(Δci) · Fi

�Ui+1(0) is for the delay transi-
tions, where Fi specifies how the delay transitions are
connected between Gi and Gi+1. The term Π̄a

i (Δci) ·
�U0(0) is for Markovian transitions with reset. Π̄a

i (Δci)
in the augmented CTMC Ca

i specifies the probabilities
to first take transitions inside Gi and then a one-step
Markovian transition back to G0. Eq. (15) is derived
from (10). Since it is the last region and time goes to
infinity, the time to enter the region is irrelevant (thus
set to 0). Thus

∫ ∞
0

M̂i(τ)dτ boils down to P̂i. In fact,
the Markovian jump probability inside Gm can be taken
from the embedded DTMC of Cm, which is P̂i.

Remark 3 We note that for two-clock DTA which
yield two-clock DMTA, the approach given in this sec-
tion fails in general. In the single-clock case, the reset
guarantees to jump to G0(0) and delay to Gi+1(0) when
it is in Gi. However, in the two-clock case, after delay
or reset generally only one clock has a fixed value while
the value of the other one is not determined.

The time-complexity of computing the reachability
probability in the single-clock DTA case is O(m · |S|2 ·
|Loc|2 · λ ·Δc + m3 · |S|3 · |Loc|3), where m is the num-
ber of constants appearing in DTA, |S| is the number
of states in the CTMC, |Loc| is the number of loca-
tions in the DTA, λ is the maximal exit rate in the
CTMC and Δc = max0≤i<m{ci+1 − ci}. The first
term m · |S|2 · |Loc|2 · λ · Δc is due to the uniformiza-
tion technique for computing transient distributions;
and the second term m3 · |S|3 · |Loc|3 is the time com-
plexity for solving a system of linear equations with
O(m · |S| · |Loc|) variables.

5 Conclusion

We addressed the quantitative verification of a
CTMC C against a DTA A. As a key result, we ob-
tained that the probability of C |= A can be reduced
to computing reachability probabilities in PDPs. For

single-clock DTA, this reduces to solving a system of
linear equations yielding an equivalent, though simpler,
characterization as in [13]. Moreover, it essentially pro-
vides a proof of the procedure proposed in [13]. Future
work is planned for considering non-deterministic TA,
and M(I)TL model checking.
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