
Model Checking Stochastic Branching Processes�

Taolue Chen, Klaus Dräger, and Stefan Kiefer

University of Oxford, UK
{taolue.chen,klaus.draeger,stefan.kiefer}@cs.ox.ac.uk

Abstract. Stochastic branching processes are a classical model for de-
scribing random trees, which have applications in numerous fields includ-
ing biology, physics, and natural language processing. In particular, they
have recently been proposed to describe parallel programs with stochas-
tic process creation. In this paper, we consider the problem of model
checking stochastic branching process. Given a branching process and a
deterministic parity tree automaton, we are interested in computing the
probability that the generated random tree is accepted by the automa-
ton. We show that this probability can be compared with any rational
number in PSPACE, and with 0 and 1 in polynomial time. In a sec-
ond part, we suggest a tree extension of the logic PCTL, and develop
a PSPACE algorithm for model checking a branching process against a
formula of this logic. We also show that the qualitative fragment of this
logic can be model checked in polynomial time.

1 Introduction

Consider an interactive program featuring two types of threads: interrupt-
ible threads (type I) and blocking threads (type B) which perform a non-
interruptible computation or database transaction. An I-thread responds to user
commands which occasionally trigger the creation of a B-thread. A B-thread
may either terminate, or continue, or spawn another B-thread in an effort to
perform its tasks in parallel. Under probabilistic assumptions on the thread
behaviour, this scenario can be modelled as a stochastic branching process as
follows:

I
0.9
↪−−→ I B

0.2
↪−−→ D D

1
↪−→ D

I
0.1
↪−−→ (I, B) B

0.5
↪−−→ B (1)

B
0.3
↪−−→ (B,B)

This means, e.g., that a single step of an I-thread spawns a B-thread with prob-
ability 0.1. We have modelled the termination of a B-thread as a transformation

� This work was partially supported by the ERC Advanced Grant VERIWARE and
EPSRC grant EP/F001096/1. Stefan Kiefer is supported by a DAAD postdoctoral
fellowship.

B. Rovan, V. Sassone, and P. Widmayer (Eds.): MFCS 2012, LNCS 7464, pp. 271–282, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

272 T. Chen, K. Dräger, and S. Kiefer

I

I B

I

I B

B B

B D

(a) A prefix of a tree that the
example process might create.

ε I

1 I 2 B

11 I

111 I 112 B

21 B 22 B

211 B 221 D

(b) A finite tree over {I,B,D}.

Fig. 1. Figures for Section 1 (left) and 2 (right)

into a “dead” state D.1 A “run” of this process unravels an infinite tree whose
branches record the computation of a thread and its ancestors. For example,
Figure 1(a) shows the prefix of a tree that the example process might create.
The probability of creating this tree prefix is the product of the probabilities of
the applied rules, i.e., 0.1 · 0.9 · 0.1 · 0.3 · 0.5 · 0.2.

This example is an instance of a (stochastic multitype) branching process,
which is a classical mathematical model with applications in numerous fields in-
cluding biology, physics and natural language processing, see e.g. [12,2]. In [13]
an extension of branching processes was introduced to model parallel programs
with stochastic process creation. The broad applicability of branching processes
arises from their simplicity: each type models a class of threads (or tasks, ani-
mals, infections, molecules, grammatical structures) with the same probabilistic
behaviour.

This paper is about model checking the random trees created by branching
processes. Consider a specification that requires a linear-time property to hold
along all tree branches. In the example above, e.g., we may specify that “no
process should become forever blocking”, more formally, “on all branches of the
tree we see infinitely many I or D”. We would like to compute the probability
that all branches satisfy such a given ω-regular word property. Curiously, this
problem generalises two seemingly very different classical problems:

(i) If all rules in the branching process are of the form X
p
↪−→ Y , i.e., each node

has exactly one child, the branching process describes a finite-state Markov
chain. Computing the probability that a run of such a Markov chain satisfies
an ω-regular property is a standard problem in probabilistic verification, see
e.g. [5,16].

(ii) If for each type X in the branching process there is only one rule X
1
↪−→

α (where α is a nonempty sequence of types), then the branching process
describes a unique infinite tree. Viewing the types in α as possible successor

1 We disallow “terminating” rules like B
0.2
↪−−→ ε. This is in contrast to classical branch-

ing processes, but technically more convenient for model checking, where absence of
deadlocked states is customarily assumed.

Model Checking Stochastic Branching Processes 273

states of X in a finite nondeterministic transition system, the branches in the
created tree are exactly the possible runs in the finite transition systems. Of
course, checking if all runs in such a transition system satisfy an ω-regular
specification is also a well-understood problem.

One could expect that well-known Markov-chain based techniques for dealing
with problem (i) can be generalised to branching processes. This is not the case:
it follows from our results that in the example above, the probability that all
branches satisfy the mentioned property is 0;2 however, if the numbers 0.2 and
0.3 in (1) are swapped, the probability changes from 0 to 1. This is in sharp
contrast to finite-state Markov chains, where qualitative properties (satisfaction
with probability 0 resp. 1) do not depend on the exact probability of individual
transitions.

The rules of a branching process are reminiscent of the rules of probabilis-
tic pushdown automata (pPDA) or the equivalent model of recursive Markov
chains (RMCs). However, the model-checking algorithms for both linear-time
and branching-time logics proposed for RMCs and pPDAs [8,10,11] do not work
for branching processes, essentially because pPDA and RMCs specify Markov
chains, whereas branching processes specify random trees. Branching processes
cannot be transformed to pPDAs, at least not in a straightforward way. Note
that if the rules in the example above are understood as pPDA rules with I as
starting symbol, then B will never even occur as the topmost symbol.

To model check branching processes, we must leave the realm of Markov chains
and consider the probability space in terms of tree prefixes [12,2]. Consequently,
we develop algorithms that are very different from the ones dealing with the
special cases (i) and (ii) above. Nevertheless, for qualitative problems (satisfac-
tion with probability 0 resp. 1) our algorithms also run in polynomial time with
respect to the input models, even for branching processes that do not conform
to the special cases (i) and (ii) above.

Instead of requiring a linear-time property to hold on all branches, we con-
sider more general specifications in terms of deterministic parity tree automata.
In a nutshell, our model-checking algorithms work as follows: (1) compute the
“product” of the input branching process and the tree automaton; (2) reduce the
analysis of the resulting product process to the problem of computing the proba-
bility that all branches reach a “good” symbol; (3) compute the latter probability
by setting up and solving a nonlinear equation system. Step (1) can be seen as
an instance of the automata-theoretic model-checking approach. The equation
systems of step (3) are of the form x = f(x), where x is a vector of variables, and
f(x) is a vector of polynomials with nonnegative coefficients. Solutions to such
equation systems can be computed or approximated efficiently [10,7,9]. Step (2)
is, from a technical point of view, the main contribution of the paper; it requires
a delicate and nontrivial analysis of the behaviour of branching processes.

In Section 4 we also consider logic specifications. We propose a new logic,
PTTL, which relates to branching processes in the same manner as the logic
PCTL relates to Markov chains. Recall that PCTL contains formulae such as
2 Intuitively, this is because a B-thread more often clones itself than dies.

274 T. Chen, K. Dräger, and S. Kiefer

[φUψ]≥p which specifies that the probability of runs satisfying φUψ is at least p.
For PTTL we replace the linear-time subformulae such as φUψ with tree subfor-
mulae such as φEUψ or φAUψ, so that, e.g., [φEUψ]≥p specifies that the prob-
ability of trees that have a branch satisfying φUψ is at least p, and [φAUψ]≥p
specifies that the probability of trees all whose branches satisfy φUψ is at least p.
We show that branching processes can be model checked against this logic in
PSPACE, and against its qualitative fragment in polynomial time.

Related Work. The rich literature on branching processes (see e.g. [12,2] and
the references therein) does not consider model-checking problems. Probabilistic
split-join systems [13] are branching processes with additional features for pro-
cess synchronisation and communication. The paper [13] focuses on performance
measures (such as runtime, space and work), and does not provide a functional
analysis. The models of pPDAs and RMCs also feature dynamic task creation
by means of procedure calls, however, as discussed above, the existing model-
checking algorithms [8,10,11] do not work for branching processes. Several recent
works [10,7,9] have studied the exact and approximative solution of fixed-point
equations of the above mentioned form. Our work connects these algorithms
with the model-checking problem for branching processes.

Organisation of the Paper. After some preliminaries (Section 2), we present our
results on parity specifications in Section 3. In Section 4 we propose the new logic
PTTL and develop model-checking algorithms for it. We conclude in Section 5.
Some proofs have been moved to a technical report [4].

2 Preliminaries

We let N and N0 denote the set of positive and nonnegative integers, respectively.
Given a finite set Γ , we write Γ ∗ :=

⋃
k∈N0

Γ k for the set of tuples and Γ+ :=
⋃
k∈N

Γ k for the set of nonempty tuples over Γ .

Definition 1 (Branching process). A branching process is a tuple Δ =
(Γ, ↪−→,Prob) where Γ is a finite set of types, ↪−→ ⊆ Γ × Γ+ is a finite set of
transition rules, Prob is a function assigning positive probabilities to transition
rules so that for every X ∈ Γ we have that

∑
X↪−→α Prob(X ↪−→ α) = 1.

We write X
p
↪−→ α if Prob(X ↪−→ α) = p. Observe that since the set of transition

rules is finite, there is a global upper bound KΔ such that |α| ≤ KΔ for all
X ↪−→ α.

A tree is a nonempty prefix-closed language V ⊆ N
∗ for which there exists a

function βV : V → N0 such that for all w ∈ V and k ∈ N, wk ∈ V if and only
if k ≤ βV (w). βV (w) is called the branching degree of w in V . We denote by Bf
the set of finite trees, and by Bi the set of infinite trees without leaves (i.e. trees
such that βV (w) > 0 for all w ∈ V). A prefix of V is a tree V ′ ⊆ V such that
for all w ∈ V ′, βV ′(w) ∈ {0, βV (w)}.

Model Checking Stochastic Branching Processes 275

A tree over Γ is a pair (V,
) where V is a tree, and
 : V → Γ is a labelling
function on the nodes. Given a tree t = (V,
) with a node u ∈ V , we write
tu = (Vu,
u) for the subtree of t rooted at u; here Vu = {w ∈ N

∗ | uw ∈ V } and

u(w) =
(uw) for w ∈ Vu. A tree (V ′,
′) is a prefix of (V,
) if V ′ is a prefix of
V and
′(w) =
(w) for all w ∈ V ′.

A path (resp. branch) in a tree t = (V,
) is a finite (resp. infinite) sequence
u0, u1, . . . with ui ∈ V such that u0 = ε is the root of t, and ui+1 = uiki for ki ∈ N

is a child of ui. A branch label of t is a sequence
(u0),
(u1), . . ., where u0, u1, . . .
is a branch. The successor word of a node w ∈ V is σt(w) =
(w1) . . .
(wβV (w)).

Given a tree t = (V,
) over Γ and a subset W ⊆ V , we write t |= AFW
if all its branches go through W , i.e., for all v ∈ V there is a w ∈ W such
that v is a predecessor of w or vice versa. If Λ ⊆ Γ , we write t |= AFΛ for
t |= AF{w ∈ V |
(w) ∈ Λ}. Similarly, we write t |= AGΛ if
(w) ∈ Λ for all
w ∈ V .

Example 2. We illustrate these notions. Figure 1(b) shows a finite tree
t = (V,
) ∈ Bf over Γ with Γ = {I, B,D} and V =
{ε, 1, 11, 111, 112, 2, 21, 211, 22, 221} and, e.g.,
(ε) = I and
(112) = B. We have
βV (ε) = 2 and βV (21) = 1 and βV (211) = 0. The node 2 is a predecessor of 211.
The tree t′ = (V ′,
′) with V ′ = {ε, 1, 2, 21, 22} and
′ being the restriction of

on V ′ is a prefix of t. The sequence ε, 2, 21 is a path in t. We have σt(11) = IB.
The tree satisfies t |= AF{1, 21, 221} and t |= AF{I}.
A tree t = (V,
) over Γ is generated by a branching process Δ = (Γ, ↪−→,Prob) if
for every w ∈ V with βV (w) > 0 we have
(w) ↪−→ σt(w). We write �Δ� and �Δ�
for the sets of trees (V,
) generated by Δ with V ∈ Bf and V ∈ Bi, respectively.
For any X ∈ Γ , �Δ�X ⊆ �Δ� and �Δ�X ⊆ �Δ� contain those trees (V,
) for
which
(ε) = X .

Definition 3 (Probability space of trees, cf. [12, Chap. VI]). Let Δ =
(Γ, ↪−→,Prob) be a branching process. For any finite tree t = (V,
) ∈ �Δ�,
let the cylinder over t be CylΔ(t) := {t′ ∈ �Δ� | t is a prefix of t′}, and
define pΔ(t) :=

∏
w∈V :βV (w)>0 Prob(
(w), σt(w)). For each X ∈ Γ we de-

fine a probability space (�Δ�X , ΣX ,PrX), where ΣX is the σ-algebra generated
by {CylΔ(t) | t ∈ �Δ�X}, and PrX is the probability measure generated by
PrX(CylΔ(t)) = pΔ(t). Sometimes we write PrΔX to indicate Δ. We may drop the
subscript of PrX if X is understood. We often write tX to mean a tree t ∈ �Δ�X
randomly sampled according to the probability space above.

Example 4. Let Δ = (Γ, ↪−→,Prob) be the branching process with Γ = {I, B,D}
and the rules as given in (1) on page 271. The tree t from Figure 1(b) is generated
byΔ: we have t ∈ �Δ�I . We have PrI(CylΔ(t)) = pΔ(t) = 0.1·0.9·0.1·0.3·0.5·0.2;
this is probability of those trees t′ ∈ �Δ�I that have prefix t.

We say that a quantity q ∈ [0, 1] is PPS-expressible if one can compute, in
polynomial time, an integer m ∈ N and a fixed-point equation system x = f(x),
where x is a vector of m variables, f is a vector of m multivariate polynomials

276 T. Chen, K. Dräger, and S. Kiefer

over x with nonnegative rational coefficients, f(1) ≤ 1 where 1 denotes the
vector (1, . . . , 1), and q is the first component of the least nonnegative solution
y ∈ [0,∞)m of x = f(x).

Proposition 5. Let q be PPS-expressible. We have:

(a) For τ ∈ {0, 1} one can decide in (strongly) polynomial time whether q = τ .
(b) For τ ∈ Q one can decide in polynomial space whether q �� τ , where �� ∈

{<,>,≤,≥,=, �=}.
(c) One can approximate q within additive error 2−j in time polynomial in both j

and the (binary) representation size of f .

Part (a) follows from [10,6]. Part (b) is shown in [10, section 4] by appealing to
the existential fragment of the first-order theory of the reals, which is decidable
in PSPACE, see [3,14]. Part (c) follows from a recent result [9, Corollary 4.5]. The
following proposition follows from a classical result on branching processes [12].

Proposition 6. Let Δ = (Γ, ↪−→,Prob) be a branching process. Let X ∈ Γ and
Λ ⊆ Γ . Then Pr[tX |= AFΛ] is PPS-expressible.

3 Parity Specifications

In this section we show how to compute the probability of those trees that satisfy
a given parity specification.

A (top-down) deterministic (amorphous) parity tree automaton (DPTA) is a
tuple A = (Q,Γ, q0, δ, c), where Q is the finite set of states, q0 ∈ Q is the initial
state, δ : Q × Γ × N → Q∗ is the transition function satisfying |δ(q,X, n)| = n
for all q,X, n, and c : Q → N is a colouring function. Such an automaton A
maps a tree t = (V,
) over Γ to the (unique) tree A(t) = (V,
′) over Q such
that
(ε) = q0 and for all w ∈ V , σA(t)(w) = δ(
′(w),
(w), βV (w)).

Automaton A = (Q,Γ, q0, δ, c) accepts a tree t over Γ if for all branch la-
bels q0q1 · · · ∈ Qω of A(t) the highest colour that occurs infinitely often in
c(q0), c(q1), . . . is even.

Example 7. Recall (e.g., from [15]) that any ω-regular word property (e.g., any
LTL specification) can be translated into a deterministic parity word automaton.
Such an automaton, in turn, can be easily translated into a DPTA which specifies
that the labels of all branches satisfy the ω-regular word property. We do not
spell out the translation, but let us note that in the resulting tree automaton,
for all (q,X) ∈ Q× Γ there is q′ ∈ Q such that δ(q,X, k) = (q′, . . . , q′) for all k.

Given a colouring function c : Γ → N, a tree (V,
) over Γ is called good for c if
for each branch u0, u1, · · · the largest number that occurs infinitely often in the
sequence c(
(u0)), c(
(u1)), . . . is even. The following proposition is immediate.

Proposition 8. Let Δ = (Γ, ↪−→,Prob) be a branching process, and let A =
(Q,Γ, q0, δ, c) be a DPTA. Define the product of Δ and A as the branching

process Δ• = (Γ × Q, ↪−→•,Prob•) with (X, q)
p
↪−→• (Y1, q1) . . . (Yk, qk)) for X

p
↪−→

Model Checking Stochastic Branching Processes 277

Y1 . . . Yk, where (q1, . . . , qk) = δ(q,X, k). Define c• : Γ ×Q → N by c•(X, q) :=
c(q). Then for all X ∈ Γ we have

PrΔX [t is accepted by A] = PrΔ•
(X,q0)

[t is good for c•] .

In view of Proposition 8, it suffices to compute the probability
Pr[tX is good for c], where a branching process Δ = (Γ, ↪−→,Prob) with
X ∈ Γ and a colouring function c : Γ → N are fixed for the rest of the
section. We write Pr[tX is good] if c is understood. We distinguish between the
qualitative problem, i.e., computing whether Pr[tX is good] = 1 holds for a given
X ∈ Γ , and the quantitative problem, i.e., the computation of Pr[tX is good].

3.1 The Qualitative Problem

The outline of this subsection is the following: We will show that the qualitative
problem can be solved in polynomial time (Theorem 12). First we show (Proposi-
tion 9) that it suffices to compute all clean types, where “clean” is defined below.
We will show (Lemma 11) that a type X is clean if and only if Pr[tX |= AFΛ] = 1
holds for suitable set Λ ⊆ Γ . By Proposition 6 the latter condition can be checked
in polynomial time, completing the qualitative problem.

If there exists a tree (V,
) ∈ �Δ�X and a node u ∈ V with
(u) = Y , then we
say that Y is reachable from X . Given X ∈ Γ and a finite word w = X0 · · ·Xm ∈
Γ+, we say that w is X-closing if m ≥ 1 and Xm = X and c(Xi) ≤ c(X) for
0 ≤ i ≤ m. A branch with label X0X1 · · · ∈ Γω is called X-branch if X0 = X
and there is a sequence 0 = m0 < m1 < m2 < · · · such that Xmi · · ·Xmi+1 is
X-closing for all i ∈ N. We say that a type Y ∈ Γ is odd (resp. even), if c(Y) is
odd (resp. even). Observe that a tree t is good if and only if for all its vertices u
and all odd types Y the subtree tu does not have a Y -branch. A type Y ∈ Γ
is clean if Y is even or Pr[tY has a Y -branch] = 0. The following proposition
reduces the qualitative problem to the computation of all clean types.

Proposition 9. We have that Pr[tX is good] = 1 if and only if all Y reachable
from X are clean.

Proof. If there is an unclean reachable Y , then Pr[tY is good] < 1 and so
Pr[tX is good] < 1. Otherwise, for each node v in tX and for each odd Y we
have that Pr[(tX)v has a Y -branch] = 0. Since the set of nodes in a tree is
countable, it follows that almost surely no subtree of tX has a Y -branch for
odd Y ; i.e., tX is almost surely good. 	

Call a path in a tree X-closing if the corresponding label sequence is X-closing.
Given X ∈ Γ , we define

NX := {Y ∈ Γ | no tree in �Δ�Y has an X-closing path} .

Note that c(Y) > c(X) implies Y ∈ NX and that NX is computable in poly-
nomial time. A word X0X1 · · · ∈ (Γ ∗ ∪ Γω) is called X-failing if no prefix is

278 T. Chen, K. Dräger, and S. Kiefer

X-closing and there is i ≥ 0 with Xi ∈ NX . A branch in a tree is called X-
failing if the corresponding branch label is X-failing. Given X ∈ Γ and a tree t,
let ClosX(t) (resp. FailX(t)) denote the set of those nodes w in t such that the
path to w is X-closing (resp. X-failing) and no proper prefix of this path is
X-closing (resp. X-failing). We will need the following lemma.

Lemma 10. Define the events C := {tX | tX |= AF (ClosX(tX) ∪ FailX(tX))}
and I := {tX | ClosX(tX) is infinite}. Then C ∩ I = ∅ and Pr[C ∪ I] = 1.

The following lemma states in particular that an odd type X is clean if and only
if Pr[tX |= AFNX] = 1. We prove something slightly stronger:

Lemma 11. Define the events F := {tX | tX |= AFNX} and H := {tX |
tX has an X-branch}. Then F ∩H = ∅ and Pr[F ∪H] = 1.

Now we have:

Theorem 12. One can decide in polynomial time whether Pr[tX is good] = 1.

Proof. By Proposition 9 it suffices to show that cleanness can be determined
in polynomial time. By Lemma 11 an odd type X is clean if and only if
Pr[tX |= AFNX] = 1. The latter condition is decidable in polynomial time by
Proposition 6. 	

Example 13. Consider the branching process with Γ = {1, 2, 3, 4} and the rules

1
1/3
↪−−→ 11, 1

2/3
↪−−→ 4, 2

1/2
↪−−→ 13, 2

1/2
↪−−→ 23, 3

2/3
↪−−→ 33, 3

1/3
↪−−→ 1, 4

1
↪−→ 4, and the

colouring function c with c(i) = i for i ∈ {1, 2, 3, 4}. Using a simple reachability
analysis one can compute the sets N1 = {2, 3, 4}, N2 = {1, 3, 4}, N3 = {1, 4},
N4 = ∅. Applying Proposition 6 we find Pr[t3 |= AFN3] < 1 = Pr[t1 |= AFN1].
It follows by Lemma 11 that the only unclean type is 3. Since type 3 is only
reachable from 2 and from 3, Proposition 9 implies that Pr[tX is good] = 1 holds
if and only if X ∈ {1, 4}.

3.2 The Quantitative Problem

Define G := {X ∈ Γ | all Y reachable from X are clean}. The following Propo-
sition 14 states that Pr[tX is good] = Pr[tX |= AFG]. This implies, by Proposi-
tion 6, that the probability is PPS-expressible (see Theorem 15).

Proposition 14. We have Pr[tX is good] = Pr[tX |= AFG].

This implies the following theorem.

Theorem 15. For any X ∈ Γ we have that Pr[tX is good] is PPS-expressible.

Proof. By Proposition 14 we have Pr[tX is good] = Pr[tX |= AFG]. So we can
apply Proposition 6 with Λ := G. Note that G can be computed in polynomial
time, as argued in the proof of Theorem 12. 	

Model Checking Stochastic Branching Processes 279

Example 16. We continue Example 13, where we have effectively computed
G = {1, 4}, and thus established that Pr[t1 is good] = Pr[t4 is good] = 1. By
Proposition 14 the probabilities Pr[t2 is good] and Pr[t3 is good] are given by
Pr[t2 |= AFG] and Pr[t3 |= AFG]. Proposition 6 assures that these probabilities
are PPS-expressible; in fact they are given by the least nonnegative solution of
the equation system [x2 = 1

2x3 +
1
2x2x3, x3 = 2

3x
2
3 +

1
3], which is x2 = 1

3 and
x3 = 1

2 . Hence, we have Pr[t2 is good] = 1
3 and Pr[t3 is good] = 1

2 .

A Lower Bound. We close the section with a hardness result in terms of the
PosSLP problem, which asks whether a given straight-line program or, equiv-
alently, arithmetic circuit with operations +, −, ·, and inputs 0 and 1, and a
designated output gate, outputs a positive integer or not. PosSLP is in PSPACE,
but known to be in NP. The PosSLP problem is a fundamental problem for nu-
merical computation, see [1] for more details.

For given Γ with D ∈ Γ , consider the DPTA Ahit = ({q, r}, Γ, a, δ, c) with
c(q) = 1 and c(r) = 2; δ(q,X, 1) = (q) and δ(q,X, 2) = (q, q) for X ∈ Γ \
{D}; δ(q,D, 1) = (r) and δ(q,D, 2) = (r, r); δ(r,X, 1) = (r) and δ(r,X, 2) =
(r, r) for X ∈ Γ . Automaton Ahit specifies that all branches satisfy the LTL
property FD, i.e., all branches eventually hit D. Let QUANT-HIT denote the
problem to decide whether PrΔX [t is accepted by Ahit] > p holds for a given
branching process Δ = (Γ, ↪−→,Prob) with X ∈ Γ and a given rational p ∈ (0, 1).
By Theorem 15 and Proposition 5, QUANT-HIT is in PSPACE. We have the
following proposition:

Proposition 17 (see Theorem 5.3 of [10]). QUANT-HIT is PosSLP-hard.

4 Logic Specifications

In this section, we propose a logic akin to PCTL, called probabilistic tree tempo-
ral logic, to specify the properties of random trees generated from a branching
process. We also present model-checking algorithms for this logic.

Definition 18 (PTTL). Probabilistic Tree Temporal Logic (PTTL) formulae
over a set Σ of atomic propositions are defined by the following grammar:

φ, φ′ ::= � | a | ¬φ | φ ∧ φ′ | [ψ]��r
ψ ::= AXφ | EXφ | φAUφ′ | φEUφ′ | φARφ′ | φERφ′ ,

where a ∈ Σ, �� ∈ {<,≤,≥, >}, and r ∈ Q ∩ [0, 1]. If r ∈ {0, 1} holds for all
subformulae of a PTTL formula φ, we say that φ is in the qualitative fragment
of PTTL. We use standard abbreviations such as ⊥ for ¬�, AFφ for �AUφ,
EGφ for ⊥ERφ, etc.

For the PTTL semantics we need the notion of a labelled branching process,
which is a branching process Δ = (Γ, ↪−→,Prob) extended by a function χ : Γ →
2Σ, where χ(X) indicates which atomic propositions the type X satisfies.

280 T. Chen, K. Dräger, and S. Kiefer

Definition 19 (Semantics of PTTL). Given a labelled branching process Δ =
(Γ, ↪−→,Prob, χ), we inductively define a satisfaction relation |= as follows, where
X ∈ Γ :

X |= �
X |= a ⇔ a ∈ χ(X)
X |= ¬φ ⇔ X �|= φ
X |= φ ∧ φ′ ⇔ X |= φ and X |= φ′

X |= [ψ]��r ⇔ PrΔX [tX |= ψ] �� r

t |= AXφ ⇔ for all branches u0u1 · · · of t we have
(u1) |= φ
t |= φAUφ′ ⇔ for all branches u0u1 · · · of t there exists i ∈ N with

(ui) |= φ′ and for all 0 ≤ j < i we have
(uj) |= φ
t |= φARφ′ ⇔ for all branches u0u1 · · · of t and for all i ∈ N we have

(ui) |= φ′ or there exists 0 ≤ j < i with
(uj) |= φ

The modalities EX, EU and ER are defined similarly, with “for all branches”
replaced by “there exists a branch”.

We now present the model checking algorithm. The algorithm shares its basic
structure with the well-known algorithm for (P)CTL and finite (probabilistic)
transition systems. Given a PTTL formula φ, the algorithm recursively evaluates
the truth values of the PTTL subformulae ψ of φ for all types. The boolean
operators can be dealt with as in the CTL algorithm. Hence, it suffices to examine
formulae of the form [ψ]��r. Observe that we have EXφ ≡ ¬AX¬φ and φERφ′ ≡
¬(¬φAU¬φ′) and φEUφ′ ≡ ¬(¬φAR¬φ′) and

X |= [¬φ]��r if and only if X |= [φ]�̄�1−r ,

where �̄� ∈ {≥, >,<,≤} is the complement operator of �� ∈ {<,≤,≥, >}. Hence,
it suffices to deal with the following three cases: (i) X |= [AXφ]��r; (ii) X |=
[φAUψ]��r; (iii) X |= [φARψ]��r. We assume in the following case distinction
that the algorithm has already computed the truth values of the subformulae
φ, ψ. One could now construct a suitable DPTA for each of the cases (i)–(iii),
and proceed according to the machinery of Section 3. Instead we present in the
following a more direct and more efficient algorithm which takes advantage of
the special shape of the linear-time operators X, U and R.

Case (i): We have Pr[tX |= AXφ] =
∑

X
p

↪−→Y1...Yk

Y1,...,Yk|=φ

p, which is easy to compute. So

one can decide in polynomial time whether X |= [AXφ]��r.
Case (ii): We reduce the check of the φAUψ modality to a check of AF. To
this end, we define a branching process Δ′ = (Γ × {0, 12 , 1}, ↪−→′,Prob ′) which
tracks the “status” of φAUψ. We define Δ′ in terms of an auxiliary function
fφ,ψ : Γ → {0, 12 , 1} with fφ,ψ(Y) = 0 if Y |= ¬φ ∧ ¬ψ, fφ,ψ(Y) = 1

2 if

Y |= φ ∧ ¬ψ, and fφ,ψ(Y) = 1 if Y |= ψ. For any rule X
p
↪−→ Y1 . . . Yk in Δ,

there are three corresponding rules in Δ′, namely (X, 0)
p
↪−→ (Y1, 0) . . . (Yk, 0),

Model Checking Stochastic Branching Processes 281

(X, 1)
p
↪−→ (Y1, 1) . . . (Yk, 1), and (X, 12)

p
↪−→ (Y1, fφ,ψ(Y1)) . . . (Yk, fφ,ψ(Yk)). By

this construction we achieve PrΔX [tX |= φAUψ] = PrΔ
′

X′ [tX′ |= AFΛ] for X ′ =
(X, fφ,ψ(X)) and Λ := Γ × {1}. Hence, using Propositions 5 and 6 we obtain
that whether X |= [φAUψ]��r holds is decidable in PSPACE; and in polynomial
time for r ∈ {0, 1}.
Case (iii): Similarly to case (ii) we reduce the check of φARψ to a check of AG.
This time we define Δ′ = (Γ × {0, 12 , 1}, ↪−→′,Prob ′) in terms of an auxiliary
function gφ,ψ : Γ → {0, 12 , 1} with gφ,ψ(Y) = 0 if Y |= ¬ψ, gφ,ψ(Y) = 1

2 if
Y |= ¬φ ∧ ψ, gφ,ψ(Y) = 1 if Y |= φ ∧ ψ. The rules of Δ′ are defined
as in case (ii), except that fφ,ψ is replaced with gφ,ψ. By this construction we

achieve PrΔX [tX |= φARψ] = PrΔ
′

X′ [tX′ |= AGΛ] for X ′ = (X, gφ,ψ(X)) and Λ :=
Γ × { 1

2 , 1}. The following lemma allows to express this probability in terms of
AF instead of AG:

Lemma 20. Let Δ = (Γ, ↪−→,Prob) be a branching process. Let Λ ⊆ Γ such
that no type in Λ is reachable from any type in Γ \ Λ. Define G := {Y ∈
Λ | all types reachable from Y are in Λ}. Let X ∈ Γ . Then Pr[tX |= AGΛ] =
Pr[tX |= AFG].

To summarize case (iii): we have reduced AR to AG and then AG to AF. Hence,
using Propositions 5 and 6 we obtain that whether X |= [φARψ]��r holds is
decidable in PSPACE; and in polynomial time for r ∈ {0, 1}.

As the overall algorithm computes the truth values of the subformulae recur-
sively, we have proved the following theorem:

Theorem 21. Model checking branching processes against PTTL is
in PSPACE. Model checking branching processes against the qualitative
fragment of PTTL is in P.

5 Conclusions and Future Work

Branching processes are a basic formalism for modelling probabilistic parallel
programs with dynamic process creation. This paper is the first to consider
the verification of branching processes, We have shown how to model check
specifications given in terms of deterministic parity automata, a problem that
unifies and strictly generalises linear-time model-checking problems for Markov
chains and for (nonprobabilistic) nondeterministic transition systems. We have
also provided model-checking algorithms for a new logic, PTTL, suitable for
specifying probabilistic properties of random trees. To obtain these results we
have provided reductions to computing the probability of hitting “good” states
along all branches.

Future research in this area should involve:

– the complexity of the problem where the specification is an LTL formula
required to hold on all branches;

– the problem where deterministic parity automata are replaced by other tree
specification formalisms, such as CTL (or CTL∗) formulae;

282 T. Chen, K. Dräger, and S. Kiefer

– extending the model-checking algorithms to accommodate the synchronisa-
tion and communication features of probabilistic split-join systems.

It seems that at least the latter two problems require additional techniques,
as the children of a node in the branching process can no longer be treated
independently.

Acknowledgements. We thank anonymous reviewers for their valuable
feedback.

References

1. Allender, E., Bürgisser, P., Kjeldgaard-Pedersen, J., Miltersen, P.B.: On the com-
plexity of numerical analysis. In: IEEE Conference on Computational Complexity,
pp. 331–339 (2006)

2. Athreya, K.B., Ney, P.E.: Branching Processes. Springer (1972)
3. Canny, J.: Some algebraic and geometric computations in PSPACE. In: STOC

1988, pp. 460–467 (1988)
4. Chen, T., Dräger, K., Kiefer, S.: Model checking stochastic branching processes.

Technical report, arxiv.org (2012), http://arxiv.org/abs/1206.1317
5. Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification.

Journal of the ACM 42, 857–907 (1995)
6. Esparza, J., Gaiser, A., Kiefer, S.: Computing least fixed points of probabilistic

systems of polynomials. In: Proceedings of STACS, pp. 359–370 (2010)
7. Esparza, J., Kiefer, S., Luttenberger, M.: Computing the least fixed point of posi-

tive polynomial systems. SIAM Journal on Computing 39(6), 2282–2335 (2010)
8. Esparza, J., Kučera, A., Mayr, R.: Model checking probabilistic pushdown au-

tomata. In: LICS 2004, pp. 12–21. IEEE (2004)
9. Etessami, K., Stewart, A., Yannakakis, M.: Polynomial-time algorithms for multi-

type branching processes and stochastic context-free grammars. In: Proceedings of
STOC, pp. 579–588 (2012)

10. Etessami, K., Yannakakis, M.: Recursive Markov chains, stochastic grammars, and
monotone systems of nonlinear equations. Journal of the ACM 56(1), 1–66 (2009)

11. Etessami, K., Yannakakis, M.: Model checking of recursive probabilistic systems.
ACM Transactions on Computational Logic 13(2) (to appear 2012)

12. Harris, T.E.: The Theory of Branching Processes. Springer (1963)
13. Kiefer, S., Wojtczak, D.: On Probabilistic Parallel Programs with Process Creation

and Synchronisation. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS,
vol. 6605, pp. 296–310. Springer, Heidelberg (2011)

14. Renegar, J.: On the computational complexity and geometry of the first-order
theory of the reals. Parts I–III. Journal of Symbolic Computation 13(3), 255–352
(1992)

15. Thomas, W.: Languages, automata, and logic. In: Rozenberg, G., Salomaa, A.
(eds.) Handbook of Formal Languages. Beyond Words, vol. 3, pp. 389–455. Springer
(1997)

16. Vardi, M.Y.: Probabilistic Linear-Time Model Checking: An Overview of the
Automata-Theoretic Approach. In: Katoen, J.-P. (ed.) AMAST-ARTS 1999, ARTS
1999, and AMAST-WS 1999. LNCS, vol. 1601, pp. 265–276. Springer, Heidelberg
(1999)

http://arxiv.org/abs/1206.1317

	Model Checking Stochastic Branching Processes
	Introduction
	Preliminaries
	Parity Specifications
	The Qualitative Problem
	The Quantitative Problem

	Logic Specifications
	Conclusions and Future Work
	References

