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Abstract. Van Glabbeek (1990) presented the “linear time – branching time spectrum”,
a lattice of behavioral semantics over labeled transition systems ordered by inclusion. He
studied these semantics in the setting of the basic process algebra BCCSP, and tried to give
finite complete axiomatizations for them. Obtaining such axiomatizations in concurrency
theory often turns out to be difficult, which had raised a host of open questions that were
the subject of intensive research in recent years. All of these questions are settled over BCCSP
now, either positively by giving a finite complete axiomatization, or negatively by proving
that such an axiomatization does not exist. This essay reports on these results.

1 Introduction

Labeled transition systems (LTSs) constitute a fundamental model of concurrent computation which
is widely used in light of its flexibility and applicability. They model processes by explicitly de-
scribing their states and transitions from state to state, together with the actions that produce
them. Several notions of behavioral equivalences have been proposed, with the aim to identify
those states of LTSs that afford the same observations. The lack of consensus on what constitutes
an appropriate notion of observable behavior for reactive systems has led to a large number of
proposals for behavioral equivalences for concurrent processes.

Van Glabbeek [22,23] presented the linear time – branching time spectrum of behavioral pre-
orders and equivalences for finitely branching, concrete, sequential processes, which is a lattice of
known behavioral preorders and equivalences over LTSs, ordered by inclusion. The semantics in
the spectrum are based on simulation notions or on decorated traces. Fig. 1 depicts the linear time
– branching time spectrum3, where an arrow from one semantics to another means that the source
of the arrow is finer than the target.

To give further insight into the identifications made by the respective behavioral equivalences
in his spectrum, van Glabbeek [22,23] studied them in the setting of the process algebra BCCSP,
which contains only the basic process algebraic operators from CCS and CSP, but is sufficiently
powerful to express all finite synchronization trees. In particular, he associated with every behav-
ioral equivalence in his spectrum a sound equational axiomatization, i.e., a collection of equations
of behaviorally equivalent BCCSP terms. Most of the axiomatizations were also shown to be “com-
plete” in the sense that whenever two closed BCCSP terms (i.e., terms containing no occurrence of
variables) are behaviorally equivalent, then the axiomatization admits a derivation in equational
logic of the corresponding equation.

In general, axiomatizations arise from the desire of isolating the features that are common to
a collection of algebraic structures, namely, their semantics models. One requires that a set of
axioms is sound (i.e., if two behaviors can be equated, then they are semantically related), and
one desires that it is complete (i.e., if two behaviors are semantically related, then they can be
equated). Having defined a semantic model for a process algebra in terms of LTSs, it is natural to

3Note that the completed simulation and impossible futures semantics were missing in the original
spectrum [22,23], but are included here.
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study its (in)equational theory, that is, the collection of (in)equations that are valid in the given
model. The key questions here are:

– Are there reasonably informative sound and complete axiomatizations for the chosen semantic
model?

– Does the algebra of LTSs modulo the chosen notion of behavioral semantics afford a finite
(in)equational axiomatization?

A sound and complete axiomatization of a behavioral congruence (resp. precongruence) yields a
purely syntactic characterization, independent of LTSs and of the actual details of the definition
of the chosen behavioral equivalence (resp. preorder), of the semantics of the process algebra. This
bridge between syntax and semantics plays an important role in both the theory and the practice
of process algebras. From the theoretical perspective, complete axiomatizations of behavioral pre-
orders or equivalences capture the essence of different notions of semantics for processes in terms
of a basic collection of identities, and this often allows one to compare semantics which might have
been defined in very different styles and frameworks. From the point of view of practice, these
proof systems can be used to perform system verifications in a purely syntactic way using general
purpose theorem provers or proof checkers, and form the basis of purpose-built axiomatic verifica-
tion tools like, e.g. PAM [15]. Hence a positive answer to the first basic question raised above is
therefore not just theoretically pleasing, but has potential practical applications.

In literature, different forms of completeness are often considered. For BCCSP, an axiomatiza-
tion is said to be complete if any two behaviorally equivalent BCCSP terms (not just the closed
ones) can be equated; completeness for closed terms only we shall henceforth refer to as ground-
completeness. The notion of completeness of an axiomatization also relates the proof-theoretic
notion of derivability using the rules of equational logic with the model-theoretic one of “validity
in a model”. From a proof-theoretic perspective, a useful property of a ground-complete axiom-
atization is that whenever all closed instances of an equation can be derived from it, then the



equation itself can also be derived from it; this property is generally referred to as ω-completeness.
For theorem proving applications, it is particularly convenient if an axiomatization is ω-complete,
because it means that proofs by (structural) induction can be avoided in favor of purely equational
reasoning; see [14]. In [12] it was argued that ω-completeness is desirable for the partial evaluation
of programs. It turns out that completeness and ω-completeness are closely related properties of
an axiomatization. Indeed, in the setting of BCCSP, it is not hard to show that any complete
axiomatization is also ω-complete. Conversely any ω-complete axiomatization is, by definition,
complete.

In universal algebra, a complete axiomatization is referred to as a basis for the equational
theory of the algebra it axiomatizes. The existence of a finite basis for an equational theory is a
classic topic of study in universal algebra (see, e.g., [18]), dating back to Lyndon [16]. Murskĭi [21]
proved that “almost all” finite algebras (namely all quasi-primal ones) are finitely based, while
in [20] he presented an example of a three-element algebra that has no finite basis. Henkin [13]
showed that the algebra of naturals with addition and multiplication is finitely based, while Gurevic̆
[11] showed that after adding exponentiation the algebra is no longer finitely based. McKenzie [17]
settled Tarski’s Finite Basis Problem in the negative, by showing that the general question whether
a finite algebra is finitely based is undecidable.

Process algebra, as a branch of universal algebra and equational logic, naturally features the
study of results pertaining to the existence or non-existence of finite bases for algebras modulo given
semantics. Many of the existing axiomatizations of behavioral semantics over expressive process
algebras studied in concurrency theory are powerful enough to prove all of the valid equalities
between closed terms; they are ground-complete, but not ω-complete. In fact, obtaining ω-complete
axiomatizations in concurrency theory often turns out to be a difficult question, even in the setting
of simple languages like BCCSP. This has raised a host of open questions that have been the subject
of intensive investigation by process algebraists in recent years. Fortunately, theses questions are
finally settled for all the semantics in the linear time – branching time spectrum in the setting of
BCCSP, either positively by giving a finite sound and ground-complete axiomatization that is ω-
complete, or negatively by proving that such a finite basis for the equational theory does not exist.
In this essay, we report on these positive and negative results. We hope that this will contribute
to their dissemination in our research community and stimulate further investigations.

This essay is organized as follows: Section 2 gives some preliminaries, in particular, the linear
time – branching time spectrum and process algebra BCCSP; Section 3 reports on results on
axiomatizations of behavioral semantics in the specturm over the language BCCSP; Section 4
gives a summary.

2 Preliminaries

2.1 The linear time – branching time spectrum

A labeled transition system consists of a set of states S, with typical element s, and a transition
relation → ⊆ S × L × S, where L is a set of labels ranged over by a. We write s

a−−→ s′ if the
triple (s, a, s′) is an element of →. The set I(s) consists of those labels a for which there exists s′

such that s
a−−→ s′. Let a1 · · ·ak be a sequence of labels; we write s

a1···ak−−−−−→ s′ if there are states
s0, . . . , sk such that s = s0

a1−−→ · · ·
ak−−→ sk = s′.

First we define six semantics based on decorated versions of execution traces.

Definition 1 (Decorated Traces). Assume a labeled transition system.

– A sequence a1 · · · ak, with k ≥ 0, is a trace of a state s if there is a state s′ such that s
a1···ak−−−−−→

s′. It is a completed trace of s if moreover I(s′) = ∅.



– A pair (a1 · · · ak, B), with k ≥ 0 and B ⊆ A, is a ready pair of a state s0 if there is a sequence
of transitions s0

a1−−→ · · ·
ak−−→ sk with I(sk) = B. It is a failure pair of s0 if there is such a

sequence with I(sk) ∩ B = ∅.
– A sequence B0a1B1 . . . akBk, with k ≥ 0 and B0, . . . , Bk ⊆ A, is a ready trace of a state s0 if

there is a sequence of transitions s0
a1−−→ · · ·

ak−−→ sk with I(si) = Bi for i = 0, . . . , k. It is a
failure trace of s0 if there is such a sequence with I(si) ∩ Bi = ∅ for i = 0, . . . , k.

We write s -2 s′ with 2 ∈ {T, CT, R, F, RT, FT} if the traces, completed traces, ready pairs, failure
pairs, ready traces, or failure traces, respectively, of s are included in those of s′.

Next we define five semantics based on simulation.

Definition 2 (Simulations). Assume an A-labeled transition system.

– A binary relation R on states is a simulation if s0 R s1 and s0
a−−→ s′0 imply s1

a−−→ s′1 for
some state s′1 with s′0 R s′1.

– A simulation R is a completed simulation if s0 R s1 and I(s0) = ∅ imply I(s1) = ∅.
– A simulation R is a ready simulation if s0 R s1 and a 6∈ I(s0) imply a 6∈ I(s1).
– A simulation R is a 2-nested simulation if R−1 is included in a simulation.
– A bisimulation is a symmetric simulation.

We write s -2 s′ with 2 ∈ {S, CS, RS, 2N} if there exists a simulation, completed simulation,
ready simulation or 2-nested simulation R, respectively, with s R s′. We write s↔ s′ if there exists
a bisimulation R with s R s′.

Finally, we define three semantics based on (im)possible futures and on possible worlds.

Definition 3 ((Im)Possible futures/worlds). Assume an A-labeled transition system.

– A pair (a1 · · ·ak, X), with n ≥ 0 and X ⊆ A∗ is a possible future of a state s0 if there is a
sequence of transitions s0

a1−−→ · · ·
ak−−→ sk where X is the set of traces of sk.

– A pair (a1 · · ·ak, X), with k ≥ 0 and X ⊆ A∗, is an impossible future of a state s0 if there is
a sequence of transitions s0

a1−−→ · · ·
ak−−→ sk for some state sk with T (sk) ∩ X = ∅.

– A state s is deterministic if for each a ∈ I(s) there is exactly one state s0 such that s
a−−→ s0,

and moreover s0 is deterministic. A state s is a possible world of a state s0 if s is deterministic
and sRs0 for some ready simulation R.

We write s -2 s′ with 2 ∈ {PF, IF, PW} if the possible futures, impossible futures or the
possible worlds, respectively, of s are included in those of s′.

In general, we write s ≃2 s′ if both s -2 s′ and s′ -2 s for 2 ∈ {T, CT, R, F, RT, FT, S, CS, RS,

2N, PF, IF, PW}.

2.2 BCCSP

BCCSP is a basic process algebra for expressing finite process behavior. Its signature consists of the
constant 0, the binary operator + , and unary prefix operators a , where a ranges over a nonempty
set A of actions, called the alphabet, with typical elements a, b, c. Intuitively, closed BCCSP terms,
denoted p, q, r, represent finite process behaviors, where 0 does not exhibit any behavior, p + q

offers a choice between the behaviors of p and q, and ap executes action a to transform into p.
This intuition is captured by the transition rules below, in which a ranges over A. They give rise
to A-labeled transitions between BCCSP terms.

ax
a−−→ x

x
a−−→ x′

x + y
a−−→ x′

y
a−−→ y′

x + y
a−−→ y′



We also assume a countably infinite set V of variables; x, y, z denote elements of V , and X, Y, Z

denote finite subsets of V . Open BCCSP terms, which may contain variables from V , are denoted
t, u, v, w. A term t is called a prefix if t = at′ for some a ∈ A and for some term t′.

The preorders - in the linear time – branching time spectrum are all precongruences with
respect to BCCSP, meaning that p1 - q1 and p2 - q2 imply p1 + p2 - q1 + q2 and ap1 - aq1 for
a ∈ A. Likewise, the equivalences in the spectrum are all congruences with respect to BCCSP.

A (closed) substitution, denoted ρ, σ, τ , maps variables in V to (closed) BCCSP terms. For
open BCCSP terms t and u, and a preorder - (or equivalence ≃) on closed BCCSP terms, we
define t - u (or t ≃ u) if ρ(t) - ρ(u) (resp. ρ(t) ≃ ρ(u)) for all closed substitutions ρ.

An equational axiomatization is a collection of equations t ≈ u, and an inequational axiomati-
zation is a collection of inequations t 4 u. The (in)equations in an axiomatization E are referred to
as axioms. If E is an equational axiomatization, we write E ⊢ t ≈ u if the equation t ≈ u is deriv-
able from the axioms in E using the rules of equational logic (reflexivity, symmetry, transitivity,
substitution, and closure under BCCSP contexts):

t ≈ t

t ≈ u

u ≈ t

t ≈ u u ≈ v

t ≈ v

t ≈ u

ρ(t) ≈ ρ(u)

t ≈ u

at ≈ au

t1 ≈ u1 t2 ≈ u2

t1 + t2 ≈ u1 + u2

For the derivation of an inequation t 4 u from an inequational axiomatization E of inequations,
denoted E ⊢ t 4 u, the second rule, for symmetry, is omitted.

An axiomatization E is sound modulo - (or ≃) if for any open BCCSP terms t, u, from
E ⊢ t 4 u (or E ⊢ t ≈ u) it follows that ρ(t) - ρ(u) (or ρ(t) ≃ ρ(u)) for all closed substitutions
ρ. E is ground-complete modulo - (or ≃) if p - q (or p ≃ q) implies E ⊢ p 4 q (or E ⊢ p ≈ q),
for all closed BCCSP terms p and q; it is complete modulo - (or ≃) IF p - q (or p ≃ q) implies
E ⊢ p 4 q (or E ⊢ p ≈ q) for all BCCSP terms p and q. Finally, E is ω-complete if for any open
BCCSP terms t and u with E ⊢ ρ(t) 4 ρ(u) (or E ⊢ ρ(t) ≈ ρ(u)) for all closed substitutions ρ, we
have E ⊢ t 4 u (or E ⊢ t ≈ u). A preorder - or an equivalence ≃ is said to be finitely based if
there exists a finite axiomatization E that is sound and complete modulo - or ≃.

Let {t1, . . . , tn} be a finite set of terms; we use summation
∑

{t1, . . . , tn} to denote t1 + · · ·+ tn,
adopting the convention that the summation of the empty set denotes 0. Furthermore, we write ant

to denote the term obtained from t by prefixing it n times with a, i.e., a0t = t and an+1t = a(ant).
When writing terms, we adopt as binding convention that + and summation bind weaker than
a . With abuse of notation, we often let a finite set X denote the term

∑

x∈X x.

3 Positive and Negative Results for BCCSP

In this section we will survey positive and negative results on the existence of a finite basis for
the equational (resp. inequational) theories of BCCSP modulo the equivalences (resp. preorders)
in the spectrum above. The axiomatizations that we will present for the different semantics in
the spectrum were mostly taken from [23]. Note that in case of an infinite alphabet, occurrences
of action names in axioms are interpreted as variables, as otherwise most of the axiomatizations
mentioned in this introduction would be infinite.

As the readers might see, except for bisimulation, the semantics considered in this essay have
a natural formulation as a preorder relation, while the corresponding equivalence is defined as
the kernel of the preorder. Recently, Aceto, Fokkink and Ingolfsdottir [1] gave an algorithm that,
given a sound and ground-complete axiomatization for BCCSP modulo a preorder no finer than
ready simulation, produces a sound and ground-complete axiomatization for BCCSP modulo the
corresponding equivalence. Moreover, if the original axiomatization for the preorder is ω-complete,
then so is the resulting axiomatization for the equivalence. So for the positive result regarding a



semantics, the stronger result is obtained by considering the preorder. (The result for the equiv-
alence can be read as a corollary.) On the other hand, the negative results become more general
if they are proved for the equivalence relations. We note that, as we will see soon, the condition
“no finer than ready simulation” of the algorithm is essential. This also suggests that, for 2-nested
simulation, possible futures and impossible futures semantics which fail this condition, the results
for preorders and equivalences must be stated separately.

3.1 Bisimulation

The core axioms in the following table are sound and ground-complete for BCCSP modulo bisim-
ulation. Moller [19] proved using normal forms that this axiomatization is ω-complete; Groote
provided an alternative proof of this result in [10] using his inverted substitutions technique.

A1 x + y ≈ y + x

A2 (x + y) + z ≈ x + (y + z)
A3 x + x ≈ x

A6 x + 0 ≈ x

Table 1. The axioms for bisimulation.

3.2 2-Nested Simulation

Chen and Fokkink [5] proved that BCCSP modulo any semantics no coarser than impossible futures
equivalence and no finer than 2-nested simulation equivalence does not possess a finite sound and
ground-complete axiomatization. (Note that possible futures equivalence is within this semantics
range.) This improves a result due to Aceto, Fokkink, van Glabbeek and Ingolfsdottir [2] which
covers 2-nested simulation and possible future equivalences only. The cornerstone for this negative
result is the following infinite family of equations: for m ≥ 0,

aa2m0 + a(am0 + a2m0) ≈ a(am0 + a2m0) .

These equations are sound modulo 2-nested simulation equivalence. However, any finite axiom-
atization for BCCSP which is sound modulo impossible futures equivalence cannot derive all of
them.

For 2-nested simulation preorder, Aceto, Fokkink, van Glabbeek and Ingolfsdottir [2] proved
that it lacks a finite, sound, ground-complete axiomatization as well. The infinite family of inequa-
tions that they used to prove this negative result is, for m ≥ 0,

a2m 4 a2m + am .

These inequations are sound modulo 2-nested simulation preorder. However, any finite axiomati-
zation for BCCSP which is sound modulo 2-nested simulation preorder cannot derive all of them.

3.3 Possible Futures

Aceto, Fokkink, van Glabbeek and Ingolfsdottir [2] proved that BCCSP modulo possible futures
preorder does not possess a finite, sound, ground-complete axiomatization. The infinite family of
inequations that they used to prove this negative result is, for m ≥ 0,

a(am + a2m) + aa3m 4 a(am + a3m) + aa2m .



These equations are sound modulo possible futures preorder. However, any finite axiomatization
for BCCSP which is sound modulo possible futures preorder cannot derive all of them.

As for possible futures equivalence, the aforementioned negative result (cf. the previous section)
implies that BCCSP modulo possible futures equivalence does not possess a finite, sound, ground-
complete axiomatization.

3.4 Impossible Futures

Chen and Fokkink [5] provided a sound and ground-complete axiomatization for BCCSP modulo
impossible futures preorder. This is obtained by extending the four core axioms with two extra
axioms:

a(x + y) 4 ax + ay ,

a(x + y) + ax + a(y + z) ≈ ax + a(y + z) .

This result is quite surprising since the aforementioned negative result (cf. the section on 2-nested
simulation) implies that BCCSP modulo impossible futures equivalence does not have a finite,
sound, ground-complete axiomatization.

When A is infinite, Groote’s technique of inverted substitutions can be applied to show that
the aforementioned ground-complete axiomatization is ω-complete. When A is finite, Chen and
Fokkink [5] proved that BCCSP modulo impossible futures preorder does not possess a finite
sound and ω-complete axiomatization. The infinite family of inequations that they used to prove
this negative result is defined in the following way: in case of |A| = 1, for m ≥ 0,

amx 4 amx + x ,

while in case of 2 ≤ |A| < ∞,

a(amx) + a(amx + x) +
∑

b∈A

a(amx + amb0) 4 a(amx + x) +
∑

b∈A

a(amx + amb0) .

To the best of our knowledge, impossible futures semantics is the first (and up to now, the only)
example that affords a finite, ground-complete axiomatization for BCCSP modulo the preorder,
while missing a finite, ground-complete axiomatization for BCCSP modulo the equivalence. This
fact suggests that, for instance, if one wants to show p ≃IF q in general, one has to resort to
deriving p -IF q and q -IF p separately, instead of proving it directly.

It is worth pointing out that this result does not contradict the algorithm [1] mentioned at
the beginning of this section, since that algorithm only applies to semantics that are at least as
coarse as ready simulation semantics. Since impossible futures semantics is incomparable to ready
simulation semantics, it falls outside the scope of [1]. Interestingly, this result yields that no such
algorithm exists for certain semantics incomparable with (or finer than) ready simulation.

3.5 Ready Simulation

Van Glabbeek gave a finite axiomatization that is sound and ground-complete for BCCSP modulo
ready simulation preorder. It consists of four core axioms and the following axiom:

ax 4 ax + ay ,

where a ranges over A. For ready simulation equivalence, he only presented a conditional axiom:
I(x) = I(y) ⇒ a(x + y) ≈ a(x + y) + ay. Blom, Fokkink and Nain [3] showed that a sound and



ground-complete finite equational axiomatization for BCCSP modulo ready simulation equivalence
does exist. It can be obtained by extending the four core axioms with

a(bx + by + z) ≈ a(bx + by + z) + a(bx + z) ,

where a, b range over A.
When A is infinite, Groote’s technique of inverted substitutions can be applied to show that

these axiomatizations are ω-complete. When A is finite, Chen, Fokkink, and Nain [7] proved that
BCCSP modulo ready simulation equivalence does not possess a finite sound and ω-complete
axiomatization. (Hence neither does ready simulation preorder.) The infinite family of equations
that they used to prove this negative result is, for n > 0,

anx + an0 +
∑

b∈A

an(x + b0) ≈ an0 +
∑

b∈A

an(x + b0) .

These equations are sound modulo ready simulation equivalence. However, they cannot be derived
from any finite axiomatization for BCCSP sound which is sound modulo ready simulation equiva-
lence. When |A| = 1, ready simulation equivalence (resp. preorder) coincides with completed trace
equivalence (resp. preorder), and we will see that in this case a finite basis does exist.

3.6 Completed Simulation

Van Glabbeek gave a finite axiomatization that is sound and ground-complete for BCCSP modulo
completed simulation preorder. It consists of four core axioms together with

ax 4 ax + y ,

where a range over A. It follows that

a(bx + y + z) ≈ a(bx + y + z) + a(bx + z)

suffices to obtain a finite, sound and ground-complete axiomatization for the completed simulation
equivalence.

When |A| > 1, Chen, Fokkink and Nain [7] proved that BCCSP modulo completed simulation
equivalence does not possess a finite sound and ω-complete axiomatization. (Hence neither does
ready simulation preorder.) The infinite family of equations that they used to prove this negative
result is, for n ≥ 0,

anx + an0 + an(x + y) ≈ an0 + an(x + y) .

These equations are sound modulo completed simulation equivalence. However, they cannot be
derived from any finite axiomatization for BCCSP which is sound modulo completed simulation
equivalence. When |A| = 1, completed simulation equivalence (resp. preorder) coincides with com-
pleted trace equivalence (resp. preorder), and we will see that in this case a finite basis does exist.

It is worth mentioning that completed simulation is the only semantics in the linear time
– branching time spectrum that in case of an infinite alphabet has a finite sound and ground-
complete axiomatization for BCCSP, but no finite ω-complete axiomatization.

3.7 Simulation

A sound and ground-complete axiomatization for BCCSP modulo simulation preorder is obtained
by extending the four core axioms with

x 4 x + y .



It follows that the following axiom

a(x + y) ≈ a(x + y) + ay ,

suffices to obtain a sound and ground-complete axiomatization for BCCSP modulo simulation
equivalence. When A is infinite, Groote’s technique of inverted substitutions can be applied to
show that these axiomatizations are ω-complete. When 1 < |A| < ∞, Chen and Fokkink [4]
proved that BCCSP modulo simulation equivalence does not possess a finite sound and ω-complete
axiomatization. (Hence neither does simulation preorder.) The infinite family of equations that they
used to prove this negative result is, for n ≥ 0,

a(x + Ψn) +
∑

θ∈An

a(x + Ψθ
n) + aΦn ≈

∑

θ∈An

a(x + Ψθ
n) + aΦn .

Here the Φn are defined inductively as follows:

{

Φ0 = 0
Φn+1 =

∑

b∈A bΦn

Moreover, the Ψn and Ψθ
n are defined by:

Ψn =
∑

b1···bn∈An b1 · · · bn0

Ψθ
n =

∑

b1···bn∈An\{θ} b1 · · · bn0 for θ ∈ An .

These equations are sound modulo simulation equivalence. However, any finite axiomatization for
BCCSP which is sound modulo simulation equivalence cannot derive all of them. When |A| = 1,
simulation equivalence (resp. preorder) coincides with trace equivalence (resp. preorder), and we
will see that in this case a finite basis does exist.

3.8 Possible Worlds

A sound and ground-complete axiomatization for BCCSP modulo possible worlds preorder is ob-
tained by extending the four core axioms with

ax 4 ax + ay ,

a(bx + by + z) 4 a(bx + z) + a(by + z) .

It follows that the following axiom

a(bx + by + z) ≈ a(bx + z) + a(by + z)

suffices to obtain a sound, ground-complete axiomatization for BCCSP modulo possible worlds
equivalence.

When A is infinite, Groote’s technique of inverted substitutions can be applied to show that
these axiomatizations are ω-complete. Fokkink and Nain [8] showed that when 1 < |A| < ∞,
BCCSP modulo any semantics no coarser than ready pair equivalence and no finer than possible
worlds equivalence does not possess a finite basis. (Note that ready traces equivalence is within
this semantic range.) Their proof of this negative result, which uses cover equations and applies



the compactness theorem to the equational theory for terms of depth 1, is based on the following
infinite family of equations:

a(

|A|−1
∑

i=1

xi) +

|A|−1
∑

j=1

a(

j−1
∑

i=1

xi +
n

∑

i=j+1

xi) +
n

∑

j=|A|

a(

|A|−1
∑

i=1

xi + xj + yj) ≈

a(

|A|−1
∑

i=1

xi) +

|A|−1
∑

j=1

a(

j−1
∑

i=1

xi +

n
∑

i=j+1

xi) +

n
∑

j=|A|

a(

|A|−1
∑

i=1

xi + xj + yj) + a(

n
∑

i=1

xi).

These equations are sound modulo possible worlds equivalence for n ≥ |A|. However, any finite
axiomatization that is sound for BCCSP modulo ready pairs equivalence cannot derive them all.
When |A| = 1, possible worlds equivalence (resp. preorder) coincides with completed trace equiv-
alence (resp. preorder), and we will see that in this case a finite basis does exist.

3.9 Ready Traces

Van Glabbeek presented a conditional axiom for ready trace equivalence: I(x) = I(y) ⇒ ax +
ay ≈ a(x + y). Blom, Fokkink and Nain [3] showed that when A is finite, a sound and ground-
complete finite equational axiomatization for BCCSP modulo ready traces exists. For the ready
traces preorder, it can be obtained by extending the four core axioms with

ax 4 ax + ay ,

a(

|A|
∑

i=1

(bixi + biyi) + z) 4 a(

|A|
∑

i=1

bixi + z) + a(

|A|
∑

i=1

biyi + z) .

It follows that the following axiom

a(

|A|
∑

i=1

(bixi + biyi) + z) ≈ a(

|A|
∑

i=1

bixi + z) + a(

|A|
∑

i=1

biyi + z)

suffices to obtain a finite, sound and ground-complete axiomatization for BCCSP modulo ready
traces equivalence.

When A is infinite, Blom, Fokkink and Nain showed using the compactness theorem that a finite
sound and ground-complete axiomatization does not exist. Their proof is based on the following
equations, for n > 0:

a(

n
∑

i=1

(bic0 + bid0)) ≈ a(

n
∑

i=1

bic0) + a(

n
∑

i=1

bid0) .

When 1 < |A| < ∞, the aforementioned negative result from [8] (cf. the section on possible worlds)
implies that BCCSP modulo ready traces does not possess a finite basis. When |A| = 1, ready
trace equivalence (resp. preorder) coincides with completed trace equivalence (resp. preorder), and
we will see that in this case a finite ω-complete axiomatization does exist.

3.10 Failure Traces

Van Glabbeek presented a conditional axiom for failure traces (the same one as for ready traces).
Blom, Fokkink and Nain [3] showed using normal forms that a sound and ground-complete finite



equational axiomatization for BCCSP modulo failure traces equivalence exists. For failure traces
preorder, it is obtained by extending the four core axioms with

ax 4 ax + ay ,

a(x + y) 4 ax + ay .

It follows that the following axioms

a(bx + by + z) ≈ a(bx + by + z) + a(by + z) ,

ax + ay ≈ ax + ay + a(x + y) .

suffice to obtain a finite, sound and ground-complete axiomatization for BCCSP modulo failure
traces equivalence.

When A is infinite, Groote’s technique of inverted substitutions can be applied to show that
these axiomatizations are ω-complete. When 1 < |A| < ∞, Chen, Fokkink and Luttik [6] showed
that BCCSP modulo failure traces equivalence does not possess a finite sound and ω-complete
axiomatization. (Hence neither does failure traces preorder.) The infinite family of equations that
they used to prove this negative result is, for n ≥ 0,

an+1x + a(anx + x) + a
∑

b∈A\{a}

an(b0 + x) ≈ a(anx + x) + a
∑

b∈A\{a}

an(b0 + x) .

These equations are sound modulo failure traces equivalence. However, any finite axiomatization
for BCCSP which is sound modulo failure traces equivalence cannot derive all of them. When
|A| = 1, failure trace equivalence (resp. preorder) coincides with completed trace equivalence
(resp. preorder), and we will see that in this case a finite basis does exist.

3.11 Ready Pairs

A sound and ground-complete axiomatization for BCCSP modulo ready pairs preorder is obtained
by extending the four core axioms with

ax 4 ax + ay ,

a(bx + by + z) 4 a(bx + z) + a(by + w) .

It follows that the following axiom

a(bx + z) + a(by + w) ≈ a(bx + by + z) + a(by + w)

suffices to obtain a finite sound and ground-complete axiomatization for BCCSP modulo ready
pairs equivalence.

When A is infinite, Groote’s technique of inverted substitutions can be applied to show that
these axiomatizations are ω-complete. When 1 < |A| < ∞, the aforementioned negative result
from [8] (cf. the section on possible worlds) implies that BCCSP modulo ready pairs equivalence
does not possess a finite basis. (Hence neither does ready pairs preorder.) When |A| = 1, ready
pairs equivalence (resp. preorder) coincides with completed trace equivalence (resp. preorder), and
we will see that in this case a finite basis does exist.



3.12 Failure Pairs

A sound and ground-complete axiomatization for BCCSP modulo failure pairs preorder is obtained
by extending the four core axioms with

a(x + y) 4 ax + a(y + z) .

It follows that the following two axioms

a(bx + by + z) ≈ a(bx + by + z) + a(bx + z) ,

ax + a(y + z) ≈ ax + a(y + z) + a(x + y)

suffice to obtain a finite, sound and ground-complete axiomatization for BCCSP modulo failure
pairs equivalence. Fokkink and Nain [9] proved using cover equations that when A is infinite, these
axiomatizations are ω-complete. They also proved that when A is finite, one extra axiom is needed
to obtain an ω-complete axiomatization. For failure pairs preorder, it is formulated as

|A|
∑

i=1

aixi 4

|A|
∑

i=1

aixi + y ,

while for failure pairs equivalence, it is formulated as

a(

|A|
∑

i=1

bixi + y + z) ≈ a(

|A|
∑

i=1

bixi + y + z) + a(

|A|
∑

i=1

bixi + y) .

3.13 Completed Traces

A sound and ground-complete axiomatization for BCCSP modulo completed traces preorder is
obtained by extending the four core axioms with

ax 4 ax + y ,

a(bw + cx + y + z) 4 a(bw + y) + a(cx + z) .

It follows that the following axiom

a(bw + y) + a(cx + z) ≈ a(bw + cx + y + z)

suffices to obtain a sound and ground-complete axiomatization for BCCSP modulo completed
traces equivalence.

Groote [10] proved using normal forms that in order to obtain an ω-complete axiomatization,
one extra axiom is needed. For completed traces preorder, it is formulated as

a(x + y) 4 ax + a(y + z) ,

while for complete traces equivalence, it is formulated as

ax + a(y + z) ≈ ax + a(y + z) + a(x + y) .



3.14 Traces

A sound and ground-complete axiomatization for BCCSP modulo traces preorder is obtained by
extending the four core axioms with

x 4 x + y ,

a(x + y) 4 ax + ay .

It follows that the following axiom

ax + ay ≈ a(x + y)

suffices to obtain a sound and ground-complete axiomatization for BCCSP modulo traces equiva-
lence.

Groote [10] proved using normal forms that these axiomatizations are ω-complete when |A| > 1.
When |A| = 1, it is not hard to see that one extra axiom suffices to make the axiomatization ω-
complete. For traces preorder, it is formulated as

x 4 ax ,

while for traces equivalence, it is formulated as

ax + x ≈ ax .

4 Conclusion

The questions whether a semantics in the linear time – branching time spectrum is finitely based
over BCCSP have been settled completely. We summarize the results here:

– For most of the semantics in the linear time – branching time spectrum, corresponding pre-
orders and equivalences share the same axiomatzability properties. The only exception is the
impossible futures semantics. Tab. 2 presents an overview regarding this semantics, where +
means that the axiomatization exists, – means that there is no such axiomatization.

ground-comp. ω-comp.
1 ≤ |A| ≤ ∞ |A| = ∞ 1 ≤ |A| < ∞

preorder + + –

equivalence – – –

Table 2. Axiomatizability of impossible futures for BCCSP

– BCCSP has a finite sound and ground-complete axiomatization for most of the semantics in
the linear time – branching time spectrum. Only for 2-nested simulation and possible futures,
and for ready traces in case of an infinite alphabet, such an axiomatization does not exist.
Tab. 3 presents an overview, where we distinguish between an infinite alphabet and a finite
alphabet.

– Regarding ω-completeness, matters are more mixed, especially when 1 < |A| < ∞. Tab. 4
presents an overview, where we distinguish among an infinite alphabet, a finite alphabet with
more than one element, and a singleton alphabet.



|A| < ∞ |A| = ∞

bisimulation + +

2-nested simulation – –

possible futures – –

ready simulation + +

completed simulation + +

simulation + +

possible worlds + +

ready traces + –

failure traces + +

readies + +

failures + +

completed traces + +

traces + +

Table 3. The existence of ground-complete axiomatizations for BCCSP

|A| = 1 1 < |A| < ∞ |A| = ∞

bisimulation + + +

2-nested simulation – – –

possible futures – – –

ready simulation + – +

completed simulation + – –

simulation + – +

possible worlds + – +

ready traces + – –

failure traces + – +

readies + – +

failures + + +

completed traces + + +

traces + + +

Table 4. The existence of ω-complete axiomatizations for BCCSP
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