
Formal verification of not fully symmetric

systems using counter abstraction

Tomasz Mazur

Oxford University Computing Laboratory
Wolfson Building, Parks Road, Oxford OX1 3QD, UK

tomasz.mazur@comlab.ox.ac.uk

Supervisor(s): Gavin Lowe, Oxford University Computing Laboratory
Keywords: counter abstraction, parameterised verification, ring topology

Abstract. Counter abstraction allows us to transform a concurrent sys-
tem with an unbounded number of agents into a finite-state bounded
abstraction, independent of the number of processes present in the im-
plementation. In its general form it is not well suited for verification
of parameterised concurrent systems based on message passing that are
not fully symmetric and/or use two-way handshaken synchronisation be-
tween processes. In this paper we present a method whose main idea is
to count processes that are in certain equivalence classes. We use la-
belled transitions systems to model processes (both implementation and
specification) and traces refinement for verification checks. Refinement
is checked automatically using the FDR model checker. We illustrate the
method on a token ring mutual exclusion algorithm from [8].

1 Introduction

There is a rapidly growing demand for verification of concurrent systems using
formal methods. A particularly hard problem in this area is the Parameterised
Model Checking Problem, a subclass of which can be described as follows:

Given a concurrent system System(N), consisting of N identical node
processes, and a specification Spec, is it true that System(N) satisfies
Spec for all N?

It has been shown in [1] that this problem is in general undecidable. The best we
can do is to restrict the verification to a particular class of systems and provide
a method that is sound (but not necessarily complete) for this class.

Counter abstraction is a well-known abstraction method, probably best pre-
sented by Pnueli et al. in [6]. In general, it aims to create an abstraction of
a parallel composition of N node processes, which is independent of N . Each
abstract state is defined to be a tuple of integer counters. There is one counter
for each concrete state that a node process can be in. Each counter is also given
a non-negative threshold z which, when reached, indicates that there are z or
more process in the corresponding state.



In [5] we showed how to build counter abstraction models for systems with
unboundedly many node processes, none of which used node identifiers. However,
in the majority of real world applications node processes do use their own identity
or identities of other nodes within their definition. The biggest problem with
this is that it makes the alphabets of processes unboundedly large. Our current
research addresses this problem. In the next section we introduce the necessary
notation. In Section 3 we present a brief outline of our method and state some
useful results. Section 4 shows how our method can be applied in verification of
a system with a ring topology using an example similar to one from [8].

2 Labelled transitions systems

We represent processes using labelled transition systems. An LTS for a node with
identity me in a system with N nodes, Lme(N), is a tuple (S, s0, A(me, N),−→),
where S is a set of states, s0 is an initial state, A(me, N) is a set of transition

labels and −→⊆ S × A(me, N) × S is a transition relation (we write s
e

−→ s′

to mean (s, e, s′) ∈−→). We assume that each process holds an identity of at
most one other node. We let each state in S be of the form (st, id), where
st records the control state and values of variables other than node identities,
and id holds an identity of a node different from itself or is equal to ⊥ when
the node holds no such identity. We let all the labels in A(me, N) be either
τ (internal actions) or have one of the following forms: c1.me.p (type1 labels;
private events), c2.me.other.p (type2a labels; two-way synchronisation events),
c2.other.me.p (type2b labels; two-way synchronisation events) or c3.p (type3
labels; global synchronisation events), where c1, c2 and c3 are channel names,
other is a value in [1..N ] and p is some payload, independent of node identities.

We define L X‖Y L′ to be an LTS representing a parallel composition of
L and L′ with synchronisation on common non-τ labels (i.e. those in (X ∩

Y ) \ {τ}). We also define ‖
N

me=1
[A(me, N)]Lme(N) to be an LTS representing

a replicated parallel composition of L1, . . . ,LN with any two LTSs Li and Lj

synchronising on A(i, N)∩A(j, N) (type2 labels), and all the LTSs synchronising
on

⋂

{A(me, N) | me ∈ [1..N ]} (type3 labels). In addition, given a renaming
function φ :

⋃

{A(me,∞) | me ∈ [1..∞)} → X for some set of labels X , we define
the φ-renamed LTS φ(L) to be exactly like L, except every transition label e is
renamed to be φ(e). Finally, given a set of labels Y , we define L \ Y to behave
exactly like L, except that every transition label e in Y is replaced with τ .

We generate all the LTSs automatically from CSP descriptions [3, 7]. The

implementations we consider are of the form ‖
N

me=1
[A(me, N))]Lme(N) (possi-

bly in parallel with a controller process and renamed), with Li and Lj being
identical up to exchanging the identities i and j. Each Li is assumed to be data
independent in the type of node identities (i.e. we allow variables of this type
(but not constants) and ban any operations that would determine or constrain
what this type is). It is also essential that there are no equality tests between
variables (and constants) of the type of node identities within node process defi-
nition. Specifications are also given in a form of an LTS. We define a partial order

2



⊑ on the set of all LTSs to be the standard trace-refinement order (as defined
in [7, chapter 1]). We say that an implementation Impl satisfies a specification
Spec if and only if Spec ⊑ Impl.

3 Method overview

In standard counter abstraction, there is a single counter for every state in the
concrete state space S, which counts how many processes are currently in this
state. However, this prohibits processes to use node identifiers in their definition.
With an unbounded type of node identities, S is unbounded and therefore so
is the number of counters. One of the novel ideas of our method is to use an
equivalence relation ≈, defined on S, such that if (st, id) and (st′, id′) are two
states in S, then (st, v) ≈ (st′, v′) if and only if st = st′. We write [st] to mean
the equivalence class of a state (st, id).

Due to lack of space we are unable to present all the details of our method
of creating counter abstraction, but the general idea is the following. For a fixed
N , let φ be a renaming which renames all node identities from [1..N ] to 1, i.e.
φ(τ) = τ , φ(i) = 1 for all i in [1..N ] and φ(i) = i for all i not in [1..N ]. We lift
φ to apply to more complex labels in the natural way (e.g. φ(c1.2.p) = c1.1.p

and φ(c2.1.3.p) = c2.1.1.p). We let each abstract state be a k-long vector count,
where k is the number of equivalence classes under ≈ and count(st) is the counter
corresponding to [st]. The abstract initial state is defined to be a vector with
all the counters equal to 0, except for the one corresponding to the concrete
initial state, s0, whose value is N . We define an abstract transition relation as
follows. For every e being a type1 label or τ we have a corresponding abstract
transition with label φ(e) if there is a concrete state (st, id) that can do e, the
counter corresponding to [st] is at least 1, and if the corresponding counters
in the abstract state are changed correctly. For e = c2.i.j.p (a type2 label)
with i 6= j we have a corresponding abstract transition with the label φ(e) if
there are concrete states (st1, id1) and (st2, id2), which can do c2.i.other.p and
c2.other′.j.p, respectively, the counters corresponding to [st1] and [st2] are equal
to at least 1 (2 if st1 = st2), and the corresponding counters in the abstract
state are changed correctly. The case when e is a type3 label is similar, but we
now require all processes to be in a state from which e is possible.

An abstract LTS built using the method above still depends on N . We build
an improved abstraction using a method similar to the above, except that we
introduce a threshold value z such that when a value of any counter is equal to
z, it means that there are either z or more node processes in a corresponding
concrete state, and the counter can nondeterministically decide which one it
is. Let ζz(Li(x)) be a counter abstraction of an implementation consisting of
at least one node process Li(x), each of which has the set of transition labels
based on there being x nodes, and with threshold value z. We can show that
by using counter abstraction we create an anti-refinement of the φ-renamed
implementation. The following lemma captures this formally.

Lemma 1. If N ≥ 1, then ∀ j ∈ [1..N ] • ζz (Lj(N)) ⊑ φ
(

‖
N

i=1
[A(i, N)]Li(N)

)

.

3



Lemma 2 says that if we fix z, then a counter abstraction of a system con-
sisting of processes with sets of transition labels based on there being 2 nodes is
equivalent to a counter abstraction of an implementation consisting of processes
with sets of transition labels based on there being more than 2 processes.

Lemma 2. If N ≥ max{z, 2} and i ∈ {1, 2}, then ζz (Li(2)) ≡ ζz (Li(N)).

The following result follows from Lemma 1 and Lemma 2. Observe that φ is
applied after the nodes are composed in parallel; in particular it does not remove
any behaviour that we achieve by allowing the processes to use node identifiers.

Proposition 1. If N ≥ max{z, 2}, then ζz (L1(2)) ⊑ φ
(

‖
N

i=1
[A(i, N)]Li(N)

)

.

Our main result, below, allows us to perform a refinement check of a fi-
nite and bounded abstraction of an implementation with unboundedly many
node processes against a finite and bounded specification and conclude that
the implementation satisfies the original specification, regardless of the value
of N . For this we need some definitions. Given a set X , we say that φ satisfies
NoNewSharSyncX if for all non-τ labels e we have that φ(e) ∈ φ(X) ⇒ e ∈ X.

Similarly, given sets X and Y , we say that φ satisfies NoNewAlphSyncX,Y if
for all non-τ labels e we have that φ(e) ∈ φ(X) ∩ φ(Y ) ⇒ e ∈ X ∩ Y. A data
independent process satisfies PosConjEqT if whenever a failure of an equality
test between node identifiers (and possibly constants from [1..N ]) leads to a state
with no transitions (the formal definition can be found in [4]).

Theorem 1. Let Ctrl(N) be a controller process (with a set of transition labels
Ac). Suppose Spec(N) and φ are such that if tr is a trace of Spec(N) and φ(tr) =
φ(tr′), then tr′ is also a trace of Spec(N). Also suppose that N ≥ max(z, 2),
φ satisfies NoNewAlphSyncAc,

⋃

{A(i,N) | i∈[1..N ]} and NoNewSharSyncX ,
Spec(N) satisfies PosConjEqT and Ctrl(1) ⊑ φ(Ctrl(N)).

Then if Spec(1) ⊑
(

Ctrl(1) φ(Ac)‖φ(A(1,2)) ζz (L1(2))
)

\ φ(X),

then Spec(N) ⊑
(

Ctrl(N) Ac
‖⋃

{A(i,N) | i∈[1..N ]} ‖
N

i=1
[A(i, N)]Li(N)

)

\ X.

4 Ring topology example

Verification of an implementation based on a ring topology is a good example
of the strengths of our method. Not only do the nodes use node identifiers in
their definitions, but also each node is only allowed to communicate with its pre-
decessor and successor. In this section we verify a distributed mutual exclusion
algorithm from [8] using the techniques outlined in Section 3. Our implemen-
tation models a token ring consisting of N identical (up to identities i) node
processes Node(i) and a single “initialised” node processes INode connected in
parallel. Formally, if X = {token.i.j | i, j ∈ [0..N ]}, then

Impl(N) =
(

INode A(0)‖
⋃

{A(i,N) | i∈[1..N ]}

(

‖
N

i=1
[A(i, N)]Node(i)

))

\ X.

4



Each node process can receive a token and then nondeterministically choose
either to pass the token to the successor or to perform its critical section and
then pass the token. Figure 1a shows an LTS of a node process with identity i.
INode is identical to Node, except that its initial state is 1, rather than 0; this
means that INode is the process that initially possesses the token. We make
INode the predecessor of Node(1) and successor of Node(N).

τ

τ

00

1

1 2

3 4

token.pred(i).i

leave.i

enter.i leave enter

token.i.succ(i)

(a) (b)

Fig. 1. Node process template LTS (a) and specification component LTS (b).

In order to satisfy the mutual exclusion property, the events enter and leave

have to alternate. Hence we let Spec be the LTS shown in Figure 1b. If for all i

we let f(enter.i) = enter and f(leave.i) = leave, then our verification problem
becomes (the case N = 1 can be easily verified separately):

∀N ≥ 2 • Spec ⊑ f(Impl(N)).

In order to create a counter abstraction of the arc of processes of Node(1),
Node(2), . . . , Node(N), we need to slightly modify the LTS Node(i) in order
to be a better representative of a generic process GNode(i, N) in the arc. When
such a generic process receives a token, it could have been sent either by INode

(if the accepting process is the first one in the arc) or by another process j 6= i

within the arc (if the accepting process is any but the first process in the arc).
Similarly, when it sends the token, it can address it to INode (if the sending
process is the last one in the arc) or to another process j 6= i within the arc
(if the sending process is any but the last process in the arc). We can capture
this formally by saying that GNode(i, N) is the same as Node(i) except for

the following difference: if st
e

−→ st′ is a transition of Node(i), then st
e′

−→ st′

is a transition of GNode(i, N) for all e′ obtained from e by replacing other

with any value that other can take in a corresponding transition in some node,
say Node(j). Figure 2 shows an LTS of such a process (in a concrete LTS any
transition containing the identifier j would be replaced by multiple transitions,
one for every value in [1..N ] \ {i}).

Next, we build a counter abstraction CAbstr = ζ2 (GNode(1, 2)). To auto-
mate this we use our prototype tool, TomCAT1. At this point we can use the
FDR model checker [2] to verify that

Spec ⊑
(

INode φ(A(0))‖φ(A(1,2)) CAbstr
)

\ φ(X).

Observe that Spec and INode are independent of N , so Spec = Spec(1) =
Spec(N) and INode = INode(1) ⊑ φ(INode(N)). It is not too difficult to

1 Available from http://web.comlab.ox.ac.uk/oucl/work/tomasz.mazur/.

5



τ

τ

0 1 2

3 4

token.j.i

token.0.i

leave.i

enter.i

token.i.j

token.i.0

Fig. 2. An LTS of a generic arc process.

check that the conditions of Theorem 1 are satisfied. From the theorem, the fact
that GNode(i, N) ⊑ Node(i) and monotonicity we can infer that if N ≥ 2, then

f(Spec) ⊑ f
((

INode A(0)‖
⋃

{A(i,N) | i∈[1..N ]}

(

‖
N

i=1
[A(i, N)]Node(i, N)

))

\X
)

.

However, f(Spec) = Spec, so the above solves our verification problem.

5 Future work

We currently work on extending the method to other notions of process refine-
ment (e.g. the CSP stable failures model) to allow liveness specifications. In
addition, we aim to provide improved, easier to use and more general versions
of Theorem 1. We also look at larger case studies where our method is applica-
ble. Finally, we work on the development of the TomCAT tool in order to fully
automate the process of creating counter abstractions.

6 Acknowledgements

I would like to thank Gavin Lowe for many useful ideas and discussions about
this paper and the anonymous referee for helpful comments on the work. The
research was supported by a grant from the EPSRC.

References

1. K. R. Apt and D. C. Kozen. Limits for automatic verification of finite-state con-
current systems. Information Processing Letters, 22(6):307–309, 1986.

2. Formal Systems (Europe) Ltd. Failures-Divergence Refinement-FDR 2 user manual.

Available via URL http: // www. fsel. com/ fdr2_ manual. html , 1999.
3. C. A. R. Hoare. Communicating sequential processes. 1985.
4. R. S. Lazić. A semantic study of data independence with applications to model

checking. PhD thesis, Oxford University Computing Laboratory, 1999.
5. T. Mazur and G. Lowe. Counter abstraction in the CSP/FDR setting. In Proceedings

of AVoCS’07, 2007.
6. A. Pnueli, J. Xu, and L. D. Zuck. Liveness with (0, 1, ∞)-counter abstraction. In

CAV’02, pages 107–122, 2002.
7. A. W. Roscoe. The theory and practice of concurrency. 1997.
8. P. Wolper and V. Lovinfosse. Verifying properties of large sets of processes with

network invariants. In Proceedings of the International Workshop on Automatic

Verification Methods for Finite State Systems, pages 68–80, 1990.

6


