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Previous Mini-Course

Introduction to Computational Learning Theory (PAC)

Learnability and the VC dimension

Sample Compression Schemes

Learning with Membership Queries

(Computational) Hardness of Learning
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This Mini-Course

Statistical Learning Theory Framework

Capacity Measures : Rademacher Complexity

Uniform Convergence : Generalisation Bounds

Some Machine Learning Techniques

Algorithmic Stability to prove Generalisation
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Statistical (Supervised) Learning Theory Framework

Input space : X (most often X ⊂ Rn)

Target values : Y
I Y = {−1, 1} : binary classification
I Y = R : regression

We consider data to be generated from a joint distributionD over X × Y

Sometimes convenient to factorise:D(x, y) = D(x)D(y|x)

Make no assumptions about a specific functional relationship between x
and y, a.k.a. agnostic setting10,13,16
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Statistical (Supervised) Learning Theory Framework

Input space: X , target values: Y

Arbitrary data distributionD over X × Y (agnostic setting)

How can we fit a function to the data?

I Classical approach to function approximation: polynomials, trigonometric
functions, universality theorems

I These suffer from the curse of dimensionality

Finding any function that fits the observed data may perform arbitrarily
badly on unseen points leading to overfitting

We will focus on fitting functions from a class of functions whose
‘‘complexity’’ or ‘‘capacity’’ is bounded
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Aside : Connections to classical Statistics/ML

Attempt to explicitly model the distributionsD(x) and/orD(y|x)

Generative Models: Model the full joint distributionD(x, y)

I Gaussian Discriminant Analysis, Naïve Bayes

Discriminative Models: Model only the conditional distributionD(y|x)

I Linear Regression: y|w0,w,x ∼ w0 +w · x+N (0, σ2)

I Classification: y|w0,w,x ∼ 2 · Bernoulli(sigmoid(w0 +w · x))− 1

The (basic) PAC model in CLT assumes a functional form, y = c(x), for
some concept c in class C, and the VC dimension of C controls learnability.
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Statistical (Supervised) Learning Theory Framework

X instance space; Y target values

DistributionD over X × Y

Let F ⊂ YX be a class of functions. A learning algorithm will output some
function from the class F .

A cost function γ : Y × Y → R+

I E.g. Y = {−1, 1}, γ(y′, y) = I(y′ 6= y)

I E.g. Y = R, γ(y′, y) =
∣∣y′ − y∣∣p for p ≥ 1

The loss for f ∈ F at point (x, y) is given by

`(f ;x, y) = γ(f(x), y)

The Risk functionalR : F → R+ is given by:

R(f) = E
(x,y)∼D

[
`(f ;x, y)

]
= E

(x,y)∼D

[
γ(f(x), y)

]
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Statistical (Supervised) Learning Theory Framework

The Risk functionalR : F → R+ is given by:

R(f) = E
(x,y)∼D

[
`(f ;x, y)

]
= E

(x,y)∼D

[
γ(f(x), y)

]
Would like to find f ∈ F that ‘‘minimises’’ the riskR

Even calculating (let alone minimising) the risk is essentially impossible in
most cases of interest

Only have access toD through a sample of sizem drawn fromD called the
training data

Throughout the talk, S = {(x1, y1), (x2, y2), . . . , (xm, ym)} a sample of size
m drawn i.i.d. (independent and identically distributed) fromD

A learning algorithm (possibly randomised) is a mapA from 2X×Y to F

Goal: To guarantee with high probability (over S) that if f̂ = A(S), then
for some small ε > 0:

R(f̂) ≤ inf
f∈F

R(f) + ε
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Empirical Risk Minimisation
Training sample S = {(x1, y1), . . . , (xm, ym)}

Learning algorithm:Amaps 2X×Y to F

Define the empirical risk on a sample S as:

R̂S(f) =
1

m

m∑
i=1

γ(f(xi), yi)

ERM (Empirical Risk Minimisation) principle suggests that we find f ∈ F
that minimises the empirical risk

I Focus mostly on statistical questions

I Computationally ERM is intractable for most problems of interest

E.g. Find a linear separator that minimises
the number of misclassifications

Tractable if there exists a separator with
no error!
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Empirical Risk Minimisation

ERM Principle: Learning algorithm should pick f ∈ F that minimises
the empirical risk

R̂S(f) =
1

m

m∑
i=1

γ(f(xi), yi)

I How do we guarantee that the (actual) risk is close to optimal?

I Focus on classification, i.e. F ⊂ {−1, 1}X and suppose VC(F) = d <∞
I Cost function is γ(y′, y) = I(y′ 6= y)

Theorem (Vapnik, Chervonenkis)14,16

Let F ⊂ {−1, 1}X with VC(F) = d <∞. Let S ∼ Dm for some distribution
D over X × {−1, 1}. Then, for every δ > 0, with probability at least 1 − δ,
for every f ∈ F ,

R(f) ≤ R̂S(f) +

√
2d log(em/d)

m
+O

(√
log(1/δ)

2m

)
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Empirical Risk Minimisation

Theorem (Vapnik, Chervonenkis)14,16

Let F ⊂ {−1, 1}X with VC(F) = d <∞. Let S ∼ Dm for some distribution
D over X × {0, 1}. Then, for every δ > 0, with probability at least 1− δ, for
every f ∈ F ,

R(f) ≤ R̂S(f) +

√
2d log(em/d)

m
+O

(√
log(1/δ)

2m

)

Suppose f∗ is the ‘‘minimiser’’ of the true riskR and f̂ is the minimiser of
the empirical risk R̂S

Then, we have,

R(f̂) ≤ R̂S(f̂) + ε/2 Using Theorem

≤ R̂S(f∗) + ε/2 As f̂ minimises R̂S

≤ R(f∗) + ε Using Theorem (flipped)

Where ε is chosen to be a suitable function of δ andm
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Structural Risk Minimisation

R(f) ≤ R̂S(f) +

√
2d log(em/d)

m
+O

(√
log(1/δ)

2m

)

How should be pick the class of functions F?
I More ‘‘complex’’ F can achieve smaller empirical risk

I Difference between true risk and empirical risk (generalisation error) will be
higher for more ‘‘complex’’ F

Choose an infinite family of classes {Fd : d = 1, 2, . . .} and find the
minimiser:

f̂ = argmin
f∈Fd,d∈N

R̂S(f) + κ(d,m)

where κ(d,m) is a penalty term that depends on the sample size and the
‘‘complexity’’ or ‘‘capacity’’ measure

Related to the more commonly used approach in practice:

f̂ = argmin
f∈F

R̂S(f) + λ · regulariser(f)
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Linear Regression

LetK ⊂ Rn. Consider the family of linear functions

F = {x 7→ w · x |w ∈ K}

Consider the squared loss as a cost function:

γ(y′, y) = (y′ − y)2

LetD be a distribution over X × Y , let g(x) = E[y | x]

For any h : X → R:

R(h) = E
(x,y)∼D

[
(h(x)− y)2

]
= E

(x,y)∼D

[
(h(x)− g(x) + g(x)− y)2

]
= E

(x,y)∼D

[
(h(x)− g(x))2

]
+ E

(x,y)∼D

[
(g(x)− y)2

]
+ 2 E

(x,y)∼D

[
(h(x)− g(x))(g(x)− y)

]
︸ ︷︷ ︸

=0 asE[y | x]=g(x)

= E
(x,y)∼D

[
(h(x)− g(x))2

]
+R(g)

If g ∈ F , we are in the so-called realisable setting
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Aside: Maximum Likelihood Principle

Discriminative Setting: Model y |w,x ∼ w · x +N (0, σ2)

We can defined the likelihood of observing the data under this model

p(y1, . . . , ym |w,x1, . . . ,xm) =
1

(2πσ2)m/2

m∏
i=1

exp

(
− (yi −w · xi)2

2σ2

)

Looking at the log likelihood is slightly simpler

LL(y1, . . . , ym |w,x1, . . . ,xm) = −m
2

log(2πσ2)− 1

2σ2

m∑
i=1

(yi −w · xi)2

Finding parametersw that maximise the (log) likelihood is the same as
findingw that minimises the empirical risk with the squared error cost

The method of least squares goes back at least 200 years to Gauss, Laplace

13



Linear Regression

Let K ⊂ Rn, e.g. K = {w | ‖w‖2 ≤ W}. Consider the family of linear
functions

F = {x 7→ w · x |w ∈ K}

ERM for Linear Regression

ŵ = argmin
w∈K

1

m

m∑
i=1

(w · xi − yi)2

How do we argue about the generalisation properties of this algorithm?

Use a different capacity measure
I Rademacher complexity, VC dimension, pseudo-dimension, covering numbers,

fat-shattering dimension, ...

Wewill require some boundedness assumptions on the data and the linear
functions
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Empirical Rademacher Complexity

Let G be a class of functions from Z → [a, b] ⊂ R

S = {z1, . . . , zm} ⊂ Z be a fixed sample of sizem

Then the Empirical Rademacher Complexity of G with respect to S is
defined as:

R̂S(G) = E
σ∼u{−1,1}m

sup
g∈G

1

m

m∑
i=1

σig(zi)


where (σ1, . . . , σm) =: σ ∼u {−1, 1}m indicates that each σi is a random
variable taking the values {−1, 1}with equal probability. These are called
Rademacher random variables
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Rademacher Complexity

Empirical Rademacher Complexity

R̂S(G) = E
σ∼u{−1,1}m

sup
g∈G

1

m

m∑
i=1

σig(zi)



Rademacher Complexity

Let D be a distribution over the set Z . Let G be a class of functions from
Z → [a, b] ⊂ R. For any m ≥ 1, the Rademacher complexity of G is the
expectation of the empirical Rademacher complexity of G over a sample
drawn fromDm:

Rm(G) = E
S∼Dm

[
R̂S(G)

]
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Rademacher Complexity

R̂S(G) = E
σ∼u{−1,1}m

sup
g∈G

1

m

m∑
i=1

σig(zi)

 ; Rm(G) = E
S∼Dm

[
R̂S(G)

]

Theorem2,14

Let G be a class of functions mapping Z → [0, 1]. Let D be a distribution
over Z and suppose that a sample S of sizem is drawn fromDm. Then for
every δ > 0, with probability at least 1 − δ, the following holds for each
g ∈ G:

E
z∼D

[
g(z)

]
≤ 1

m

m∑
i=1

g(zi) + 2Rm(G) +O

(√
log(1/δ)

m

)
.

Henceforth, for S = {z1, . . . , zm}, we will use the notation:

Ê
z∼uS

[
g(z)

]
=

1

m

m∑
i=1

g(zi)

We will see a full proof of this theorem. First, let’s apply this to linear
regression.
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Generalisation Bounds for Linear Regression

Instance space X ⊂ Rn, ∀x ∈ X , ‖x‖2 ≤ X

Target values Y = [−M,M ]

Let F = {x 7→ w · x | ‖w‖2 ≤W}

Let S = {x1, . . . ,xm}. Then we have:

R̂S(F) =
1

m
E
σ

 sup
w,‖w‖2≤W

m∑
i=1

σi(w · xi)


=

1

m
E
σ

 sup
w,‖w‖2≤W

w ·
m∑
i=1

σixi


=
W

m
E
σ


∥∥∥∥∥∥
m∑
i=1

σixi

∥∥∥∥∥∥
2


The last step follows from (the equality condition of) the Cauchy-Schwartz
Inequality
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Generalisation Bounds for Linear Regression

Instance space X ⊂ Rn, ∀x ∈ X , ‖x‖2 ≤ X

Target values Y = [−M,M ]

Let F = {x 7→ w · x | ‖w‖2 ≤W}

R̂S(F) =
W

m
E
σ


∥∥∥∥∥∥
m∑
i=1

σixi

∥∥∥∥∥∥
2

 ≤ W

m

E
σ


∥∥∥∥∥∥
m∑
i=1

σixi

∥∥∥∥∥∥
2

2




1
2

=
W

m

E
σ


m∑
i=1

σ2
i ‖xi‖22 + 2

∑
i<j

σiσjxi · xj︸ ︷︷ ︸
=0 as σi are independent





1
2

=
W

m

 m∑
i=1

‖xi‖22

 1
2

=
WX√
m
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Talagrand’s Lemma

We computed the Rademacher complexity of linear functions, but we’d
like to apply the ‘‘main theorem’’ to the true risk

For this we need to look at the composition of the linear function and the
loss/cost function

Let G be a class of functions from Z → [a, b] and let ϕ : [a, b]→ R be
L-Lipschitz

Then Talagrand’s Lemma tells us that:

R̂S(φ ◦ G) ≤ L · R̂S(G)

Rm(φ ◦ G) ≤ L ·Rm(G)
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Generalisation of Linear Regression

Instance space X ⊂ Rn, ∀x ∈ X , ‖x‖2 ≤ X

Target values Y = [−M,M ]

Let F = {x 7→ w · x | ‖w‖2 ≤W}

Consider the following:

H = {(x, y) 7→ (f(x)− y)2 | x ∈ X , y ∈ Y, f ∈ F}

φ : [−(M +WX), (M +WX)]→ R, φ(z) = z2

φ is 2(M +WX)-Lipschitz on its domain

R̂S([−M,M ]) ≤M/
√
m

Using R̂S(F + G) ≤ R̂S(F) + R̂S(G) and Talagrand’s Lemma, we get

R̂S(H) ≤ 2(M +WX)2

√
m

Note thatRm(H) = E
S∼Dm

[
R̂S(H)

]
≤ supS,|S|=m R̂S(H)
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Aside: Algorithms for the Linear Regression Model

ERM for Linear Regression

J(w) =
1

m

m∑
i=1

(w · xi − yi)2

ŵ = argmin
w,‖w‖2≤W

J(w)

How can we solve this optimisation problem? (without norm constraint
there is a closed form solution)

This convex optimisation problem can be solved using projected
(stochastic) gradient descent

Guaranteed to find a near-optimal solution in polynomial time
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Aside: Gradient Descent

Algorithm Projected Gradient Descent
Inputs: η, T
Pickw1 ∈ K
for t = 1, . . . , T do

w′t+1 = wt − η∇J(wt)
wt+1 = ΠK(w′t+1)

end for
Output:w = 1

T

∑T
t=1 wt

Recall in our caseK = {w | ‖w‖2 ≤W}, ΠK(·) is the projection operator

Informal Theorem5

Suppose supw,w′∈K
∥∥w −w′

∥∥
2
≤ R and

∑
w∈K

∥∥∇J(w)
∥∥

2
≤ L, then with

η = R/(L
√
T )

J(w) ≤ min
w∈K

J(w) +
RL√
T
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Aside: Generalised Linear Models

Can consider more general models called generalised linear models

GLM = {x 7→ u(w · x) | u bounded, increasing & 1-Lipschitz, ‖w‖2 ≤W}

We can consider the ERM problem:

J(w) =
1

m

m∑
i=1

(u(w · xi)− yi)2; ŵ = argmin
w,‖w‖2≤W

J(w)

Can bound Rademacher complexity easily using the boundedness and
Lipschitz property of u

However, the optimisation problem is now non-convex!
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Aside: Generalised Linear Models

Can consider more general models called generalised linear models

GLM = {x 7→ u(w·x) |u bounded, increasing & 1-Lipschitz, ‖w‖2 ≤W}

Can consider a different cost/loss function:

γ(y′, y) =

∫ u−1(y′)

0

(u(z)− y)dz

`(w;x, y)

∫ w·x

0

(u(z)− y)dz

The resulting objective function is convex inw

J̃(w) =
1

m

m∑
i=1

`(w;xi, yi)

In the realisable setting, i.e. E
[
y |x

]
= u(w · x), the global minimisers of

J(w) (squared error) and J̃(w) coincide, yielding computationally and
statistically efficient algorithms.12
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Rademacher Complexity : Main Result

Theorem2,14

Let G be a class of functions mapping Z → [0, 1]. Let D be a distribution
over Z and suppose that a sample S of sizem is drawn fromDm. Then for
every δ > 0, with probability at least 1 − δ, the following holds for each
g ∈ G:

E
z∼D

[
g(z)

]
≤ 1

m

m∑
i=1

g(zi) + 2Rm(G) +O

(√
log(1/δ)

m

)
.

We will make use of a concentration of measure inequality, called
McDiarmid’s inequality.

McDiarmid’s Inequality

Let Z be a set and let f : Zm → R be a function such that, ∀i,∃ci >
0,∀z1, . . . , zm, z

′
i,

|f(z1, . . . , zi, . . . , zm)− f(z1, . . . , z
′
i, . . . , zm)| ≤ ci.

Let Z1, . . . , Zm be i.i.d. random variables taking values in Z , then ∀ε > 0,

P
[
f(Z1, . . . , Zm) ≥ E

[
f(Z1, . . . , Zm)

]
+ ε
]
≤ exp

(
− 2ε2∑

i c
2
i

)
26



Proof of Main Result

Let S = {z1, . . . , zm}, S′ = {z′1, . . . , z′m} ∼ Dm

For S ⊂ Z , define the function:

Φ(S) = sup
g∈G

(
E
z∼D

[
g(z)

]
− Ê
z∼uS

[
g(z)

])
Let Si = {z1, . . . , zi−1, z

′
i, zi+1, . . . , zm}, and consider,∣∣∣Φ(S)− Φ(S′)

∣∣∣ ≤ 1

m
|g(zi)− g(z′i)| ≤

1

m

McDiarmid’s Inequality

Let Z be a set and let f : Zm → R be a function such that, ∀i,∃ci >
0,∀z1, . . . , zm, z

′
i,

|f(z1, . . . , zi, . . . , zm)− f(z1, . . . , z
′
i, . . . , zm)| ≤ ci.

Let Z1, . . . , Zm be i.i.d. random variables taking values in Z , then ∀ε > 0,

P
[
f(Z1, . . . , Zm) ≥ E

[
f(Z1, . . . , Zm)

]
+ ε
]
≤ exp

(
− 2ε2∑

i c
2
i

)
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Proof of Main Result

McDiarmid’s Inequality

P
[
f(Z1, . . . , Zm) ≥ E

[
f(Z1, . . . , Zm)

]
+ ε
]
≤ exp

(
− 2ε2∑

i c
2
i

)

Let S = {z1, . . . , zm}, Si = {z1, . . . , zi−1, z
′
i, zi+1, . . . , zm}, we have∣∣∣Φ(S)− Φ(S′)

∣∣∣ ≤ 1

m
|g(zi)− g(z′i)| ≤

1

m

Applying McDiarmid’s inequality with ci = 1/m for all i,

P
[
Φ(S) ≥ E

S∼Dm

[
Φ(S)

]
+ ε

]
≤ exp(−2ε2m)

Alternatively, for any δ > 0, with probability at least 1− δ,

Φ(S) ≤ E
S∼Dm

[
Φ(S)

]
+O

(√
log(1/δ)

m

)
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Proof of Main Result

Φ(S) = sup
g∈G

(
E
z∼D

[
g(z)

]
− Ê
z∼uS

[
g(z)

])
Alternatively, for any δ > 0, with probability at least 1− δ,

Φ(S) ≤ E
S∼Dm

[
Φ(S)

]
+O

(√
log(1/δ)

m

)
Thus, for any δ > 0, with probability at least 1− δ, for every g ∈ G,

E
z∼D

[
g(z)

]
≤ Ê
z∼uS

[
g(z)

]
+ E
S∼Dm

[
Φ(S)

]
+O

(√
log(1/δ)

m

)
Recall that,

Ê
z∼uS

[
g(z)

]
=

1

m

m∑
i=1

g(zi)

Want to show

E
z∼D

[
g(z)

]
≤ 1

m

m∑
i=1

g(zi) + 2Rm(G) +O

(√
log(1/δ)

m

)
.

Wouldn’t it be nice if E
S∼Dm

[
Φ(S)

]
≤ 2Rm(G)?
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Proof of Main Result

All that remains to show is that E
S∼Dm

[
Φ(S)

]
≤ 2Rm(G)

Consider

E
S∼Dm

[
Φ(S)

]
= E
S∼Dm

[
sup
g∈G

(
E
z∼D

[
g(z)

]
− Ê
z∼uS

[
g(z)

])]

Introduce a fresh sample S′ ∼ Dm

E
S∼Dm

[
Φ(S)

]
= E
S∼Dm

sup
g∈G

(
E

S′∼Dm

[
Ê

z∼uS′

[
g(z)

]]
− Ê
z∼uS

[
g(z)

])
Pushing the sup inside the expectation

E
S∼Dm

[
Φ(S)

]
≤ E
S∼Dm,S′∼Dm

[
sup
g∈G

(
Ê

z∼uS′

[
g(z)

]
− Ê
z∼uS

[
g(z)

])]
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Proof of Main Result

Pushing the sup inside the expectation

E
S∼Dm

[
Φ(S)

]
≤ E
S∼Dm,S′∼Dm

[
sup
g∈G

(
Ê

z∼uS′

[
g(z)

]
− Ê
z∼uS

[
g(z)

])]

S and S′ are identically distributed, so their elements can be swapped by
introducing Rademacher random variables σi ∈ {−1, 1}

E
S∼Dm

[
Φ(S)

]
≤ E
S∼Dm,S′∼Dm,σ

sup
g∈G

1

m

m∑
i=1

σi(g(z′i)− g(zi))


≤ 2 E

S∼Dm,σ

sup
g∈G

1

m

m∑
i=1

σig(zi)

 = 2Rm(G)
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Support Vector Machines: Binary Classification

Goal: Find a linear separator

Data is linearly separable if there exists a linear separator that classifies all
points correctly

Which separator should be picked?
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Support Vector Machines: MaximumMargin Principle

Maximise the distance of the closest point from the decision boundary

Points that are closest to the decision boundary are support vectors
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Support Vector Machines : Geometric View

Given a hyperplane:H ≡ w · x + w0 = 0 and a point x ∈ Rn, how far is x
fromH?
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Support Vector Machines : Geometric View

Consider the hyperplane:H ≡ w · x + w0 = 0

The distance of point x fromH is given by

|w · x + w0|
‖w‖2

All points on one side of the hyperplane satisfy (labelled y = +1)

w · x + w0 ≥ 0

and points on the other side satisfy (labelled y = −1)

w · x + w0 < 0
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SVM Formulation : Separable Case

minimise: 1
2
‖w‖22

subject to:

yi(w · xi + w0) ≥ 1

for i = 1, . . . ,m

Here yi ∈ {−1, 1}

If data is separable, then we find a classifier with no classification error on the
training set
The margin of the classifier is 1

‖w∗‖2
ifw∗ is the optimal solution

This is a convex quadratic program and hence can be solved efficiently
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SVM Formulation : The Dual

minimise: 1
2
‖w‖22

subject to:

yi(w · xi + w0)− 1 ≥ 0

for i = 1, . . . ,m

Here yi ∈ {−1, 1}

maximise
m∑
i=1

αi −
1

2

m∑
i=1

m∑
j=1

αiαjyiyjxi · xj

subject to:∑m
i=1 αiyi = 0

0 ≤ αi

for i = 1, . . . ,m

Lagrange Function

Λ(w, w0;α) =
1

2
‖w‖22 −

m∑
i=1

αi(yi(w · xi + w0)− 1)

Complementary Slackness

αi(yi(w · xi + w0)− 1) = 0, i = 1, . . . ,m
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SVM Formulation : Non-Separable Case

minimise: 1
2
‖w‖22 + C

m∑
i=1

ζi

subject to:

yi(w · xi + w0) ≥ 1− ζi

ζi ≥ 0

for i = 1, . . . ,m

Here yi ∈ {−1, 1}
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SVM Formulation : Loss Function

minimise:
1

2
‖w‖22︸ ︷︷ ︸

Regulariser

+ C

m∑
i=1

ζi︸ ︷︷ ︸
Loss Function

subject to:

yi(w · xi + w0) ≥ 1− ζi

ζi ≥ 0

for i = 1, . . . ,m

Here yi ∈ {−1, 1}

−6 −4 −2 0 2 4 6
0

2

4

6

y(w · x + w0)

H
in
g
e
Lo

ss

Note that for the optimal solution, ζi = max{0, 1− yi(w · xi + w0)}

Thus, SVM can be viewed as minimising the hinge loss with regularisation
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SVM : Deriving the Dual

minimise: 1
2
‖w‖22 + C

m∑
i=1

ζi

subject to:

yi(w · xi + w0)− (1− ζi) ≥ 0

ζi ≥ 0

for i = 1, . . . ,m

Here yi ∈ {−1, 1}

Lagrange Function

Λ(w, w0, ζ;α,µ) =
1

2
‖w‖22+C

m∑
i=1

ζi−
m∑
i=1

αi(yi(w·xi+w0)−(1−ζi))−
m∑
i=1

µiζi
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SVM : Deriving the Dual

Lagrange Function

Λ(w, w0, ζ;α,µ) =
1

2
‖w‖22+C

m∑
i=1

ζi−
m∑
i=1

αi(yi(w·xi+w0)−(1−ζi))−
m∑
i=1

µiζi

We write derivatives with respect tow, w0 and ζi,

∂Λ
∂w0

= −
m∑
i=1

αiyi

∂Λ
∂ζi

= C − αi − µi

∇wΛ = w −
m∑
i=1

αiyixi

For (KKT) dual feasibility constraints, we require αi ≥ 0, µi ≥ 0
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SVM : Deriving the Dual

Setting the derivatives to 0, substituting the resulting expressions in Λ (and
simplifying), we get a function g(α) and some constraints

g(α) =
m∑
i=1

αi −
1

2

m∑
i=1

m∑
j=1

αiαjyiyjxi · xj

Constraints

0 ≤ αi ≤ C i = 1, . . . ,m
m∑
i=1

αiyi = 0

Finding critical points of Λ satisfying the KKT conditions corresponds to
finding the maximum of g(α) subject to the above constraints
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SVM: Primal and Dual Formulations

Primal Form

minimise: 1
2
‖w‖22 +C

m∑
i=1

ζi

subject to:

yi(w · xi +w0) ≥ (1− ζi)

ζi ≥ 0

for i = 1, . . . ,m

Dual Form

maximise
m∑
i=1

αi−
1

2

m∑
i=1

m∑
j=1

αiαjyiyjxi ·xj

subject to:

∑m
i=1 αiyi = 0

0 ≤ αi ≤ C

for i = 1, . . . ,m
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KKT Complementary Slackness Conditions

For all i, αi
(
yi(w · xi + w0)− (1− ζi)

)
= 0

If αi > 0, yi(w · xi + w0) = 1− ζi

Recall the form of the solution:w =
∑m
i=1 αiyixi

Thus, only those datapoints xi for which αi > 0, determine the solution

This is why they are called support vectors

44



Support Vectors
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Generalisation Bounds Based on Margin

Suppose we solve the SVM objective by constrainingw to be in the set
{w | ‖w‖2 ≤W}

Consider the cost function γρ : R× {−1, 1} → [0, 1] defined as
γρ(y

′, y) = ϕρ(yy
′), where ϕρ : R→ [0, 1] is defined as:

ϕρ(z) =


0 if ρ ≤ z
1− z/ρ if 0 ≤ z ≤ ρ
1 if z ≤ 0

−6 −4 −2 0 2 4 6
0

0.5
1

z

γ
ρ
(z

)

LetH = {x 7→ w · x | ‖w‖2 ≤W} and let ‖x‖2 ≤ X for all x ∈ X , as ϕρ is
1/ρ-Lipschitz by Talagrand’s Lemma we have

R̂(ϕρ ◦ H) ≤ WX

ρ
√
m
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Generalisation Bounds Based on Margin

Let γ(y′, y) = I(sign(y′) 6= y) (zero-one loss) and γρ(y′, y) = ϕρ(y
′y).

Observe that γ(y′, y) ≤ γρ(y′, y)

LetR(hw) = E
(x,y)∼D

[
γ(sign(w · x), y)

]
and let

Rρ(hw) = E
(x,y)∼D

[
γρ(w · x, y)

]
. Let R̂ and R̂ρ denote the corresponding

empirical risks

Then, we have

R(h) ≤ Rρ(h) ≤ R̂ρ(h) + 2R̂(φ ◦ H) +O

(√
log(1/δ)

m

)

As R̂(φ ◦ H) = O(XW/ρ
√
m), a sample size ofm = O(W 2X2/(ρε)2) is

sufficient to get ε excess risk (over R̂ρ(h))

Note that solving the SVM objective is not guaranteed to give h that has
the smallest R̂(h) (the problem of minimising disagreements with a linear
separator is NP-hard)
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GramMatrix

If we put the inputs in matrixX, where the ith row ofX is xT
i .

K = XXT =


xT

1x1 xT
1x2 · · · xT

1xm
xT

2x1 xT
2x2 · · · xT

2xm
...

...
. . .

...
xT
mx1 xT

mx2 · · · xT
mxm



The matrixK is positive semi-definite

If we perform basis expansion

φ : Rn → RN

then replace entries by φ(xi)
Tφ(xj)

We only need the ability to compute inner products to use (dual version
of) SVM
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Kernel Trick

Suppose, x ∈ R2 and we perform degree 2 polynomial expansion, we could
use the map:

ψ(x) =
[
1, x1, x2, x

2
1, x

2
2, x1x2

]T
But, we could also use the map:

φ(x) =
[
1,
√

2x1,
√

2x2, x
2
1, x

2
2,
√

2x1x2

]T

If x = [x1, x2]T and x′ = [x′1, x
′
2]T, then

φ(x)Tφ(x′) = 1 + 2x1x
′
1 + 2x2x

′
2 + x2

1(x′1)2 + x2
2(x′2)2 + 2x1x2x

′
1x
′
2

= (1 + x1x
′
1 + x2x

′
2)2 = (1 + x · x′)2

Instead of spending≈ nd time to compute inner products after degree d
polynomial basis expansion, we only needO(n) time
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Kernel Trick

We can use a symmetric positive semi-definite kernel (Mercer Kernels)

K =


κ(x1,x1) κ(x1,x2) · · · κ(x1,xm)
κ(x2,x1) κ(x2,x2) · · · κ(x2,xm)

...
...

. . .
...

κ(xm,x1) κ(xm,x2) · · · κ(xm,xm)


Here κ(x,x′) is some measure of similarity between x and x′

The dual program becomes

maximise
m∑
i=1

αi −
m∑
i=1

m∑
j=1

αiαjyiyjKi,j

subject to : 0 ≤ αi ≤ C and
∑m
i=1 αiyi = 0

To make prediction on new xnew, only need to compute κ(xi,xnew) for support
vectors xi (for which αi > 0)

50



Polynomial Kernels

Rather than perform basis expansion,

κ(x,x′) = (1 + x · x′)d

This gives all terms of degree up to d

If we use κ(x,x′) = (x · x′)d, we get only degree d terms

Linear Kernel: κ(x,x′) = x · x′

All of these satisfy the Mercer or positive-definite condition

51



Gaussian or RBF Kernel

Radial Basis Function (RBF) or Gaussian Kernel

κ(x,x′) = exp

(
−‖x− x′‖2

2σ2

)

σ2 is known as the bandwidth

Can generalise to more general covariance matrices

Results in a Mercel kernel
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Neural Networks : Unit

1

x1

x2

Σ a(b+ w · x)

b

w1

w2

Non-linearity

Linear Function

Unit

A unit in a neural network computes an affine function of its input and is
then composed with a non-linear activation function a

For example the activation function could be the logistic sigmoid

σ(z) =
1

1 + e−z
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Feedforward Neural Networks

Layer 2
(Hidden)

Layer 1
(Input)

Layer 3
(Hidden)

Layer 4
(Output)

Fully
Connected

Layer
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Neural Networks

Only consider fully-connected, feed-forward neural networks, with
non-linear activation functions applied element-wise to units

A layer l : Rd1 → Rd2 consists of an element-wise composition of a
non-linear activation a, e.g. rectifier or logistic sigmoid, and an affine map

l(z) = a(Wz + b)

An L-hidden layer network represents a function f : Rn → R

f(x) = w · lL(lL−1(· · · (l1(x) · · · ) + b

Typically, the output layer is simply an affine map of the penultimate layer
(without any non-linear activation)
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Capacity of Neural Networks

VC dim. of Neural Nets

Informally, if a is the sgn function, and C is the class of all neural networks
with at most ω parameters then, VC(C) ≤ 2ω log2(eω)

Rademacher Complexity of Neural Nets

SupposeF is the class of feed-forward neural nets withL−1 hidden layers
I every row ofw of anyW in the net satisfying ‖w‖1 ≤W

I every bias vector b satisfying ‖b‖∞ ≤ B

I the activations a being 1-Lipschitz

I and furthermore, the inputs x ∈ X satisfying ‖x‖∞ ≤ 1

Then, R̂m(F) ≤ 1√
m

(2W )L +B

L−1∑
i=0

(2W )i


Exercise: Prove this using the fact that if G is the function class consisting
of all convex combinations of functions in G, then R̂m(G) = R̂(G). (Also
prove the latter claim.)
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Neural Networks : Universality Results

(Simplified) Theorem (Cybenko)6

Let σ be the logistic sigmoid activation function. Then the set of functions
of the formG(x) =

∑N
i=1 αjσ(wj ·x+bj) are dense in the set of continuous

functions on [0, 1]n.

Several other authors proved similar results roughly at the same time1,8,11

Doesn’t give an explicit upper bound on the number of units required

Known that the number of units required can be exponential for arbitrary
continuous functions

These kinds of results don’t inform us directly about the success of
training algorithms or the possibility of generalisation
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Depth Separation Results

Universality results establish that neural nets with one hidden layer are
universal approximators

Establishing the benefits of depth (both for representation and learning)
is an active area of research

Eldan and Shamir7 established the existence of a function that can be well
approximated by a depth-3 (2 hidden layers) neural network using
polynomially many units (in dimension), but requires exponentially many
units using a depth-2 network

Telgarsky15 established for each k ∈ N, the existence of a function that
can be well approximated by a depth-k3 neural network using
polynomially many units (in dimension and k), but requires exponentially
many units using a depth-k neural network
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Algorithmic Stability

So far we have seen uniform convergence bounds, i.e. bounds of the form
that ‘‘under suitable conditions’’ with high probability, ∀f ∈ F ,

R(f) ≤ R̂S(f) + ε

These results only depend on certain complexity/capacity measures of the
class of functions F used by the learning algorithm

Q. Can analysing learning algorithms directly yield a (possibly
different/better) way to obtain bounds on the true risk?
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Algorithmic Stability

Let S = {(x1, y1), . . . , (xm, ym)} be a sample drawn fromD over X × Y
and S′ be a sample that differs from S on exactly one point, say it has
(x′m, y

′
m) instead of (xm, ym)

A (possibly randomised) learning algorithmA takes a sample S as input
and outputs a function fS = A(S)

Recall that γ : Y × Y → R+ is the cost function

Uniform Stability

A learning algorithmA is uniformly β-stable if for any samples S, S′ of size
m, differing in exactly one point, it holds for every (x, y) that:

|γ(fS(x), y)− γ(fS′(x), y)| ≤ β
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Algorithmic Stability

Uniform Stability

A learning algorithmA is uniformly β-stable if for any samples S, S′ of size
m, differing in exactly one point, it holds for every (x, y) that:

|γ(fS(x), y)− γ(fS′(x), y)| ≤ β

Theorem (Bousquet & Elisseeff)3

Suppose γ is a bounded cost function |γ| ≤ M and that A is uniformly
β-stable. Let S ∼ Dm, then for every δ > 0, with probability at least 1− δ,
it holds that:

R(fS) ≤ R̂S(fS) + β + (2mβ +M)

√
log(1/δ)

2m

Clearly we need β = o(1/
√
m) to get a non-trivial bound

Cannot be used for zero-one classification loss
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Algorithmic Stability
A cost function γ is σ-admissible with respect to a class of function F , if
for every f, f ′ ∈ F and (x, y) ∈ X × Y , it is the case that

|γ(f ′(x), y)− γ(f(x), y)| ≤ σ|f ′(x)− f(x)|

Example of Ridge Regression
The ridge regression method finds

ŵ = argmin
w∈Rn

1

m

m∑
i=1

(w · xi − yi)2 + λ ‖w‖22

If ‖w‖2 ≤ X and if Y = [−M,M ], then it is easy to see that any minimiser
ŵ has to satisfy ‖w‖22 ≤M

2/λ

Consequently, γ(y′, y) = (y′ − y)2 is σ-admissible for the class of functions
that can be solutions to the ridge regression problem with
σ = 2(MX/

√
λ+M)

Theorem. Since γ is convex and σ-admissible, ridge regression is uni-
formly β-stable with β ≤ σ2X2

mλ
= O(1/m)

Recent work by Hardt et al.9 has shown that stochastic gradient descent
(with early stopping) is uniformly stable
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Summary

Uniform convergence bounds for bounding generalisation error using
Rademacher complexity bounds

Application of Rademacher complexity bounds to Linear Regression,
GLMs, SVMs

A brief view of some results about neural networks

Algorithmic stability as a means to bound generalisation error
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