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Abstract

Generalized Linear Models (GLMs) and Single Index Models (SIMs) provide
powerful generalizations of linear regression, where the target variable is assumed
to be a (possibly unknown) 1-dimensional function of a linear predictor. In gen-
eral, these problems entail non-convex estimation procedures, and, in practice,
iterative local search heuristics are often used. Kalai and Sastry (2009) provided
the first provably efficient method, the Isotron algorithm, for learning SIMs and
GLMs, under the assumption that the data is in fact generated under a GLM and
under certain monotonicity and Lipschitz (bounded slope) constraints. The Isotron
algorithm interleaves steps of perceptron-like updates with isotonic regression (fit-
ting a one-dimensional non-decreasing function). However, to obtain provable
performance, the method requires a fresh sample every iteration. In this paper, we
provide algorithms for learning GLMs and SIMs, which are both computationally
and statistically efficient. We modify the isotonic regression step in Isotron to fit
a Lipschitz monotonic function, and also provide an efficient O(n log(n)) algo-
rithm for this step, improving upon the previous O(n2) algorithm. We provide a
brief empirical study, demonstrating the feasibility of our algorithms in practice.

1 Introduction

The oft used linear regression paradigm models a dependent variable Y as a linear function of a
vector-valued independent variableX . Namely, for some vectorw, we assume that E[Y |X] = w·X .
Generalized linear models (GLMs) provide a flexible extension of linear regression, by assuming
that the dependent variable Y is of the form, E[Y |X] = u(w ·X); u is referred to as the inverse link
function or transfer function (see [1] for a review). Generalized linear models include commonly
used regression techniques such as logistic regression, where u(z) = 1/(1 + e−z) is the logistic
function. The class of perceptrons also falls in this category, where u is a simple piecewise linear
function of the form /̄ , with the slope of the middle piece being the inverse of the margin.

In the case of linear regression, the least-squares method is an highly efficient procedure for pa-
rameter estimation. Unfortunately, in the case of GLMs, even in the setting when u is known, the
problem of fitting a model that minimizes squared error is typically not convex. We are not aware
of any classical estimation procedure for GLMs which is both computationally and statistically effi-
cient, and with provable guarantees. The standard procedure is iteratively reweighted least squares,
based on Newton-Raphson (see [1]).

The case when both u and w are unknown (sometimes referred to as Single Index Models (SIMs)),
involves the more challenging (and practically relevant) question of jointly estimating u and w,

1



where u may come from a large non-parametric family such as all monotonic functions. There are
two questions here: 1) What statistical rate is achievable for simultaneous estimation of u and w? 2)
Is there a computationally efficient algorithm for this joint estimation? With regards to the former,
under mild Lipschitz-continuity restrictions on u, it is possible to characterize the effectiveness of an
(appropriately constrained) joint empirical risk minimization procedure. This suggests that, from a
purely statistical viewpoint, it may be worthwhile to attempt jointly optimizing u andw on empirical
data.

However, the issue of computationally efficiently estimating both u and w (and still achieving a
good statistical rate) is more delicate, and is the focus of this work. We note that this is not a trivial
problem: in general, the joint estimation problem is highly non-convex, and despite a significant
body of literature on the problem, existing methods are usually based on heuristics, which are not
guaranteed to converge to a global optimum (see for instance [2, 3, 4, 5, 6]).

The Isotron algorithm of Kalai and Sastry [7] provides the first provably efficient method for learning
GLMs and SIMs, under the common assumption that u is monotonic and Lipschitz, and assuming
that the data corresponds to the model.1 The sample and computational complexity of this algo-
rithm is polynomial, and the sample complexity does not explicitly depend on the dimension. The
algorithm is a variant of the “gradient-like” perceptron algorithm, where apart from the perceptron-
like updates, an isotonic regression procedure is performed on the linear predictions using the Pool
Adjacent Violators (PAV) algorithm, on every iteration.

While the Isotron algorithm is appealing due to its ease of implementation (it has no parameters
other than the number of iterations to run) and theoretical guarantees (it works for any u,w), there
is one principal drawback. It is a batch algorithm, but the analysis given requires the algorithm to
be run on fresh samples each batch. In fact, as we show in experiments, this is not just an artifact of
the analysis – if the algorithm loops over the same data in each update step, it really does overfit in
very high dimensions (such as when the number of dimensions exceeds the number of examples).

Our Contributions: We show that the overfitting problem in Isotron stems from the fact that al-
though it uses a slope (Lipschitz) condition as an assumption in the analysis, it does not constrain
the output hypothesis to be of this form. To address this issue, we introduce the SLISOTRON algo-
rithm (pronounced slice-o-tron, combining slope and Isotron). The algorithm replaces the isotonic
regression step of the Isotron by finding the best non-decreasing function with a bounded Lipschitz
parameter - this constraint plays here a similar role as the margin in classification algorithms. We
also note SLISOTRON (like Isotron) has a significant advantage over standard regression techniques,
since it does not require knowing the transfer function. Our two main contributions are:

1. We show that the new algorithm, like Isotron, has theoretical guarantees, and significant new
analysis is required for this step.
2. We provide an efficient O(n log(n)) time algorithm for finding the best non-decreasing function
with a bounded Lipschitz parameter, improving on the previous O(n2) algorithm [10]. This makes
SLISOTRON practical even on large datasets.

We begin with a simple perceptron-like algorithm for fitting GLMs, with a known transfer function
u which is monotone and Lipschitz. Somewhat surprisingly, prior to this work (and Isotron [7])
a computationally efficient procedure that guarantees to learn GLMs was not known. Section 4
contains the more challenging SLISOTRON algorithm and also the efficient O(n log(n)) algorithm
for Lipschitz isotonic regression. We conclude with a brief empirical analysis.

2 Setting

We assume the data (x, y) are sampled i.i.d. from a distribution supported on Bd × [0, 1], where
Bd = {x ∈ Rd : ‖x‖ ≤ 1} is the unit ball in d-dimensional Euclidean space. Our algorithms and

1In the more challenging agnostic setting, the data is not required to be distributed according to a true u and
w, but it is required to find the best u,w which minimize the empirical squared error. Similar to observations
of Kalai et al. [8], it is straightforward to show that this problem is likely to be computationally intractable in
the agnostic setting. In particular, it is at least as hard as the problem of “learning parity with noise,” whose
hardness has been used as the basis for designing multiple cryptographic systems. Shalev-Shwartz et al. [9]
present a kernel-based algorithm for learning certain types of GLMs and SIMs in the agnostic setting. However,
their worst-case guarantees are exponential in the norm of w (or equivalently the Lipschitz parameter).
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Algorithm 1 GLM-TRON

Input: data 〈(xi, yi)〉mi=1 ∈ Rd × [0, 1], u : R→ [0, 1], held-out data 〈(xm+j , ym+j)〉sj=1

w1 := 0;
for t = 1, 2, . . . do
ht(x) := u(wt · x);

wt+1 := wt +
1

m

m∑
i=1

(yi − u(wt · xi))xi;

end for
Output: arg minht

∑s
j=1(ht(xm+j)− ym+j)

2

analysis also apply to the case where Bd is the unit ball in some high (or infinite)-dimensional kernel
feature space. We assume there is a fixed vector w, such that ‖w‖ ≤ W , and a non-decreasing
1-Lipschitz function u : R → [0, 1], such that E[y|x] = u(w · x) for all x. The restriction that u is
1-Lipschitz is without loss of generality, since the norm of w is arbitrary (an equivalent restriction
is that ‖w‖ = 1 and that u is W -Lipschitz for an arbitrary W ).

Our focus is on approximating the regression function well, as measured by the squared loss. For a
real valued function h : Bd → [0, 1], define

err(h) = E(x,y)

[
(h(x)− y)2

]
ε(h) = err(h)− err(E[y|x]) = E(x,y)

[
(h(x)− u(w · x))2

]
err(h) measures the error of h, and ε(h) measures the excess error of h compared to the Bayes-
optimal predictor x 7→ u(w · x). Our goal is to find h such that ε(h) (equivalently, err(h)) is as
small as possible.

In addition, we define the empirical counterparts êrr(h), ε̂(h), based on a sample
(x1, y1), . . . , (xm, ym), to be

êrr(h) =
1

m

m∑
i=1

(h(xi)− yi)2; ε̂(h) =
1

m

m∑
i=1

(h(xi)− u(w · xi))2.

Note that ε̂ is the standard fixed design error (as this error conditions on the observed x’s).

Our algorithms work by iteratively constructing hypotheses ht of the form ht(x) = ut(wt ·x), where
ut is a non-decreasing, 1-Lipschitz function, and wt is a linear predictor. The algorithmic analysis
provides conditions under which ε̂(ht) is small, and using statistical arguments, one can guarantee
that ε(ht) would be small as well.

3 The GLM-TRON algorithm

We begin with the simpler case, where the transfer function u is assumed to be known (e.g. a sig-
moid), and the problem is estimating w properly. We present a simple, parameter-free, perceptron-
like algorithm, GLM-TRON (Alg. 1), which efficiently finds a close-to-optimal predictor. We note
that the algorithm works for arbitrary non-decreasing, Lipschitz functions u, and thus covers most
generalized linear models. We refer the reader to the pseudo-code in Algorithm 1 for some of the
notation used in this section.

To analyze the performance of the algorithm, we show that if we run the algorithm for sufficiently
many iterations, one of the predictors ht obtained must be nearly-optimal, compared to the Bayes-
optimal predictor.
Theorem 1. Suppose (x1, y1), . . . , (xm, ym) are drawn independently from a distribution supported
on Bd × [0, 1], such that E[y|x] = u(w · x), where ‖w‖ ≤ W , and u : R → [0, 1] is a known non-
decreasing 1-Lipschitz function. Then for any δ ∈ (0, 1), the following holds with probability at
least 1 − δ: there exists some iteration t < O(W

√
m/ log(1/δ)) of GLM-TRON such that the

hypothesis ht(x) = u(wt · x) satisfies

max{ε̂(ht), ε(ht)} ≤ O

(√
W 2 log(m/δ)

m

)
.
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Algorithm 2 SLISOTRON

Input: data 〈(xi, yi)〉mi=1 ∈ Rd × [0, 1], held-out data 〈(xm+j , ym+j)〉sj=1

w1 := 0;
for t = 1, 2, . . . do
ut := LIR ((wt · x1, y1), . . . , (wt · xm, ym)) // Fit 1-d function along wt

wt+1 := wt +
1

m

m∑
i=1

(yi − ut(wt · xi))xi

end for
Output: arg minht

∑s
j=1(ht(xm+j)− ym+j)

2

In particular, the theorem implies that some ht has small enough ε(ht). Since ε(ht) equals err(ht)
up to a constant, we can easily find an appropriate ht by picking the one that has least êrr(ht) on a
held-out set.

The main idea of the proof is showing that at each iteration, if ε̂(ht) is not small, then the squared dis-
tance

∥∥wt+1 − w
∥∥2 is substantially smaller than ‖wt − w‖2. Since the squared distance is bounded

below by 0, and
∥∥w0 − w

∥∥2 ≤W 2, there is an iteration (arrived at within reasonable time) such that
the hypothesis ht at that iteration is highly accurate. Although the algorithm minimizes empirical
squared error, we can bound the true error using a uniform convergence argument. The complete
proofs are provided in Appendix A.

4 The SLISOTRON algorithm

In this section, we present SLISOTRON (Alg. 2), which is applicable to the harder setting where
the transfer function u is unknown, except for it being non-decreasing and 1-Lipschitz. SLISOTRON
does have one parameter, the Lipschitz constant; however, in theory we show that this can simply be
set to 1. The main difference between SLISOTRON and GLM-TRON is that now the transfer function
must also be learned, and the algorithm keeps track of a transfer function ut which changes from
iteration to iteration. The algorithm is inspired by the Isotron algorithm [7], with the main difference
being that at each iteration, instead of applying the PAV procedure to fit an arbitrary monotonic
function along the direction wt, we use a different procedure, (Lipschitz Isotonic Regression) LIR,
to fit a Lipschitz monotonic function, ut, along wt. This key difference allows for an analysis that
does not require a fresh sample each iteration. We also provide an efficient O(m log(m)) time
algorithm for LIR (see Section 4.1), making SLISOTRON an extremely efficient algorithm.

We now turn to the formal theorem about our algorithm. The formal guarantees parallel those of
the GLM-TRON algorithm. However, the rates achieved are somewhat worse, due to the additional
difficulty of simultaneously estimating both u and w.
Theorem 2. Suppose (x1, y1), . . . , (xm, ym) are drawn independently from a distribution supported
on Bd × [0, 1], such that E[y|x] = u(w · x), where ‖w‖ ≤ W , and u : R → [0, 1] is an unknown
non-decreasing 1-Lipschitz function. Then the following two bounds hold:

1. (Dimension-dependent) With probability at least 1 − δ, there exists some iteration t <

O

((
Wm

d log(Wm/δ)

)1/3)
of SLISOTRON such that

max{ε̂(ht), ε(ht)} ≤ O

((
dW 2 log(Wm/δ)

m

)1/3
)
.

2. (Dimension-independent) With probability at least 1 − δ, there exists some iteration t <

O

((
Wm

log(m/δ)

)1/4)
of SLISOTRON such that

max{ε̂(ht), ε(ht)} ≤ O

((
W 2 log(m/δ)

m

)1/4
)
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As in the case of Thm. 1, one can easily find ht which satisfies the theorem’s conditions, by running
the SLISOTRON algorithm for sufficiently many iterations, and choosing the hypothesis ht which
minimizes êrr(ht) on a held-out set. The algorithm minimizes empirical error and generalization
bounds are obtained using a uniform convergence argument. The proofs are somewhat involved and
appear in Appendix B.

4.1 Lipschitz isotonic regression

The SLISOTRON algorithm (Alg. 2) performs Lipschitz Isotonic Regression (LIR) at each iteration.
The goal is to find the best fit (least squared error) non-decreasing 1-Lipschitz function that fits the
data in one dimension. Let (z1, y1), . . . (zm, ym) be such that zi ∈ R, yi ∈ [0, 1] and z1 ≤ z2 ≤
· · · ≤ zm. The Lipschitz Isotonic Regression (LIR) problem is defined as the following quadratic
program:

Minimize w.r.t ŷi :
1

2

m∑
i=1

(yi − ŷi)2 (1)

subject to:
ŷi ≤ ŷi+1 1 ≤ i ≤ m− 1 (Monotonicity) (2)

ŷi+1 − ŷi ≤ (zi+1 − zi) 1 ≤ i ≤ m− 1 (Lipschitz) (3)

Once the values ŷi are obtained at the data points, the actual function can be constructed by interpo-
lating linearly between the data points. Prior to this work, the best known algorithm for this problem
wass due to Yeganova and Wilbur [10] and required O(m2) time for m points. In this work, we
present an algorithm that performs the task in O(m log(m)) time. The actual algorithm is fairly
complex and relies on designing a clever data structure. We provide a high-level view here; the
details are provided in Appendix D.

Algorithm Sketch: We define functions Gi(·), where Gi(s) is the minimum squared loss that can
be attained if ŷi is fixed to be s, and ŷi+1, . . . ŷm are then chosen to be the best fit 1-Lipschitz
non-decreasing function to the points (zi, yi), . . . , (zm, ym). Formally, for i = 1, . . . ,m, define the
functions,

Gi(s) = min
ŷi+1,...,ŷm

1

2
(s− yi)2 +

1

2

m∑
j=i+1

(ŷj − yj)2 (4)

subject to the constraints (where s = ŷi),

ŷj ≤ ŷj+1 i ≤ j ≤ m− 1 (Monotonic)
ŷj+1 − ŷj ≤ zj+1 − zj i ≤ j ≤ m− 1 (Lipschitz)

Furthermore, define: s∗i = minsGi(s). The functions Gi are piecewise quadratic, differentiable
everywhere and strictly convex, a fact we prove in full paper [11]. Thus, Gi is minimized at s∗i
and it is strictly increasing on both sides of s∗i . Note that Gm(s) = (1/2)(s − ym)2 and hence
is piecewise quadratic, differentiable everywhere and strictly convex. Let δi = zi+1 − zi. The
remaining Gi obey the following recursive relation.

Gi−1(s) =
1

2
(s− yi−1)2 +

{
Gi(s+ δi−1) If s ≤ s∗i − δi−1
Gi(s

∗
i ) If s∗i − δi−1 < s ≤ s∗i

Gi(s) If s∗i < s
(5)

As intuition for the above relation, note that Gi−1(s) is obtained fixing ŷi−1 = s and then by
choosing ŷi as close to s∗i (since Gi is strictly increasing on both sides of s∗i ) as possible without
violating either the monotonicity or Lipschitz constraints.

The above argument can be immediately translated into an algorithm, if the values s∗i are known.
Since s∗1 minimizes G1(s), which is the same as the objective of (1), start with ŷ1 = s∗1, and then
successively chose values for ŷi to be as close to s∗i as possible without violating the Lipschitz
or monotonicity constraints. This will produce an assignment for ŷi which achieves loss equal to
G1(s∗1) and hence is optimal.
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(a) (b)

Figure 1: (a) Finding the zero of G′i. (b) Update step to transform representation of G′i to G′i−1

The harder part of the algorithm is finding the values s∗i . Notice that G′i are all piecewise linear,
continuous and strictly increasing, and obey a similar recursive relation (G′m(s) = s− ym):

G′i−1(s) = (s− yi−1) +

{
G′i(s+ δi−1) If s ≤ s∗i − δi−1
0 If s∗i − δi−1 < s ≤ s∗i
G′i(s) If s∗i < s

(6)

The algorithm then finds s∗i by finding zeros of G′i. Starting from m, G′m = s− ym, and s∗m = ym.
We design a special data structure, called notable red-black trees, for representing piecewise linear,
continuous, strictly increasing functions. We initialize such a tree T to represent G′m(s) = s − ym.
Assuming that at some time it represents G′i, we need to support two operations:
1. Find the zero of G′i to get s∗i . Such an operation can be done efficiently O(log(m)) time using a
tree-like structure (Fig. 1 (a)).
2. Update T to represent G′i−1. This operation is more complicated, but using the relation (6), we
do the following: Split the interval containing s′i. Move the left half of the piecewise linear function
G′i by δi−1 (Fig. 1(b)), adding the constant zero function in between. Finally, we add the linear
function s − yi−1 to every interval, to get G′i−1, which is again piecewise linear, continuous and
strictly increasing.

To perform the operations in step (2) above, we cannot naı̈vely apply the transformations,
shift-by(δi−1) and add(s − yi−1) to every node in the tree, as it may take O(m) operations.
Instead, we simply leave a note (hence the name notable red-black trees) that such a transformation
should be applied before the function is evaluated at that node or at any of its descendants. To pre-
vent a large number of such notes accumulating at any given node we show that these notes satisfy
certain commutative and additive relations, thus requiring us to keep track of no more than 2 notes
at any given node. This lazy evaluation of notes allows us to perform all of the above operations in
O(log(m)) time. The details of the construction are provided in Appendix D.

5 Experiments

In this section, we present an empirical study of the SLISOTRON and GLM-TRON algorithms. We
perform two evaluations using synthetic data. The first one compares SLISOTRON and Isotron [7]
and illustrates the importance of imposing a Lipschitz constraint. The second one demonstrates the
advantage of using SLISOTRON over standard regression techniques, in the sense that SLISOTRON
can learn any monotonic Lipschitz function.

We also report results of an evaluation of SLISOTRON, GLM-TRON and several competing ap-
proaches on 5 UCI[12] datasets.

All errors are reported in terms of average root mean squared error (RMSE) using 10 fold cross
validation along with the standard deviation.

5.1 Synthetic Experiments

Although, the theoretical guarantees for Isotron are under the assumption that we get a fresh sample
each round, one may still attempt to run Isotron on the same sample each iteration and evaluate the
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(a) Synthetic Experiment 1
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(b) Synthetic Experiment 2

Figure 2: (a) The figure shows the transfer functions as predicted by SLISOTRON and Isotron. The
table shows the average RMSE using 10 fold cross validation. The ∆ column shows the average
difference between the RMSE values of the two algorithms across the folds. (b) The figure shows the
transfer function as predicted by SLISOTRON. Table shows the average RMSE using 10 fold cross
validation for SLISOTRON and Logistic Regression. The ∆ column shows the average difference
between the RMSE values of the two algorithms across folds.

empirical performance. Then, the main difference between SLISOTRON and Isotron is that while
SLISOTRON fits the best Lipschitz monotonic function using LIR each iteration, Isotron merely finds
the best monotonic fit using PAV. This difference is analogous to finding a large margin classifier
vs. just a consistent one. We believe this difference will be particularly relevant when the data is
sparse and lies in a high dimensional space.

Our first synthetic dataset is the following: The dataset is of size m = 1500 in d = 500 dimensions.
The first co-ordinate of each point is chosen uniformly at random from {−1, 0, 1}. The remaining
co-ordinates are all 0, except that for each data point one of the remaining co-ordinates is randomly
set to 1. The true direction is w = (1, 0, . . . , 0) and the transfer function is u(z) = (1 + z)/2. Both
SLISOTRON and Isotron put weight on the first co-ordinate (the true direction). However, Isotron
overfits the data using the remaining (irrelevant) co-ordinates, which SLISOTRON is prevented from
doing because of the Lipschitz constraint. Figure 2(a) shows the transfer functions as predicted by
the two algorithms, and the table below the plot shows the average RMSE using 10 fold cross valida-
tion. The ∆ column shows the average difference between the RMSE values of the two algorithms
across the folds.

A principle advantage of SLISOTRON over standard regression techniques is that it is not necessary
to know the transfer function in advance. The second synthetic experiment is designed as a sanity
check to verify this claim. The dataset is of sizem = 1000 in d = 4 dimensions. We chose a random
direction as the “true”w and used a piecewise linear function as the “true” u. We then added random
noise (σ = 0.1) to the y values. We compared SLISOTRON to Logistic Regression on this dataset.
SLISOTRON correctly recovers the true function (up to some scaling). Fig. 2(b) shows the actual
transfer function as predicted by SLISOTRON, which is essentially the function we used. The table
below the figure shows the performance comparison between SLISOTRON and logistic regression.

5.2 Real World Datasets

We now turn to describe the results of experiments performed on the following 5 UCI datasets:
communities, concrete, housing, parkinsons, and wine-quality. We compared
the performance of SLISOTRON (Sl-Iso) and GLM-TRON with logistic transfer function (GLM-t)
against Isotron (Iso), as well as standard logistic regression (Log-R), linear regression (Lin-R) and
a simple heuristic algorithm (SIM) for single index models, along the lines of standard iterative
maximum-likelihood procedures for these types of problems (e.g., [13]). The SIM algorithm works
by iteratively fixing the direction w and finding the best transfer function u, and then fixing u and
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optimizingw via gradient descent. For each of the algorithms we performed 10-fold cross validation,
using 1 fold each time as the test set, and we report averaged results across the folds.

Table 1 shows average RMSE values of all the algorithms across 10 folds. The first column shows
the mean Y value (with standard deviation) of the dataset for comparison. Table 2 shows the average
difference between RMSE values of SLISOTRON and the other algorithms across the folds. Negative
values indicate that the algorithm performed better than SLISOTRON. The results suggest that the
performance of SLISOTRON (and even Isotron) is comparable to other regression techniques and in
many cases also slightly better. The performance of GLM-TRON is similar to standard implementa-
tions of logistic regression on these datasets. This suggests that these algorithms should work well
in practice, while providing non-trivial theoretical guarantees.

It is also illustrative to see how the transfer functions found by SLISOTRON and Isotron compare.
In Figure 3, we plot the transfer functions for concrete and communities. We see that the fits
found by SLISOTRON tend to be smoother because of the Lipschitz constraint. We also observe that
concrete is the only dataset where SLISOTRON performs noticeably better than logistic regres-
sion, and the transfer function is indeed somewhat far from the logistic function.

Table 1: Average RMSE values using 10 fold cross validation. The Ȳ column shows the mean Y
value and standard deviation.

dataset Ȳ Sl-Iso GLM-t Iso Lin-R Log-R SIM
communities 0.24 ± 0.23 0.13 ± 0.01 0.14 ± 0.01 0.14 ± 0.01 0.14 ± 0.01 0.14 ± 0.01 0.14 ± 0.01

concrete 35.8 ± 16.7 9.9 ± 0.9 10.5 ± 1.0 9.9 ± 0.8 10.4 ± 1.1 10.4 ± 1.0 9.9 ± 0.9
housing 22.5 ± 9.2 4.65 ± 1.00 4.85 ± 0.95 4.68 ± 0.98 4.81 ± 0.99 4.70 ± 0.98 4.63 ± 0.78

parkinsons 29 ± 10.7 10.1 ± 0.2 10.3 ± 0.2 10.1 ± 0.2 10.2 ± 0.2 10.2 ± 0.2 10.3 ± 0.2
winequality 5.9 ± 0.9 0.78 ± 0.04 0.79 ± 0.04 0.78 ± 0.04 0.75 ± 0.04 0.75 ± 0.04 0.78 ± 0.03

Table 2: Performance comparison of SLISOTRON with the other algorithms. The values reported
are the average difference between RMSE values of the algorithm and SLISOTRON across the folds.
Negative values indicate better performance than SLISOTRON.

dataset GLM-t Iso Lin-R Log-R SIM
communities 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

concrete 0.56 ± 0.35 0.04 ± 0.17 0.52 ± 0.35 0.55 ± 0.32 -0.03 ± 0.26
housing 0.20 ± 0.48 0.03 ± 0.55 0.16 ± 0.49 0.05 ± 0.43 -0.02 ± 0.53

parkinsons 0.19 ± 0.09 0.01 ± 0.03 0.11 ± 0.07 0.09 ± 0.07 0.21 ± 0.20
winequality 0.01 ± 0.01 0.00 ± 0.00 -0.03 ± 0.02 -0.03 ± 0.02 0.01 ± 0.01
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Figure 3: The transfer function u as predicted by SLISOTRON (blue) and Isotron (red) for the
concrete and communities datasets. The domain of both functions was normalized to [−1, 1].
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A Proof of Thm. 1

The reader is referred to GLM-TRON (Alg. 1) for notation used in this section.

The main lemma shows that as long as the error of the current hypothesis is large, the distance of
our predicted direction vector wt from the ideal direction w decreases by a substantial amount at
each step.
Lemma 1. At iteration t in GLM-TRON, suppose ‖wt − w‖ ≤ W , then if
‖(1/m)

∑m
i=1(yi − u(w · xi))xi‖w ≤ η, then∥∥wt − w∥∥2 − ∥∥wt+1 − w

∥∥2 ≥ ε̂(ht)− 5Wη

Proof. We have

∥∥wt − w∥∥2−∥∥wt+1 − w
∥∥2 =

2

m

m∑
i=1

(yi−u(wt·xi))(w·xi−wt·xi)−

∥∥∥∥∥ 1

m

m∑
i=1

(yi − u(wt · xi))xi

∥∥∥∥∥
2

.

(7)
Consider the first term above,

2

m

m∑
i=1

(yi−u(wt·xi))(w·xi−wt·xi) =
2

m

m∑
i=1

(u(w·xi)−u(wt·xi))(w·xi−wt·xi)+
2

m

(
m∑
i=1

(yi − u(w · xi))xi

)
·(w−wt).

Using the fact that u is non-decreasing and 1-Lipschitz (for the first term) and ‖w − wt‖ ≤ W and
‖(1/m)

∑m
i=1(yi − u(w · xi))xi‖ ≤ η, we can lower bound this by

2

m

m∑
i=1

(u(w · xi)− u(wt · xi))2 − 2Wη ≥ 2ε̂(ht)− 2Wη. (8)

For the second term in (7), we have∥∥∥∥∥ 1

m

m∑
i=1

(yi − u(wt · xi))xi

∥∥∥∥∥
2

=

∥∥∥∥∥ 1

m

m∑
i=1

(yi − u(w · xi) + u(w · xi)− u(wt · xi))xi

∥∥∥∥∥
2

≤

∥∥∥∥∥ 1

m

m∑
i=1

(yi − u(w · xi))xi

∥∥∥∥∥
2

+ 2

∥∥∥∥∥ 1

m

m∑
i=1

(yi − u(w · xi))xi

∥∥∥∥∥ ×
∥∥∥∥∥ 1

m

m∑
i=1

(u(w · xi)− u(wt · xi))xi

∥∥∥∥∥
+

∥∥∥∥∥ 1

m

m∑
i=1

(u(w · xi)− u(wt · xi))xi

∥∥∥∥∥
2

(9)

Using the fact that ‖(1/m)
∑m
i=1(yi − u(w · xi))xi‖ ≤ η, and using Jensen’s inequality to show

that
‖(1/m)

∑m
i=1(u(w · xi)− u(wt · xi))xi‖

2 ≤ (1/m)
∑m
i=1(u(w · xi)− u(wt · xi))2 = ε̂(ht), and

assuming W ≥ 1, we get ∥∥∥∥∥ 1

m

m∑
i=1

(yi − u(w · xi))xi

∥∥∥∥∥
2

≤ ε̂(ht) + 3Wη (10)

Combining (8) and (10) in (7), we get∥∥wt − w∥∥2 − ∥∥wt+1 − w
∥∥2 ≥ ε̂(ht)− 5Wη

To complete the proof of Theorem 1, the bound on ε̂(ht) for some t now follows from
Lemma 1. Let η = 2(1 +

√
log(1/δ)/1)/

√
m. Notice that (yi − u(w · xi))xi for all i are

i.i.d. 0-mean random variables with norm bounded by 1, so using Lemma 3 (Appendix B),
‖(1/m)

∑m
i=1(yi − u(w · xi))xi‖ ≤ η with high probability. Now using Lemma 1, at each iter-

ation of algorithm GLM-TRON, either
∥∥wt+1 − w

∥∥2 ≤ ‖wt − w‖2 −Wη, or ε̂(ht) ≤ 6Wη. If the

10



latter is the case, we are done. If not, since
∥∥wt+1 − w

∥∥2 ≥ 0, and
∥∥w0 − w

∥∥2 = ‖w‖2 ≤ W 2,
there can be at most W 2/(Wη) = W/(η) iterations before ε̂(ht) ≤ 6Wη. Overall, there is some ht
such that

ε̂(ht) ≤ O

(√
W 2 log(1/δ)

m

)
.

In addition, we can reduce this to a high-probability bound on ε(ht) using an uniform convergence
argument (Lemma 5, Appendix B), which is applicable since ‖wt‖ ≤W . Using a union bound, we
get a bound which holds simultaneously for ε̂(ht) and ε(ht).

B Proof of Thm. 2

This section is devoted to the proof of Thm. 2. The reader is referred to Section 4 for notation.

First we need a property of the LIR algorithm that is used to find the best one-dimensional non-
decreasing 1-Lipschitz function. Formally, this problem can be defined as follows: Given as input
〈{zi, yi}〉mi=1 ∈ [−W,W ]× [0, 1] the goal is to find ŷ1, . . . , ŷm such that

1

m

m∑
i=1

(ŷi − yi)2, (11)

is minimal, under the constraint that ŷi = u(zi) for some non-decreasing 1-Lipschitz function
u : [−W,W ] 7→ [0, 1]. After finding such values, LIR obtains an entire function u by interpolat-
ing linearly between the points. Assuming that zi are in sorted order, this can be formulated as a
quadratic problem with the following constraints:

ŷi − ŷi+1 ≤ 0 1 ≤ i < m (12)
ŷi+1 − ŷi − (zi+1 − zi) ≤ 0 1 ≤ i < m (13)

Lemma 2. Let (z1, y1), . . . , (zm, ym) be input to LIR where zi are increasing and yi ∈ [0, 1]. Let
ŷ1, . . . , ŷm be the output of LIR. Let f be any function such that f(β)− f(α) ≥ β − α, for β ≥ α,
then

m∑
i=1

(yi − ŷi)(f(ŷi)− zi) ≥ 0

Proof. We first note that
∑m
j=1(yj − ŷj) = 0, since otherwise we could have found other values for

ŷ1, . . . , ŷm which make (11) even smaller. So for notational convenience, let ŷ0 = 0, and we may
assume w.l.o.g. that f(ŷ0) = 0. Define σi =

∑m
j=i(yj − ŷj). Then we have

m∑
i=1

(yi − ŷi)(f(ŷi)− zi) =

m∑
i=1

σi((f(ŷi)− zi)− (f(ŷi−1)− zi−1)). (14)

Suppose that σi < 0. Intuitively, this means that if we could have decreased all values ŷi+1, . . . ŷm
by an infinitesimal constant, then the objective function (11) would have been reduced, contradicting
the optimality of the values. This means that the constraint ŷi − ŷi+1 ≤ 0 must be tight, so we have
(f(ŷi+1) − zi+1) − (f(ŷi) − zi) = −zi+1 + zi ≤ 0 (this argument is informal, but can be easily
formalized using KKT conditions). Similarly, when σi > 0, then the constraint ŷi+1− ŷi− (zi+1−
zi) ≤ 0 must be tight, hence f(ŷi+1) − f(ŷi) ≥ ŷi+1 − ŷi = (zi+1 − zi) ≥ 0. So in either case,
each summand in (14) must be non-negative, leading to the required result.

We also use another result, for which we require a bit of additional notation. At each iter-
ation of the SLISOTRON algorithm, we run the LIR procedure based on the training sample
(x1, y1), . . . , (xm, ym) and the current direction wt, and get a non-decreasing Lipschitz function
ut. Define

∀i ŷti = ut(wt · xi).
Recall that w, u are such that E[y|x] = u(w · x), and the input to the SLISOTRON algorithm is
(x1, y1), . . . , (xm, ym). Define

∀i ȳi = u(w · xi)
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to be the expected value of each yi. Clearly, we do not have access to ȳi. However, consider a
hypothetical call to LIR with inputs 〈(wt · xi, ȳi)〉mi=1, and suppose LIR returns the function ũt. In
that case, define

∀i ỹti = ũt(wt · xi).
for all i. Our proof uses the following proposition, which relates the values ŷti (the values we can
actually compute) and ỹti (the values we could compute if we had the conditional means of each yi).
The proof of Proposition 1 is somewhat lengthy and requires additional technical machinery, and is
therefore relegated to Appendix C.
Proposition 1. With probability at least 1− δ over the sample {(xi, yi)}mi=1, it holds for any t that
1
m

∑m
i=1 |ŷti − ỹti | is at most the minimum of

min

{
O

((
dW 2 log(Wm/δ)

m

)1/3
)
, O

((
W 2 log(m/δ)

m

)1/4
)
.

}
The third auxiliary result we need is the following, which is well-known (see for example [14],
Section 4.1).
Lemma 3. Suppose z1, . . . , zm are i.i.d. 0-mean random variables in a Hilbert space, such that
Pr(‖xi‖ ≤ 1) = 1. Then with probability at least 1− δ,∥∥∥∥∥ 1

m

m∑
i=1

zi

∥∥∥∥∥ ≤ 2

(
1 +

√
log(1/δ)/2√
m

)

With these auxiliary results in hand, we can now turn to prove Thm. 2 itself. The heart of the proof
is the following lemma, which shows that the squared distance ‖wt − w‖2 between wt and the true
direction w decreases at each iteration at a rate which depends on the error of the hypothesis ε̂(ht):
Lemma 4. Suppose that ‖wt − w‖ ≤ W and ‖(1/m)

∑m
i=1(yi − ȳi)xi‖ ≤ η1 and

(1/m)
∑m
i=1 |ŷti − ỹti | ≤ η2. Then∥∥wt − w∥∥2 − ∥∥wt+1 − w

∥∥2 ≥ ε̂(ht)− 5W (η1 + η2)

Proof. We have∥∥wt+1 − w
∥∥2
2

=
∥∥wt+1 − wt + wt − w

∥∥2
2

=
∥∥wt+1 − wt

∥∥2
2

+
∥∥wt − w∥∥2

2
+ 2(wt+1 − wt) · (wt − w)

Since wt+1 − wt = (1/m)
∑m
i=1(yi − ŷti)xi, substituting this above and rearranging the terms we

get,

∥∥wt − w∥∥2 − ∥∥wt+1 − w
∥∥2 =

2

m

m∑
i=1

(yi − ŷti)(w · xi − wt · xi)−

∥∥∥∥∥ 1

m

m∑
i=1

(yi − ŷti)xi

∥∥∥∥∥
2

. (15)

Consider the first term above,

2

m

m∑
i=1

(yi − ŷti)(w · xi − wt · xi) =

(
2

m

m∑
i=1

(yi − ȳi)xi

)
· (w − wt) (16)

+
2

m

m∑
i=1

(ȳi − ỹti)(w · xi − wt · xi) (17)

+
2

m

m∑
i=1

(ỹti − ŷti)(w · xi − wt · xi) (18)

The term (16) is at least −2Wη1, the term (18) is at least −2Wη2 (since |(w −wt) · xi| ≤W ). We
thus consider the remaining term (17). Letting u be the true transfer function, suppose for a minute
it is strictly increasing, so its inverse u−1 is well defined. Then we have

2

m

m∑
i=1

(ȳi − ỹti)(w · xi − wt · xi) =
2

m

m∑
i=1

(ȳi − ỹti)(w · xi − u−1(ỹti)) +
2

m

m∑
i=1

(ȳi − ỹti)(u−1(ỹti)− wt · xi)
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The second term in the expression above is positive by Lemma 2. As to the first term, it is equal to
2
m

∑m
i=1(ȳi− ỹti)(u−1(ȳi)−u−1(ỹti)), which by the Lipschitz property of u is at least 2

m

∑m
i=1(ȳi−

ỹti)
2 = 2ε̂(h̃t). Plugging this in the above, we get

2

m

m∑
i=1

(yi − ŷti)(w · xi − wt · xi) ≥ 2ε̂(h̃t)− 2W (η1 + η2) (19)

This inequality was obtained under the assumption that u is strictly increasing, but it is not hard to
verify that the same would hold even if u is only non-decreasing.

The second term in (15) can be bounded, using some tedious technical manipulations (see (9) and
(10) in Appendix A), by ∥∥∥∥∥ 1

m

m∑
i=1

(yi − ŷti)xi

∥∥∥∥∥
2

≤ ε̂(ht) + 3Wη1 (20)

Combining (19) and (20)) in (15), we get∥∥wt − w∥∥2 − ∥∥wt+1 − w
∥∥2≥ 2ε̂(h̃t)− ε̂(ht)−W (5η1 + 2η2) (21)

Now, we claim that

ε̂(h̃t)− ε̂(ht) ≥ − 2

m

m∑
i=1

|ŷti − ỹti | ≥ −2η2,

since

ε̂(h̃t) =
1

m

m∑
i=1

(ỹti − ȳi)2

=
1

m

m∑
i=1

(ỹti − ŷti + ŷti − ȳi)2

=
1

m

m∑
i=1

(ŷti − ȳi)2 +

(
1

m

m∑
i=1

(ỹti − ŷti)

)
(ỹti + ŷti − 2ȳi)

and we have that |ỹti + ŷti − 2ȳi| ≤ 2. Plugging this into (21) leads to the desired result.

The bound on ε̂(ht) in Thm. 2 now follows from Lemma 4. Using the notation from Lemma 4, η1
can be set to the bound in Lemma 3, since {(yi − ȳi)xi}mi=1 are i.i.d. 0-mean random variables with
norm bounded by 1. Also, η2 can be set to any of the bounds in Proposition 1. η2 is clearly the
dominant term. Thus, we get that Lemma 4 holds, so either

∥∥wt+1 − w
∥∥2 ≤ ‖wt − w‖2−W (η1 +

η2), or ε̂(ht) ≤ 3W (η1 + η2). If the latter is the case, we are done. If not, since
∥∥wt+1 − w

∥∥2 ≥ 0,
and

∥∥w0 − w
∥∥2 = ‖w‖2 ≤W 2, there can be at most W 2/(W (η1 + η2)) = W/(η1 + η2) iterations

before ε̂(ht) ≤ 6Wη. Plugging in the values for η1, η2 results in the bound on ε̂(ht).

Finally, to get a bound on ε(ht), we utilize the following uniform convergence lemma:

Lemma 5. Suppose that E[y|x] = u(〈w, x〉) for some non-decreasing 1-Lipschitz u andw such that
‖w‖ ≤W . Then with probability at least 1− δ over a sample (x1, y1), . . . , (xm, ym), the following
holds simultaneously for any function h(x) = û(ŵ · x) such that ‖ŵ‖ ≤ W and a non-decreasing
and 1-Lipschitz function û:

|ε(h)− ε̂(h)| ≤ O

(√
W 2 log(m/δ)

m

)
.

The proof of the lemma uses a covering number argument, and is shown as part of the more general
Lemma 7 in Appendix C. This lemma applies in particular to ht. Combining this with the bound on
ε̂(ht), and using a union bound, we get the result on ε(ht) as well.
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C Proof of Proposition 1

To prove the proposition, we actually prove a more general result. Define the function class

U = {u : [−W,W ]→ [0, 1] : u 1-Lipschitz}.

and
W = {x 7→ 〈x,w〉 : w ∈ Rd, ‖w‖ ≤W},

where d is possibly infinite (for instance, if we are using kernels).

It is easy to see that the proposition follows from the following uniform convergence guarantee:

Theorem 3. With probability at least 1− δ, for any fixed w ∈ W , if we let

û = arg min
u∈U

1

m

m∑
i=1

(u(w · xi)− yi)2,

and define

ũ = arg min
u∈U

1

m

m∑
i=1

(u(w · xi)− E[y|xi])2,

then

1

m

m∑
i=1

|û(w·xi)−ũ(w·xi)| ≤ O

(
min

{(
dW 3/2 log(Wm/δ)

m

)1/3

+

√
W 2 log(m/δ)

m
,

(
W 2 log(m/δ)

m

)1/4
})

.

To prove the theorem, we use the concept of (∞-norm) covering numbers. Given a function class
F on some domain and some ε > 0, we define N∞(ε,F) to be the smallest size of a covering set
F ′ ⊆ F , such that for any f ∈ F , there exists some f ′ ∈ F for which supx |f(x) − f ′(x)| ≤ ε.
In addition, we use a more refined notion of an ∞-norm covering number, which deals with an
empirical sample of size m. Formally, define N∞(ε,F ,m) to be the smallest integer n, such that
for any x1, . . . , xm, one can construct a covering set F ′ ⊆ F of size at most n, such that for any
f ∈ F , there exists some f ′ ∈ F such that maxi=1,...,m |f(xi)− f ′(xi)| ≤ ε.
Lemma 6. Assuming m, 1/ε,W ≥ 1, we have the following covering number bounds:

1. N∞(ε,U) ≤ 1
ε 22W/ε.

2. N∞(ε,W) ≤
(
1 + 2W

ε

)d
.

3. N∞(ε,U ◦W) ≤ 2
ε 24W/ε

(
1 + 4W

ε

)d
.

4. N∞(ε,U ◦W,m) ≤ 2
ε (2m+ 1)1+8W 2/ε2

Proof. We start with the first bound. Discretize [−W,W ]× [0, 1] to a two-dimensional grid
{−W + εa, εb}a=0,...,2W/ε,b=0,...,1/ε. It is easily verified that for any function u ∈ U , we can define
a piecewise linear function u′, which passes through points in the grid, and in between the points, is
either constant or linear with slope 1, and supx |u(x)−u′(x)| ≤ ε. Moreover, all such functions are
parameterized by their value at−W , and whether they are sloping up or constant at any grid interval
afterward. Thus, their number can be coarsely upper bounded as 22W/ε/ε.

The second bound in the lemma is a well known fact - see for instance pg. 63 in [15]).

The third bound in the lemma follows from combining the first two bounds, and using the Lipschitz
property of u (we simply combine the two covers at an ε/2 scale, which leads to a cover at scale ε
for U ◦W).

To get the fourth bound, we note that by corollary 3 in [16]. N∞(ε,W,m) ≤ (2m + 1)1+W
2/ε2 .

Note that unlike the second bound in the lemma, this bound is dimension-free, but has worse depen-
dence on W and ε. Also, we have N∞(ε,U ,m) ≤ N∞(ε,U) ≤ 1

ε 22W/ε by definition of covering
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numbers and the first bound in the lemma. Combining these two bounds, and using the Lipschitz
property of u, we get

2

ε
(2m+ 1)1+4W 2/ε224W/ε.

Upper bounding 24W/ε by (2m+ 1)4W
2/ε2 , the the fourth bound in the lemma follows.

Lemma 7. With probability at least 1−δ over a sample (x1, y1), . . . , (xm, ym) the following bounds
hold simultaneously for any w ∈ W, u, u′ ∈ U ,∣∣∣∣∣ 1

m

m∑
i=1

(u(w · xi)− yi)2 − E
[
(u(w · x)− y)2

]∣∣∣∣∣ ≤ O
(√

W 2 log(m/δ)

m

)
,

∣∣∣∣∣ 1

m

m∑
i=1

(u(w · xi)− E[y|xi])2 − E
[
(u(w · x)− E[y|x])2

]∣∣∣∣∣ ≤ O
(√

W 2 log(m/δ)

m

)
,∣∣∣∣∣ 1

m

m∑
i=1

|u(w · xi)− u′(w · xi)| − E [|u(w · x)− u′(w · x)|]

∣∣∣∣∣ ≤ O
(√

W 2 log(m/δ)

m

)

Proof. Lemma 6 tells us thatN∞(ε,U ◦W,m) ≤ 2
ε (2m+ 1)1+8W 2/ε2 . It is easy to verify that the

same covering number bound holds for the function classes {(x, y) 7→ (u(w ·x)− y)2 : u ∈ U , w ∈
W} and {x 7→ (u(w · x) − E[y|x])2 : u ∈ U , w ∈ W}, by definition of the covering number and
since the loss function is 1-Lipschitz. In a similar manner, one can show that the covering number of
the function class {x 7→ |u(w ·x)−u′(w ·x)| : u, u′ ∈ U , w ∈ W} is at most 4

ε (2m+1)1+32W 2/ε2 .

Now, one just need to use results from the literature which provides uniform convergence bounds
given a covering number on the function class. In particular, combining a uniform convergence
bound in terms of the Rademacher complexity of the function class (e.g. Theorem 8 in [17]), and
a bound on the Rademacher complexity in terms of the covering number, using an entropy integral
(e.g., Lemma A.3 in [18]), gives the desired result.

Lemma 8. With probability at least 1−δ over a sample (x1, y1), . . . , (xm, ym), the following holds
simultaneously for any w ∈ W: if we let

ûw(〈w, ·〉) = arg min
u∈U

1

m

m∑
i=1

(u(w · xi)− yi)2

denote the empirical risk minimizer with that fixed w, then

E(ûw(w · x)− y)2 − inf
u∈U

E(u(w · x)− y)2 ≤ O

(
W

(
d log(Wm/δ)

m

)2/3
)
,

Proof. For generic losses and function classes, standard bounds on the the excess error typically
scale as O(1/

√
m). However, we can utilize the fact that we are dealing with the squared loss to

get better rates. In particular, using Theorem 4.2 in [19], as well as the bound on N∞(ε,U) from
Lemma 6, we get that for any fixed w, with probability at least 1− δ,

E(ûw(w · x)− y)2 − inf
u∈U

E(u(w · x)− y)2 ≤ O

(
W

(
log(1/δ)

m

)2/3
)
.

To get a statement which holds simultaneously for any w, we apply a union bound over a covering
set of W . In particular, by Lemma 6, we know that we can cover W by a set W ′ of size at most
(1 + 2W/ε)d, such that any element inW is at most ε-far (in an∞-norm sense) from some w′ ∈
W ′. So applying a union bound over W ′, we get that with probability at least 1 − δ, it holds
simultaneously for any w′ ∈ W that

E(ûw′(〈w′, x〉)− y)2 − inf
u

E(u(〈w′, x〉)− y)2 ≤ O

(
W

(
log(1/δ) + d log(1 + 2W/ε)

m

)2/3
)
.

(22)

15



Now, for any w ∈ W , if we let w′ denote the closest element inW ′, then u(w · x) and u(〈w′, x〉)
are ε-close uniformly for any u ∈ U and any x. From this, it is easy to see that we can extend (22)
to hold for any W , with an additional O(ε) element in the right hand side. In other words, with
probability at least 1− δ, it holds simultaneously for any w ∈ W that

E(ûw(w · x)− y)2 − inf
u

E(u(w · x)− y)2 ≤ O

(
W

(
log(2/δ) + d log(1 + 2W/ε)

m

)2/3
)

+ ε.

Picking (say) ε = 1/m provides the required result.

Lemma 9. Let F be a convex class of functions, and let f∗ = arg minf∈F E[(f(x)−y)2]. Suppose
that E[y|x] ∈ U ◦W . Then for any f ∈ F , it holds that

E[(f(x)− y)2]− E[(f∗(x)− y)2] ≥ E
[
(f(x)− f∗(x))

2
]
≥ (E [|f(x)− f∗(x)|])2 .

Proof. It is easily verified that

E[(f(x)− y)2]− E[(f∗(x)− y)2] = Ex[(f(x)− E[y|x])2 − (f∗(x)− E[y|x])2]. (23)

This implies that f∗ = arg minf∈F E[(f(x)− E[y|x])2].

Consider the L2 Hilbert space of square-integrable functions, with respect to the measure induced
by the distribution on x (i.e., the inner product is defined as 〈f, f ′〉 = Ex[f(x)f ′(x)]). Note that
E[y|x] ∈ U ◦ W is a member of that space. Viewing E[y|x] as a function y(x), what we need to
show is that

‖f − y‖2 − ‖f∗ − y‖2 ≥ ‖f − f∗‖2 .
By expanding, it can be verified that this is equivalent to showing

〈f∗ − y, f − f∗〉 ≥ 0.

To prove this, we start by noticing that according to (23), f∗ minimizes ‖f − y‖2 over F . Therefore,
for any f ∈ F and any ε ∈ (0, 1),

‖(1− ε)f∗ + εf − y‖2 − ‖f∗ − y‖2 ≥ 0, (24)

as (1− ε)f∗ + εf ∈ F by convexity of F . However, the right hand side of (24) equals

ε2 ‖f − f∗‖2 + 2ε〈f∗ − y, f − f∗〉,
so to ensure (24) is positive for any ε, we must have 〈f∗−y, f −f∗〉 ≥ 0. This gives us the required
result, and establishes the first inequality in the lemma statement. The second inequality is just by
convexity of the squared function.

Proof of Thm. 3. We bound 1
m

∑m
i=1 |û(w · x) − ũ(w · x)| in two different ways, one which is

dimension-dependent and one which is dimension independent.

We begin with the dimension-dependent bound. For any fixed w, let u∗ be arg minu∈U E(u(w ·x)−
y)2. We have from Lemma 8 that with probability at least 1− δ, simultaneously for all w ∈ W ,

E(û(w · x)− y)2 − E(u∗(w · x)− y)2 ≤ O

(
W

(
d log(Wm/δ)

m

)2/3
)
,

and by Lemma 9, this implies

E[|û(w · x)− u∗(w · x)|] ≤ O

((
dW 3/2 log(Wm/δ)

m

)1/3
)
. (25)

Now, we note that since u∗ = arg minu∈U E(u(w · x)− y)2, then u∗ = arg minu∈U E(u(w · x)−
E[y|x])2 as well. Again applying Lemma 8 and Lemma 9 in a similar manner, but now with respect
to ũ, we get that with probability at least 1− δ, simultaneously for all w ∈ W ,

E[|ũ(w · x)− u∗(w · x)|] ≤ O

((
dW 3/2 log(Wm/δ)

m

)1/3
)
. (26)
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Combining (25) and (26), with a union bound, we have

E[|û(w · x)− ũ(w · x)|] ≤ O

((
dW 3/2 log(Wm/δ)

m

)1/3
)
.

Finally, we invoke the last inequality in Lemma 7, using a union bound, to get

1

m

m∑
i=1

|û(w · x)− ũ(w · x)| ≤ O

((
dW 3/2 log(Wm/δ)

m

)1/3

+

√
W 2 log(m/δ)

m

)
.

We now turn to the dimension-independent bound. In this case, the covering number bounds are dif-
ferent, and we do not know how to prove an analogue to Lemma 8 (with rate faster than O(1/

√
m)).

This leads to a somewhat worse bound in terms of the dependence on m.

As before, for any fixed w, we let u∗ be arg minu∈U E[(u(w · x) − y)2]. Lemma 7 tells us that the
empirical risk 1

m

∑m
i=1(u(w · xi) − yi)2 is concentrated around its expectation uniformly for any

u,w. In particular,∣∣∣∣∣ 1

m

m∑
i=1

(û(w · xi)− yi)2 − E
[
û(w · x)− y)2

]∣∣∣∣∣ ≤ O
(√

W 2 log(m/δ)

m

)
as well as ∣∣∣∣∣ 1

m

m∑
i=1

(u∗(w · xi)− yi)2 − E
[
(u∗(w · x)− y)2

]∣∣∣∣∣ ≤ O
(√

W 2 log(m/δ)

m

)
,

but since û was chosen to be the empirical risk minimizer, it follows that

E
[
(û(w · xi)− yi)2

]
− E

[
(u∗(w · x)− y)2

]
≤ O

(√
W 2 log(m/δ)

m

)
,

so by Lemma 9,

E [|u∗(w · x)− û(w · x)|] ≤ O

((
W 2 log(m/δ)

m

)1/4
)

(27)

Now, it is not hard to see that if u∗ = arg minu∈U E[(u(w·x)−y)2], then u∗ = arg minu∈U E[(u(w·
x)− E[y|x])2] as well. Again invoking Lemma 7, and making similar arguments, it follows that

E [|u∗(w · x)− ũ(w · x)|] ≤ O

((
W 2 log(m/δ)

m

)1/4
)
. (28)

Combining (27) and (28), we get

E [|û(w · x)− ũ(w · x)|] ≤ O

((
W 2 log(m/δ)

m

)1/4
)
.

We now invoke Lemma 7 to get

1

m

m∑
i=1

|û(w · xi)− ũ(w · xi)| ≤ O

((
W 2 log(m/δ)

m

)1/4
)
. (29)

D Lipschitz Isotonic Regression

The reader is referred to Section 4.1 for notation used in this section. We first prove that the functions
Gi defined in (Section 4.1 eq. (4)) are piecewise quadratic, differentiable everywhere and strongly
convex.
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Lemma 10. For i = 1, . . . ,m, the functions Gi (eq. (Section 4.1 eq. (4)) are piecewise quadratic,
differentiable everywhere and strictly convex.

Proof. We prove this assertion by induction on j = m− i. This statement is true for j = 0 (i = m),
since Gm(s) = (1/2)(s− ym)2. Recall that δi = zi+1 − zi and s∗i = minsGi(s).

Suppose that the assertion is true for i (j = m − i), then we shall prove the same for i − 1 (j =
m−i+1). Suppose ŷi−1 is fixed to s. Recall thatGi−1(s) is the minimum possible error attained by
fitting points (zi−1, yi−1), (zi, yi), . . . , (zm, ym) satisfying the Lipschitz and monotonic constraints
and setting ŷi−1 = s (the prediction at the point zi−1). For any assignment ŷi = s′ the least error is
obtained by fitting the rest of the points is Gi(s′). Thus,

Gi−1(s) =
1

2
(s− ym)2 + min

s′
Gi(s

′)

subject to the conditions that s′ ≥ s and s′ − s ≤ δi−1.

Since Gi is piecewise quadratic, differentiable everywhere and strictly convex, Gi is minimum at s∗i
and is increasing on both sides of s∗i . Thus, the quantity above is minimized by picking s′ to be as
close to s∗i as possible without violating any constraint. Hence, we get the recurrence relation:

Gi−1(s) =
1

2
(s− yi−1)2 +

{
Gi(s+ δi−1) If s ≤ s∗i − δi−1
Gi(s

∗
i ) If s∗i − δi−1 < s ≤ s∗i

Gi(s) If s∗i < s
(30)

By assumption for i, Gi is a piecewise quadratic function, say defined on intervals (a0 =
−∞, a1], . . . , (ak−1, ak], (ak, ak+1], . . . , (al−1, al = ∞). Let s∗i ∈ (ak−1, ak] and note
that G′i(s

∗
i ) = 0. Define an intermediate function F (s) which is defined on l +

1 intervals, (−∞, a1 − δi−1], (a1 − δi−1, a2 − δi−1], . . . , (ak−1 − δi−1, s
∗
i − δi−1], (s∗i −

δi−1, s
∗
i ], (s

∗
i , ak], (ak, ak+1], . . . , (al−1,∞), where

1. F (s) = Gi(s+ δi−1) on intervals (−∞, a1 − δi−1], . . . , (ak−1 − δi−1, s∗i − δi−1]

2. F (s) = Gi(s
∗
i ) on interval (s∗i − δi−1, s∗i ]

3. F (s) = Gi(s) on intervals (s∗i , ak], . . . , (al−1,∞)

Since Gi is piecewise quadratic, so is F on intervals as defined above (constant on the interval
(s∗i − δi−1, s

∗
i ]). F is differentiable everywhere, since G′i(s

∗
i ) = 0. Observe that Gi−1(s) =

(1/2)(s − yi−1)2 + F (s), this makes Gi−1(s) strictly convex, while retaining the fact that it is
piecewise quadratic and differentiable everywhere.

D.1 Algorithm

We now give an efficient algorithm for Lipschitz Isotonic Regression. As discussed already in
Section 4.1, it suffices to find s∗i for i = 1, . . . ,m. Once these values are known it is easy to find
values ŷ1, . . . ŷm that are optimal. The pseudocode for LIR algorithm is given in Alg. 3.

As discussed in Section 4.1 the algorithm maintains G′i, and finds s∗i by finding the zero of G′i.
G′i is piecewise linear, continuous and strictly increasing. We design a new data structure notable
red-black trees2 to store these piecewise linear, continuous, strictly increasing functions.

A notable red-black tree (henceforth NRB-Tree) stores a piecewise linear function. The disjoint
intervals on which the function is defined have a natural order, thus the intervals serve as the key
and the linear function is stored as the value at a node. Apart from storing these key-value pairs,
the nodes of the tree also store some notes that are applied to the entire subtree rooted at that node,
hence the name notable red-black trees. We assume that standard tree operations, i.e. finding and
inserting nodes can be performed inO(log(m)) time. There is a slight caveat that there may be notes
at some of the nodes, but we show in Section D.2 how to flush all notes at a given node in constant

2Any tree-structure that uses only local rotations and guarantees O(log(m)) worst-case or amortized find
and insert operations may be used.
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Algorithm 3 LIR: Lipschitz Isotonic Regression
Input: (z1, y1), . . . , (zm, ym)

s∗i = 0, i = 1, . . .m
ŷi = 0, i = 1, . . .m
NRB-Tree T(s− ym); // new T represents s− ym.

δi = zi+1 − zi, i = 1, . . . ,m

for i = m, . . . , 1 do
s∗i = T.zero()
if i = 1 then
break;

end if
T.update(s∗i , δi−1, yi−1)

end for
ŷi = s∗1
for i = 2, . . . ,m do

if s∗i > ŷi−1 + δi−1 then
ŷi = ŷi−1 + δi

else if s∗i ≥ ŷi−1 then
ŷi = s∗i

else
ŷi = ŷi−1

end if
end for

Output: ŷ1, . . . , ŷm

time. Thus, whenever a node is accessed for find or insert operations the notes are first applied to
the node appropriately and then the standard tree operation can continue.

The algorithm initializes T to represent the linear function s−ym. This can be performed very easily
by just creating a root node, setting the interval (key) to be (−∞,∞) and the linear function (value)
to s − ym, represented by coefficients (1,−ym). There are two function calls that algorithm LIR
makes on T.

1. T.zero(): This finds the zero (the point where the function is 0) of the piecewise linear
function Gi represented by the NRB-Tree T. Since the function is piecewise linear, contin-
uous and strictly increasing, a unique zero exists and the tree structure is well-suited to find
the zero in O(logm) time.

2. T.update(s∗i , δi−1, yi). Having obtained the zero of Gi, the algorithm needs to update T to
now represent the Gi−1. This involves the following:

(a) Suppose (ak−1, ak] is the interval containing s∗i . Split the interval (ak−1, ak] into two
intervals (ak−1, s

∗
i ] and (s∗i , ak] (see Figure 1(a) in Section 4.1).

This operation is easy to perform on a binary tree in O(log(m)) time: It involves
finding the node representing the interval (ak−1, ak] that contains s∗i , then modifying it
to represent the interval (ak−1, s

∗
i ]. Then a new node representing the interval (s∗i , ak]

(currently none of the intervals in the tree overlaps with this interval) is inserted and
the linear function on this interval is set to be the same as the one on (ak−1, s

∗
i ].

(b) All the intervals to the left of s∗i , i.e. up to (ak−1, s
∗
i ] are to be moved to the left by

δi−1. Formally, if the interval is (a, a′] and the linear function is (l, l′) representing
ls+ l′, then after moving to the left by δi−1, the interval becomes (a−δi−1, a′−δi−1]
and the linear function becomes (l, l′ + lδi−1) (see Figure 1(b) in Section 4.1).
The above operation may involve modifying up to O(m) nodes in the tree. However
rather than actually making the modifications we only leave a note at appropriate
nodes that such a modification is to be performed. Whenever a note shift-by(δi−1)
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is left at a node, it is to be applied to the entire subtree. Thus, it suffices to leave only
O(log(m)) notes. The pseudo-code for this is provided in Section D.2.1. There is an
additional caveat that a node where the note is left, may already have other notes, this
issue is also discussed in Section D.2.

(c) A new interval (s∗i − δi−1, s∗i ] is added to T to fill in the gap created by the shifting to
the left in the above step (see Fig. 1(b) in Sec. 4.1). This operation is just addition of
a new node and can be performed in O(logm) time, the linear function at this node is
set to be 0.

(d) The function s − yi−1 is added to be added to every node in the tree. This is again
done by leaving a note add(1,−yi−1) at the root node. Recall that a note at any node
is applied to the entire subtree, thus in this case the note applies to every node in the
tree. Thus this operation is performed in constant time.

At the end of the steps described above, the NRB-Tree T represents the function G′i−1. The
notes are flushed lazily as required whenever a node is accessed by find or insert operations.

D.2 Applying Notes

In this section we provide the method to apply notes to the NRB-Tree. As mentioned in the earlier
section there are two kinds of notes that may be applied to any node: shift-by(δ) and add(α, β).
Suppose a node has an interval (a, a′] and linear function ls+l′, then applying the notes shift-by(δ)
and add(α, β), in that order, modifies the node so that the interval is now (a − δ, a′ − δ] and the
linear function is (l+ α)s+ lδ + l′ + β. Notice that applying the note add(α, β − αδ) followed by
shift-by(δ) produces the same effect. Thus the two kinds of note commute in the following sense:

• shift-by(δ) · add(α, β)⇐⇒ add(α, β − δα) · shift-by(δ)

It is also immediate that both kinds of notes are additive in the following sense:

• shift-by(δ) · shift-by(δ′)⇐⇒ shift-by(δ + δ′)

• add(α, β) · add(α′, β′)⇐⇒ add(α+ α′, β + β′)

Thus, we can now ensure the following:

1. There are never more than 2 notes at any node, and there is at most one note of each kind.
2. If both kinds of notes are present, shift-by notes are always applied before add notes.

Whenever a new note is left at a node which has any existing notes, the number of notes is reduced
to 2 and the correct order ensured by using the above commutative and additive relations. Since the
number of notes is at most 2, this can be done in constant time.

Flushing Notes: Whenever a node is visited as part of the standard tree operations find and insert,
the notes at any node that is visited are flushed. This involves modifying the key (interval) and value
(linear function) to reflect the notes. The notes are then left at the children of this node (if there
are any). Furthermore, if the children already have notes, the number of notes is reduced to 2 and
proper order maintained. Since the number of children is 2, there is only a constant overhead. The
tree operations can thus be performed in O(log(m)) time despite the notes.

D.2.1 Applying shift-by(δ) notes

In step T.update(s∗i , δi−1, yi) there were two kinds of notes that were applied. The note
add(s,−yi−1) was easy since it was only applied to the root node. The shift-by(δi−1) is slightly
more involved. The path to the interval (ak−1, s

∗
i ] is traced and the nodes in the path which lie to the

left of s∗i are modified appropriately. A note is applied at the left child of such nodes. The path is of
length at most O(log(m)) and operation at any node takes constant time. The actual pseudocode is
straightforward and is provided in Alg. 4.
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Algorithm 4 Applying shift-by(δ)

I = (ak−1, s
∗] // I is the interval

n = r // Set n to be the root node
while (n.interval 6= I) do

if (n.interval < I) then
Modify the interval and function at n according to shift-by(δ)
Apply note shift-by(δ) at n.left;
n = n.right;

else
n = n.left;

end if
end while

// A this step n.interval = I
Modify the interval and function at n according to shift-by(δ)

21


