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Abstract

We study the online decision problem where the set of available actions varies over time, also
called the sleeping experts problem. We consider the setting where the performance comparison
is made with respect to the best ordering of actions in hindsight. In this paper, both the
payoff function and the availability of actions is adversarial. Kleinberg et al. (2008) gave a
computationally efficient no-regret algorithm in the setting where payoffs are stochastic. Kanade
et al. (2009) gave an efficient no-regret algorithm in the setting where action availability is
stochastic.

However, the question of whether there exists a computationally efficient no-regret algorithm
in the adversarial setting was posed as an open problem by Kleinberg et al. (2008). We show that
such an algorithm would imply an algorithm for PAC learning DNF, a long standing important
open problem. We also consider the setting where the number of available actions is restricted,
and study its relation to agnostic learning monotone disjunctions over examples with bounded
Hamming weight.

1 Introduction

In online decision problems, a decision-maker must choose one of n possible actions, in each of
the total T rounds. Based on her choice, the decision-maker receives a payoff in the range [0, 1].
In the full information or expert setting, at the end of each round, the decision-maker sees the
payoff corresponding to each of the possible actions. In the bandit setting, she only observes the
reward of the action that she chose. The goal of the decision maker is to maximize her total payoff
across T rounds, or as is common in the non-stochastic setting, to minimize her regret with respect
to a class of strategies. The regret of the decision-maker is defined as the difference between the
payoff she would have received by following the best strategy in hindsight from the class and the
payoff that she actually received. There is vast literature studying the online experts problem.
The optimal strategy for a decision-maker is to randomly choose an action biasing the choice by
exponentially weighted cumulative payoff scores. (See for example the Hedge algorithm due to
Freund and Schapire [1995].)

In this paper, we focus on the so-called sleeping experts problem. In this problem, there are
a total of n actions, and at each round t, a subset, St, is available to the decision-maker. The
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class of strategies we compare against is the set of rankings over the n total actions. Each ranking
induces a simple strategy for the online decision problem: pick the highest-ranked available action.
As a motivating example, consider the problem of choosing an advertisement to display alongside
a search query. Of all the ads that match the particular keyword, only a subset might be available
for displaying because of budget, geographical or other constraints. In this case, we would want the
decision-making algorithm to compare well against the best (in hindsight) hypothetical ranking on
the ads.

Our work focuses on the fully non-stochastic setting, where both the set of available actions
and their payoffs are decided by an adversary1. In this paper, we consider the case of an oblivious
adversary, i.e. one that does not observe the actual (random) choices made by the decision-maker.
Since our results show computational difficulties in designing efficient no-regret algorithms, they are
equally applicable to the more challenging case of an adaptive adversary. An algorithm that selects
an action, at, at time step, t, is efficient, if it makes its choice (possibly using history) in time that
is polynomial in n. An algorithm is said to be a no-regret algorithm if its regret is O(poly(n)T 1−δ)
for some constant δ > 0. An informal statement of our main result is:

Theorem 1. If there exists a computationally efficient no-regret algorithm for the sleeping experts
problem (with respect to ranking strategies), then the class of polynomial size DNFs is PAC-learnable
under arbitrary distributions.

In contrast to the above result, if computational efficiency is not a concern, it is easy to see that
the Hedge algorithm [Freund and Schapire, 1995] achieves regret O(

√
n log(n)T ), by treating each

of the n! rankings as a (meta-)expert. This observation was made by Kleinberg et al. [2008], who
also showed that when the class of online algorithms is restricted to those that select actions by
sampling over rankings and without observing the set of available actions St, there is no efficient
no-regret algorithm unless RP = NP. However, this is a severe restriction and whether there exists
an efficient no-regret algorithm without such restrictions was posed by Kleinberg et al. as an open
question. Our result shows that such an algorithm would imply an algorithm for PAC-learning
DNFs under arbitrary distributions, a long standing important open problem [Valiant, 1984]. The
best known algorithm for PAC-learning DNFs is due to Klivans and Servedio [2001] and takes time

2Õ(n1/3). In fact, we show that the sleeping experts problem is at least hard as agnostic learning
disjunctions, the best known algorithm for which takes time 2Õ(

√
n) [Kalai et al., 2005].

Our Contributions

We use show that the sleeping experts problem is at least as hard as a PAC learning problem, which
is widely believed to be hard. As far as we are aware, computational hardness assumptions have not
been previously used to show lower bounds on regret in experts/bandits problems2. Lower bounds
in the literature are usually based on information theoretic arguments (such as predicting coin
tosses). In the sleeping experts setting, the information-theoretic lower bound of Ω(

√
n log(n)T )

can indeed be achieved if computational efficiency is not a concern.
We also consider a computationally easy restriction of the sleeping experts problem, namely

where the number of available actions is at most some constant, k. While computational efficiency
is easy to achieve in this case, the problem of achieving the right regret rate in terms of n is open.
For k ≥ 3, the only algorithm we know is a trivial one, which achieves regret O(

√
nkT ). However,

1No-regret algorithms are known for the case when either the payoffs or action availabilities are stochastic; these
are discussed in the related works section.

2In the case of online learning of concepts (such as linear separators), such lower bounds have been shown before
(see e.g. Shalev-Shwartz et al. [2010])
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running Hedge, which is computationally inefficient, achieves regret O(
√
nT ). For k = 2, a recent

result of Hazan et al. [2012] shows that achieving nearly optimal regret by a computationally
efficient algorithm is possible. We show the restriction of the sleeping experts problem is at least as
hard as the problem of agnostic learning monotone disjunctions under distributions with support
over points having Hamming weight at most k − 1.

Related Work

The most relevant related work to ours is that of Kleinberg et al. [2008] and Kanade et al. [2009].
Kleinberg et al. showed that in the setting where payoffs are stochastic (i.e. are drawn from
a fixed distribution on each round and independently for each action) and action availability is
adversarial, there exists an efficient no-regret algorithm that is essentially information-theoretically
optimal. Kanade et al. gave an efficient no-regret algorithm in the setting when the payoffs are set
by an oblivious adversary, but the action availability is decided stochastically, i.e. a subset S ⊆ [n]
of available actions is drawn according to a fixed distribution at each time step. In contrast, our
results in this paper show that an adversarial coupling between action availability and payoffs makes
the problem much harder.

The set of available experts may be thought of as context information at each time step, and
hence allows for encoding learning problems (in our case agnostic learning of disjunctions). We
believe that such techniques can be applied to show hardness results of other contextual ex-
perts/bandits problems as well. It is interesting to note in certain cases the opposite approach
also works, i.e. when the learning problem corresponding to the contextual experts problem ad-
mits an efficient algorithm, it can be converted to an efficient no-regret online algorithm [Langford
and Zhang, 2007, Beygelzimer et al., 2011, Dudik et al., 2011]. When not in the contextual ex-
perts/bandits setting, it is often possible to compete against a class of exponentially many experts
using a computationally efficient algorithm (see Cesa-Bianchi and Lugosi [2006] Chap. 5).

In earlier literature, different versions of the sleeping experts problems have been considered by
Freund et al. [1997] and Blum and Mansour [2007]. Our results are not applicable to their settings,
and in fact computationally efficient no-regret algorithms are known in those settings.

2 Preliminaries

We begin by describing the sleeping experts problem and introduce notation used in this paper. In
Section 2.2, we describe the online and batch agnostic learning settings and state the result relating
online and batch learning.

2.1 Setting and Notation

Let A = {a1, . . . , an} be the set of actions. Let T be the total number of time steps for the online
decision problem. In the sleeping experts setting, at time step, t, a subset, St ⊆ A, of actions is
available, from which the decision-maker picks an action, at ∈ St. Let pt : St → [0, 1] be the payoff
function, and for any action, a, let pt(a) denote the payoff associated with action, a, at time step,
t. At the end of round, t, the entire payoff function, pt, is revealed to the decision-maker. The total
payoff of the decision-maker across T rounds is simply:

PDM =
T∑
t=1

pt(at)
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When choosing an action at ∈ St, at time step t, the decision-maker may use history to guide
her choice. If the adversary cannot see any of the choices of the decision-maker, we say that the
adversary is oblivious. An adaptive adversary can see the past choices of the decision-maker and
may then decide the payoff function and action availability. In this paper, we only consider the
oblivious adversarial setting, since the hardness of designing no-regret algorithms against oblivious
adversaries also applies to the case of (stronger) adaptive adversaries. Also, we only consider the
full information setting, since the bandit setting is strictly harder.

The set of strategies that the decision-maker has to compete against is defined by the set of
rankings over the actions. Let ΣA denote the set of all n! possible rankings over the n total actions.
Given a particular ranking, σ ∈ ΣA, the corresponding strategy is to play the highest ranked
available action according to σ. For subset, S ⊆ A, of available actions, let σ(S) ∈ A denote the
action in S which is ranked highest according to σ. Thus, the payoff obtained by playing according
to strategy σ is:

Pσ =

T∑
t=1

pt(σ(St))

The quantity of interest is the regret of the decision-maker with respect to the class of ranking
strategies. The regret is defined as the difference between the payoff that would have been obtained
by playing according to the best ranking strategy in hindsight and the actual payoff received by the
decision maker. Thus,

RegretDM = max
σ∈ΣA

Pσ − PDM

We say that an algorithm is a no-regret algorithm, if, by playing according to the algorithm, the
decision-maker can achieve regret O(p(n)T 1−δ), where p(n) is a polynomial in n and δ ∈ (0, 1/2].
Furthermore, we say that such an algorithm is computationally efficient, if at each time step, t,
given the set, St, of available actions (and possibly using history), it selects an action, at ∈ St, in
time polynomial in n.

2.2 Agnostic Learning

In this section, we define online and batch agnostic learning. Let X be an instance space and n be
a parameter that captures the representation size of X (e.g. X = {0, 1}n or X = Rn).

Online Agnostic Learning

The definition of online agnostic learning used here is slightly different from those previously used
in the literature (see Ben-David et al. [2009]), but is essentially equivalent. Our definition simplifies
the presentation of our results.

An online agnostic learning algorithm observes examples one at a time; at time step, t, it sees
example, xt, makes a prediction, ŷt ∈ {0, 1} (possibly using history), and then observes yt. Let
s = 〈(xt, yt)〉Tt=1 be a sequence of length T , where xt ∈ X and yt ∈ {0, 1}. We consider the oblivious
adversarial setting, where the sequence, s, may be fixed by an adversary, but is fixed ahead of time,
i.e. without observing the past predictions made by the online learning algorithm. We define error
of an online agnostic learning algorithm, A, with respect to a sequence, s = 〈(xt, yt)〉Tt=1, as

errs(A) =
1

T

T∑
t=1

I(ŷt 6= yt),
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where I is the indicator function. For any boolean function, f : X → {0, 1}, we can define error of
f with respect to the sequence, s = 〈(xt, yt)〉Tt=1, as

errs(f) =
1

T

T∑
t=1

I(f(xt) 6= yt).

For a concept class, C, of boolean functions over X, online agnostic learnability of C is defined as3:

Definition 2 (Online Agnostic Learning). We say that a concept class, C, over X is online
agnostically learnable if there exists an online agnostic learning algorithm, A, that for all T , for all
example sequences, s = 〈(xt, yt)〉Tt=1, makes predictions, ŷ1, . . . , ŷT , such that

errs(A) ≤ min
f∈C

errs(f) +O(p(n)/T ζ),

for some polynomial, p(n), and ζ ∈ (0, 1/2]. Furthermore, the running time of A at each time step
must be polynomial in n. We say that A has an average regret bound O(p(n)/T ζ).

Batch Agnostic Learning

We also give a definition of (batch) agnostic learning (see Haussler [1992], Kearns et al. [1994]).
For a distribution, D, over X × {0, 1} and any boolean function, f : X → {0, 1}, define

errD(f) = Pr
(x,y)∼D

[f(x) 6= y].

Definition 3 ((Batch) Agnostic Learning Kearns et al. [1994]). We say that a concept class, C, is
(batch) agnostically learnable, if there exists an efficient algorithm that for every ε, δ > 0 and for
every distribution, D, over X ×{0, 1}, with access to random examples from D, with probability at
least 1− δ outputs a hypothesis, h, such that

errD(h) ≤ min
f∈C

errD(f) + ε.

The running time of the algorithm is polynomial in n, 1/ε, 1/δ and h is polynomially evaluable. The
sample complexity of the algorithm is the number of examples used.

Online to Batch Conversion

In most learning settings, it is well-known that batch learning is no harder than online learning.
Theorem 4 follows more or less directly from the work of Littlestone [1989] and Cesa-Bianchi et al.
[2004], but we provide a proof in Appendix A for completeness. Roughly speaking after an online
to batch conversion, the sample complexity of the resulting batch algorithm is the number of time
steps required to make the average regret O(ε).

Theorem 4. If a concept class C is online agnostically learnable with regret bound O(p(n)/T ζ)
then it is (batch) agnostically learnable. Furthermore the sample complexity for (batch) agnostic
learning is O((p(n)/ε)1/ζ + 1/ε4 + log2(1/δ) + (1/(ζε2)) log(n/(εδ))).

3The definition assumes that the online algorithm is deterministic; one may instead also allow a randomized
algorithm that achieves low regret with high probability over its random choices. But, the guarantee must hold with
respect to all sequences.
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3 Sleeping Experts Problem

In this section, we show that the sleeping experts problem is at least as hard as online agnostic
learning of disjunctions. Theorem 4 then implies that the sleeping expert problem is at least as hard
as batch agnostic learning disjunctions. The best known algorithm for (batch) agnostic learning

disjunctions is due to Kalai et al. [2005] and has time and sample complexity 2Õ(
√
n). Klivans and

Sherstov [2007] show that this bound is essentially tight for the class of algorithms that approximate
disjunctions using linear combinations of real-valued functions. Also, it is known that agnostic
learning of disjunctions implies PAC learning of DNF expressions (see Kearns et al. [1994], Kalai
et al. [2009])4, thus proving Theorem 1. The problem of PAC learning DNF expressions, proposed
by Valiant [1984], has remained an important open problem in computational learning theory for
over 25 years.

Recall that in this paper, for the sleeping experts setting, the action availability and payoff
functions are set by an oblivious adversary. First, we define the notation used in this section. Let
X = {0, 1}n and let DISJ denote the class of disjunctions over X. Let x = x1 · · ·xn ∈ X; for each
bit xi we define two actions Oi (corresponding to xi = 1) and Zi (corresponding to xi = 0). We
define an additional action ⊥. Thus, the set of actions is A = {⊥, O1, Z1, . . . , Oi, Zi, . . . , On, Zn}.

Suppose there exists an algorithm, Alg, for the sleeping experts problem that achieves regret
O(p(n)T 1−δ) for some polynomial, p(n), and δ ∈ (0, 1/2]. We use Alg to construct an online learning
algorithm, DISJ-Learn (see Fig. 1), for online agnostic learning DISJ that has average regret bound
O(p(n)/T δ). The instance, xt, received by the online disjunction learning algorithm, is used to
define the set of available actions at round t for the sleeping experts problem. And the label, yt, is
used to define the payoffs.

Proposition 5. Suppose there exists an efficient algorithm for the sleeping experts problem with
regret O(p(n)T 1−δ), then there exists an efficient online agnostic algorithm for learning disjunctions
with average regret bound O(p(n)/T δ).

In order to prove Proposition 5, we need to use Lemma 6.

Lemma 6. Let s = 〈(xt, yt)〉Tt=1 be any sequence of examples from X×{0, 1}. Let A = {⊥, O1, Z1, . . . , On, Zn}
and ΣA be the set of rankings over A. Let St and pt be as defined in Fig. 1. Then

min
f∈DISJ

errs(f) +
1

T
max
σ∈ΣA

Pσ = 1,

where Pσ is the payoff achieved by playing the sleeping experts problem according to ranking strategy
σ.

Proof. Let σ be a ranking over the set of actions, A = {⊥, O1, Z1, . . . , On, Zn}. For any two actions,
a1, a2 ∈ A, define a1 ≺σ a2 to mean that a1 is ranked higher than a2 according to the ranking σ.
For a ranking, σ, define a disjunction, fσ, as

fσ =
∨

i:Oi≺σ⊥
xi ∨

∨
i:Zi≺σ⊥

x̄i.

If, for some i, both Oi ≺σ ⊥ and Zi ≺σ ⊥, then fσ ≡ 1. Note that several permutations may map
to the same disjunction, since only which Oi and Zi are ranked above ⊥ is important, not their

4Actually, agnostically learning conjunctions implies PAC learning DNF, but because of the duality between
conjunctions and disjunctions, an agnostic learning algorithm for learning disjunctions also implies an algorithm for
learning conjunctions.
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ranking relative to each other. We will show that

errs(fσ) +
1

T
Pσ = 1. (1)

Consider some vector, xt ∈ {0, 1}n, and let St ⊆ A be the corresponding subset of available actions
(see Fig. 1). Then, observe that fσ(xt) = 0 if and only if σ(St) = ⊥. If the true label yt = 1, fσ
suffers error 1 − fσ(xt) and σ(St) receives payoff fσ(xt). If the true label yt = 0, then fσ suffers
error fσ(xt) and σ(St) receives payoff 1− fσ(xt). Summing over (xt, yt) in the sequence s, we get
(1). But, this also completes the proof of the lemma, since for every disjunction, g, there exists
a ranking, π, such that g = fπ, namely the ranking where the actions corresponding to literals
occurring in g (Oi or Zi depending on whether xi or x̄i appears in g) are placed first, followed by
⊥, followed by the rest of the actions.

Proof of Proposition 5. Let s = 〈(xt, yt)〉Tt=1 be any sequence of examples from X × {0, 1} for the
problem of online agnostic learning DISJ. Suppose there is an efficient algorithm, Alg, for the
sleeping experts problem with regret O(p(n)T 1−δ). Then, we claim that Algorithm DISJ-Learn
(Fig. 1) has average regret O(p(n)/T δ).

Let the total set of actions be A = {⊥, O1, Z1, . . . , On, Zn} and ΣA be the set of rankings over A.
Let the payoff functions, pt, and the set of available actions, St, be as defined in Fig. 1. Let σ∗ be
the best ranking in hindsight, i.e. σ∗ = argmaxσ∈ΣA

∑T
t=1 Pσ. Also, let f∗ be the best disjunction

with respect to the sequence, s, i.e. f∗ = argminf∈DISJ errs(f).
Note that ŷt is the prediction made by DISJ-Learn using the action selected by Alg. At any

given round, the payoff received by Alg is 1 − I(ŷt 6= yt) (if Alg picks ⊥, then the payoff is 1 − yt
and ŷt = 0; otherwise, the payoff is yt and ŷt = 1). Hence, summing over all rounds,

1

T
PAlg = 1− errs(DISJ-Learn)

Now, the proof follows immediately from Lemma 6, since 1 = minf∈DISJ errs(f)+(1/T ) maxσ∈ΣA Pσ,
and hence from the above equation we get,

errs(DISJ-Learn)− min
f∈DISJ

errs(f) =
1

T

(
max
σ∈ΣA

Pσ − PAlg

)
= O(p(n)/T δ).

3.1 Restricted Number of Actions

We consider a restricted version of the sleeping experts problem, where the number of available
actions at each round is at most k, and we refer to this as the k-sleeping experts problem. For
constant k, we note that it is easy to achieve regret O(

√
nkT ) by an algorithm that uses O(nk)

time in each round. The algorithm is the following: For each possible set of available actions, we
run an independent experts algorithm, such as Hedge. For each subset, S ⊆ [n], with |S| ≤ k, let
TS be the number of time steps for which S was the set of available actions. Then the regret on
those rounds obtained by running Hedge is O(

√
log(|S|)TS). Since,

∑
S⊆[n],|S|≤k TS = T (the total

number of rounds), the total regret is,∑
S⊆[n],|S|≤k

O(
√

log(|S|)TS) = O(
√
nk log(k)T ),

since the number of subsets of size at most k is O(nk).
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Algorithm. DISJ-Learn: Online Agnostic Learning Disjunctions

Input: Alg - the algorithm for sleeping experts problem.

For t = 1, . . . , T ,

1. Receive example xt. Define St = {⊥} ∪ {Oi | xti = 1} ∪ {Zi | xti = 0}.

2. Give St as the set of available actions to Alg. Let Alg choose at.

3. If at = ⊥, then set ŷt = 0, else set ŷt = 1.

4. Observe yt. Define pt(⊥) = 1 − yt and pt(a) = yt for all other actions a ∈ St \ {⊥}. Return
pt as the payoff function to Alg.

Figure 1: Algorithm for online agnostically learning DISJ.

Gambling Problem

In the special case when k = 2, the corresponding sleeping experts problem is the so called gambling
problem [Abernethy, 2010]. This is because one may equivalently view the problem as predicting a
winner of a match between 2 players. The regret is compared with the best ranking of the players
in hindsight. Recently, Hazan et al. [2012] gave an efficient no-regret algorithm that achieves regret

O(
√
n log3(n)T ) for this problem, which improves upon the trivial guarantee of O(

√
n2T ).

3.1.1 Reduction from agnostic learning of monotone disjunctions

For a vector, x ∈ {0, 1}n, let ‖x‖H denote the Hamming weight of x, i.e. the number of ‘1’ bits
in x. Let Xk = {x ∈ {0, 1}n | ‖x‖H ≤ k} be the subset of the boolean cube containing all points
having Hamming weight at most k. Let MON-DISJ be the concept class of monotone disjunctions
over {0, 1}n, i.e. those disjunctions that do not have any negated variables. We consider agnostic
learning MON-DISJ when the input is restricted to Xk, i.e. each example has Hamming weight at
most k. Our reduction in Proposition 5 can be easily modified to show that the (k + 1)-sleeping
experts problem is at least as hard as online agnostic learning MON-DISJ over Xk.

Proposition 7. Suppose that there exists an efficient algorithm for the (k + 1)-sleeping experts
problem with regret bound R, then there exists an efficient algorithm for online agnostic learning
MON-DISJ over Xk with average regret bound R/T .

The proof of Proposition 7 follows from Lemma 8 and is very similar to the proof of Proposi-
tion 5.

Lemma 8. Let s = 〈(xt, yt)〉Tt=1 be the sequence of examples with (xt, yt) ∈ Xk × {0, 1}, let
A = {1, . . . , n} ∪ {⊥} and St and pt be the set of available actions and payoffs as defined in Figure
2. Then,

min
f∈MON-DISJ

errs(f) +
1

T
max
σ∈ΣA

Pσ = 1

where ΣA is the set of rankings over the set A and Pσ is the payoff received by playing according to
σ on each round.

Proof. Let σ be a ranking over the set of actions, A = {⊥, 1, 2, . . . , n}. As in the proof of Lemma 6,
for actions, a1, a2 ∈ A, define a1 ≺σ a2 to mean that a1 is ranked higher than a2 according to the

8



Algorithm: MON-DISJ-Learn: Online Agnostic Learning Monotone Disjunctions over Xk

Input: Alg - the algorithm for the (k + 1)-sleeping experts problem
For t = 1, . . . , T ,

1. Receive example xt. Define St = {⊥} ∪ {i | xti = 1}.

2. Give St as the set of available actions to Alg. Let Alg choose at.

3. If at = ⊥, then set ŷt = 0, else set ŷt = 1.

4. Observe yt. Define pt(⊥) = 1 − yt and pt(a) = yt for all other actions a ∈ St \ {⊥}. Return
pt as the payoff vector to Alg.

Figure 2: Algorithm for online agnostic learning of MON-DISJ over Xk

ranking σ. For a ranking, σ, define a disjunction, fσ, as

fσ =
∨

i:i≺σ⊥
xi.

Note that, in this case, fσ is a monotone disjunction. As in the proof of Lemma 6, it only matters
which actions among {1, . . . , n} are ranked above ⊥, not the relative order among them. We show
that,

errs(fσ) +
1

T
Pσ = 1 (2)

Consider some vector, xt ∈ Xk, and let St ⊆ A be the corresponding set of available actions (see
Fig. 2). Observe that |St| = ‖xt‖H + 1, and hence |St| ≤ k + 1. Then, note that fσ(xt) = 0 if
and only if σ(St) = ⊥. If the true label is yt = 1, fσ suffers error 1 − fσ(xt) and σ(St) receives
payoff fσ(xt). If the true label is yt = 0, then fσ suffers error fσ(xt) and σ(St) receives payoff
1− fσ(xt). Summing over (xt, yt) in the sequence s, we get (2). But, this also completes the proof
of the Lemma, since for every disjunction, g, there exists a ranking, π, such that g = fπ, namely
the ranking where the actions corresponding to literals occurring in g are placed first, followed by
⊥, followed by the rest of the actions.

Theorem 4 now implies that an efficient algorithm for the (k+1)-sleeping experts problem gives
an efficient algorithm for batch agnostic learning MON-DISJ, when the input is restricted to Xk.
In particular, let D be a distribution over Xk × {0, 1}, then an agnostic learner for MON-DISJ, is
required to output a hypothesis, h, such that

errD(h) = Pr
(x,y)∼D

[h(x) 6= y] ≤ min
f∈MON-DISJ

errD(f) + ε.

In proper agnostic learning, it is required that the output hypothesis, h, be in MON-DISJ, i.e. h
is itself a monotone disjunction. For any k ≥ 2, proper agnostic learning MON-DISJ over Xk is
NP-hard, even for constant accuracy parameter ε. This follows via a simple reduction from vertex
cover. The proof of Proposition 9 is provided in Appendix B. (The proof is based on a similar
result by Kearns et al. [1994]).

Proposition 9. There exists a constant ε0 > 0, such that there is no efficient algorithm for proper
agnostic learning MON-DISJ over instance space Xk to accuracy ε0, unless NP = RP.
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3.1.2 Improper Agnostic Learning MON-DISJ

While proper learning is NP-hard, it is trivial to improperly learn MON-DISJ over Xk, for any
constant k. The trivial algorithm works as follows: For any distribution D over Xk × {0, 1},
the algorithm draws Θ(nk) examples from D. The output hypothesis simply memorizes all the
examples and outputs the majority label on any example. (If some example was not seen in the
random draw, the label is predicted randomly.) It is easy to show that such a hypothesis is an
agnostic learner for any class of functions, not just MON-DISJ. In fact, that this is the learner that
would be produced as a result of the reduction from the trivial algorithm for the (k + 1)-sleeping
experts problem.5 However, observe that the sample complexity of the trivial efficient algorithm is
Θ(nk), whereas the sample complexity of (inefficient) proper learning is only O(n) (for constant ε).
This follows the from the fact that the VC-dimension of the class of monotone disjunctions is n.

The question of interest is whether there is an efficient improper learning algorithm with sample
complexity better than O(nk). In Appendix C, we show that when k = 2, the techniques of Hazan
et al. [2012] can be used to achieve near optimal sample complexity: We achieve average regret
O(
√
n log(n)/T ) for this problem using their matrix prediction algorithm. This approach does not

readily generalize to k ≥ 3, which remains open.
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A On-line to Batch Learning

We prove Theorem 4 using the following lemma.

Lemma 10. Let A be an online agnostic learning algorithm for a concept class C over X with regret
bound O(p(n)/T ζ). We run A for T steps on s = 〈(xt, yt)〉Tt=1. At each step A can be interpreted
as a hypothesis Ht

s which computes ŷt = Ht
s(x

t).

Then we can choose T = O (p(n)/ε)1/ζ +O
(
1/ε4 + log2(1/δ)

)
such that the following holds.

Let D be a distribution over X × {0, 1}. Take a sequence s = 〈(xt, yt)〉Tt=1 of T examples from
D. Let 〈Ht〉Tt=1 be the hypotheses produced by A running on s. Then, with probability 1 − δ over
the choice of s, there exists t∗ such that errD(Ht∗

s ) ≤ minf∈C errD(f) + ε.

Lemma 10 allows us to convert an online agnostic learning algorithm into a hypothesis, which
we can use for (batch) agnostic learning.

Proof. Let Qts =
∑

t′≤t err(Ht′
s ). Then, clearly, 〈Qts〉Tt=1 is a submartingale. Moreover, induction on

T gives

Es[errs(A)] = Es

[
1

T

T∑
t=1

I(Ht
s(x

t) 6= yt)

]

= Es

[
1

T

T∑
t=1

errD(Ht
s)

]
= Es

[
QTs
T

]
. (3)

We will now use standard bounds to show that (i) the expectation (3) is close to (or better than)
the optimal error and that (ii) QTs is close to its expectation with high probability. It follows that
at least one hypothesis Ht∗

s must have error close to (or better than) an optimal concept.
(i) We have

Es[errs(A)] ≤ Es[min
f∈C

errs(f)] +O(p(n)/T ζ)

≤ min
f∈C

errD(f) +O(p(n)/T ζ). (4)

The first inequality follows from A being an online agnostic learning algorithm. The second in-
equality follows from the fact that Es[minf∈C errs(f)] ≤ minf∈C Es[errs(f)].

(ii) Noting that Qts ≤ Qt+1
s ≤ Qts + 1, Azuma’s inequality gives

Pr
s

[
QTs ≥ E[QTs ] + T 1−α] ≤ exp

(
−T 1−2α/2

)
. (5)

Combining (3), (4), and (5), we have

Pr
s

[
1

T

T∑
t=1

errD(Ht
s) ≥ min

f∈C
errD(f) + T−α +O(p(n)/T ζ)

]
≤ exp

(
−T 1−2α/2

)
.

So we can choose α = 1/4 and

T = max
{

(2/ε)4, O(2p(n)/ε)1/ζ , (2 log(1/δ))2
}
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to ensure that, with probability 1− δ,

T
min
t=1

errD(Ht
s) ≤

1

T

T∑
t=1

errD(Ht
s) ≤ min

f∈C
errD(f) + ε.

Proof of Theorem 4. Let A be an online agnostic learning algorithm for a concept class C over
X with regret bound O(p(n)/T ζ). Fix ε, δ > 0 and a distribution D over X × {0, 1}. Choose

T = O (p(n)/ε)1/ζ + O
(
1/ε4 + log2(1/δ)

)
as in Lemma 10. We sample s = 〈(xt, yt)〉Tt=1 from D

and run A on s. Now we have a sequence of hypotheses 〈Ht〉Tt=1. With probability 1 − δ/2 over
the choice of s, at least one hypothesis Ht∗

s satisfies errD(Ht∗) ≤ minf∈C errD(f) + ε/2. All that
remains is to identify one such hypothesis.

Take T ′ samples s′ = 〈(xt′ , yt′)〉T ′t′=1 from D. By the Chernoff bound, for any f : X → {0, 1},

Pr
s′

[|errs′(f)− errD(f)| ≥ ε/2] ≤ 2e−T
′ε2/16.

Let T ′ = (16/ε2) log(4T/δ). Then

Pr
s′

[
∀t |errs′(H

t
s)− errD(Ht

s)| < ε/2
]
≥ 1− δ/2.

So we can estimate the accuracy of each hypothesis and identify a good one. Thus we take T + T ′

samples and, with probability 1− δ, we can find a good hypothesis.

B Hardness of Agnostic Learning MON-DISJ

In order to prove Proposition 9, we require the following result, which states that finding a constant
factor approximation to vertex cover is NP-hard (for some constant), even when the number of edges
is linear in the number of vertexes and the size of the minimum vertex cover is linear in the size of
the graph.

Proposition 11. Given a graph G = (V,E), let CG denote a minimum vertex cover of G. There
exist universal constants k1, k2, ε1, such that if G = {G = (V,E) | |E| ≤ k1|V |, |V | ≤ k2|CG|}, given
G ∈ G, it is NP-hard to find a vertex cover C ′ ⊆ V of G, such that |C ′| ≤ (1 + ε1)|CG|.

We prove Proposition 11 later. We now give a proof of Proposition 9.

Proof of Proposition 9. Let G = (V,E) be an arbitrary graph from the family G defined in Propo-
sition 11. For each v ∈ V , let xv = (0, . . . , 1, . . . , 0), where only the vth position of xv is 1 and
the remaining positions are 0. For every edge, e = (i, j) ∈ E, let xe = (0, . . . , 1, . . . , 1, . . . , 0),
where only the ith and jth position of xe are 1 and the rest are 0. Let DG be a distribution over
Xk × {0, 1} that is uniform over the set {(xv, 0) | v ∈ V } ∪ {(xe, 1) | e ∈ E}, i.e. each point has
weight 1/(|V |+ |E|).

Let C ⊆ V be a vertex cover of G. Then, let fC =
∨
i∈C xi. Observe that errDG(fC) =

|C|/(|V |+ |E|). (For any edge e = (i, j), fC(xe) = 1 since either i or j is in C, and for any v 6∈ C,
fC(xv) = 0.)

Suppose g =
∨
i∈K xi is some monotone disjunction. We show that given g, we can easily

construct a vertex cover of graph, G, of size errDG(g)(|V |+ |E|). We construct the vertex cover as
follows: For all i ∈ K, where g =

∨
i∈K xi, put i in the vertex cover. Note that g(xi) = 1 if i ∈ K
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and 0 otherwise. Thus, the total contribution to the error of g from the points corresponding to the
vertices’s is |K|/(|V |+ |E|). For every edge e, such that g(xe) = 0, add a vertex corresponding to
one of the end-points of e to the vertex cover under construction. Observe, that any edge for which
g(xe) = 1, was already covered by some vertex in K. Thus, for every error of g we have added at
most 1 vertex to the cover. Thus, the size of the vertex cover is at most errDG(g)(|V |+ |E|).

Suppose there is an algorithm for proper agnostic learning MON-DISJ. Then, let g be the mono-
tone disjunction returned when run on distribution DG. Let C ′ be the vertex cover constructed
using g. Let C be a minimum vertex cover of G and let fC be the monotone disjunction correspond-
ing to C. We showed that errDG(fC) = |C|/(|V | + |E|). The agnostic learning guarantee is that
errDG(g) ≤ errDG(fC) + ε0. Thus, |C ′|/(|V | + |E|) ≤ errDG(g) ≤ |C|/(|V | + |E|) + ε0. But, since
|C| ≥ |V |/k2) and |E| ≤ k1|V |), we have |C ′| ≤ |C|(1 + ε1), for some suitable choice of constant
ε0 > 0. However, this is contradicts Proposition 11. Therefore, there must be some constant ε0
such that proper learning MON-DISJ to accuracy ε0 is not possible unless RP = NP.

We use the following version of the PCP theorem as the basis of our proof of Proposition 11.

Theorem 12 (Arora et al. [1998], H̊astad [2001] Theorem 2.24). Let L be a language in NP and
x be a string. There is a universal constant c < 1 such that, we can in time polynomial in |x|
construct a 3CNF formula φx,L such that if x ∈ L then φx,L is satisfiable while if x /∈ L, φx,L is at
most c-satisfiable. Furthermore, each variable appears exactly 5 times.

We show that the reduction of sparse 3SAT to vertex cover produces sparse graphs with linear-
sized minimal covers.

Lemma 13. Let φ be a 3CNF formula with n variables and m clauses, in which each variable
appears at most d ≥ 2 times. Then there exists a simple undirected graph Gφ with 2n+3m vertexes
and n+ 6m edges such that

(i) if φ has an assignment of variables that satisfies m − k clauses, then Gφ has a vertex cover
of size n+ 2m+ k, and

(ii) if Gφ has a vertex cover of size n + 2m + k, then φ has an assignment that satisfies at least
m− kbd/2c clauses.

Moreover, the graph Gφ and the correspondence between assignments and vertex covers can be
computed in uniform polynomial time in n and m.

Proof. This reduction comes from Garey and Johnson [1979] Theorem 3.3. Let φ be a 3CNF
formula. For each variable xi create two vertexes vxi and vxi and an edge (vxi , vxi) between them.
For each clause ci = x∗i1∨x

∗
i2
∨x∗i3 (where x∗ik is either xik or xik for 1 ≤ k ≤ 3), create three vertexes

vci,1, vci,2, and vci,3 and make them a triangle with edges (vci,1, vci,2), (vci,2, vci,3), and (vci,3, vci,1).
Then, for 1 ≤ k ≤ 3, connect vci,k to vx∗ik

. Figure 3 gives an example of this reduction.

(i) Let x be an assignment to the variables of φ that satisfies m−k clauses. The corresponding
vertex cover is as follows. Firstly, for each variable xi, if xi is true, include vxi in the vertex cover;
otherwise include vxi . For each unsatisfied clause ci include vci,1, vci,2, and vci,3. For each satisfied
clause ci = x∗i1 ∨ x

∗
i2
∨ x∗i3 , choose 1 ≤ k ≤ 3 such that x∗ik is true and include vci,k′ for k′ 6= k.

Clearly this covers all edges and has size n+ 2m+ k.
(ii) Let S be a vertex cover of Gφ of size n + 2m + k. For each variable xi either vxi ∈ S

or vxi ∈ S, as the edge (vxi , vxi) must be covered. Likewise, for each clause ci, two of vci,1, vci,2,
and vci,3 must be in S, as the triangle {(vci,1, vci,2), (vci,2, vci,3), (vci,3, vci,1)} must be covered. This
accounts for n+ 2m elements of S. So we identify k “extra” elements.
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Figure 3: Vertex cover instance corresponding to 3CNF (x1 ∨ x2 ∨ x4) ∧ (x1 ∨ x3 ∨ x4) with an
optimal vertex cover corresponding to x1 = x2 = x3 = 1 highlighted.

We can assume that all extra elements are of the form vci,k: Suppose instead that vxi , vxi ∈ S.
Since xi and xi appear at most d times, we can choose one—say, x∗i—that appears at most bd/2c
times. We remove vx∗i from S and insert all vci,k where x∗ik = xi. Clearly all the edges that vx∗i
covered are now covered by the newly inserted vertexes—that is, we moved the vertex cover to the
other end of each edge covered by vx∗i . This process grows the number of extra elements by a factor
of at most bd/2c, so |S| ≤ n+ 2m+ kbd/2c.

The assignment is computed as follows. If vxi ∈ S, then xi is set to true. Otherwise, if vxi ∈ S,
then xi is set to false. Each extra element of S corresponds to an unsatisfied clause, so at most
kbd/2c clauses are unsatisfied.

Proposition 11 follows immediately from Proposition 14.

Proposition 14. Vertex cover is inapproximable, even for graphs with a number of edges linear in
the number of vertexes and minimal vertex covers linear in the number of vertexes. Formally, there
exist universal constants c1, c2 > 0, and ε > 0 such that the following holds. Consider graphs G
with n vertexes and m edges, where m = c1n. Moreover, either (i) G has a vertex cover of size c2m
or (ii) no vertex cover of size (1 + ε)c2m. If there exists a polynomial-time algorithm for deciding
which of (i) or (ii) holds, then NP = P.

Proof. This follows from Theorem 12 and Lemma 13. Firstly, Theorem 12 shows that to prove
that NP = P it suffices to distinguish in polynomial time satisfiable 3CNF formulas with 5n = 3m,
where n is the number of variables, m is the number of clauses, and each variable appears at most
d = 5 times, from ones where at most cm clauses can be satisfied, where c < 1 is a universal
constant. Secondly, Lemma 13 shows that such 3CNF formulas can be converted into graphs with
n′ = 2n+ 3m = 7n vertexes and m′ = n+ 6m = 11n = (11/7)n′ edges. Satisfiable 3CNF formulas
become graphs with vertex covers of size n+ 2m = (13/33)m′.

Conversely, suppose that S is a vertex cover of size (1 + ε)(13/33)m′. By Lemma 13 part (ii),
this translates into an assignment satisfying at least m−ε(13/33)m′b5/2c = (1−(26/5)ε)m clauses.
So, if 1− (26/5)ε > c, then at least cm clauses are satisfied.

C Learning Disjunctions on Inputs of Hamming Weight Two

We consider the problem of online learning monotone disjunctions when the input is restricted to
X2, i.e. points having Hamming weight at most 2. We show that there is an efficient algorithm for
solving this problem with average regret O(

√
n log(n)/T ), where n is the size of the inputs and T

is the number of rounds. The optimal average regret is O(
√
n/T ) (for the inefficient algorithm)

15



and the average regret of the trivial (efficient) algorithm (learning the answer to each of the O(n2)
possible inputs separately) is O(

√
n2/T ).

We obtain this result using the online matrix prediction algorithm of Hazan et al. [2012]. The
online matrix prediction problem for a setW ⊆ [−1, 1]n×n has T rounds, which proceed sequentially
as follows:

For each round t:

1. The world presents indexes it, jt ∈ [n].

2. The algorithm answers ŷt ∈ [−1, 1].

3. The world presents the correct answer yt ∈ [−1, 1].

The total loss of the algorithm is L =
∑T

t=1 |ŷt − yt|. The regret of the algorithm is

Regret := E

[
L− min

W∈W

∑
t

|Wit,jt − yt|

]
.

That is, we compare the loss of the algorithm to that of predictions made using a fixed matrix in
W.

The result of Hazan et al. [2012] is as follows.

Theorem 15. LetW be a set of symmetric matrices in [−1, 1]n×n such that every W ∈ W is (β, τ)-
decomposable, i.e. W = P −N , where P and N are symmetric positive semidefinite matrices with
trace(P ) + trace(N) ≤ τ and, for all i, Pi,i ≤ β and Ni,i ≤ β. Then there exists an efficient
algorithm for online matrix prediction for W with

Regret ≤ O(
√
τβ log(n)T ).

Our reduction represents a monotone disjunction f(x) =
∨
i∈S xi as a matrix, W f , where any

input in X2 corresponds to one entry in the matrix. An input xi,j ∈ X2 with 1s in positions i and

j corresponds to the entry W f
i,j = f(xi,j) in the matrix. Equivalently, let

W :=
{
W ∈ {0, 1}n×n : ∃S ⊆ [n] (Wi,j = 1 ⇐⇒ i ∈ S ∨ j ∈ S)

}
.

We have the following bound on the (β, τ)-decomposition of W, which we prove later.

Lemma 16. The set W of symmetric matrices is (2n, 1)-decomposable.

Given an online matrix prediction algorithm, Alg, our online monotone disjunction learning
algorithm, MON-DISJ2-Learn, proceeds as described in Figure 4.

Theorem 17. There exists an efficient algorithm for online learning of monotone disjunctions over
X2 with average regret O(

√
n log(n)/T ), where n is the size of the inputs and T is the number of

rounds.

Proof. We use the algorithm, MON-DISJ2-Learn, with Alg being the algorithm from Theorem 15.
Let s = 〈(xt, yt)〉 be a sequence over X2 × {0, 1}. Let f(x) =

∨
i∈S xi be a monotone disjunction
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Algorithm. MON-DISJ2-Learn: Online Learning of Monotone Disjunctions over X2

Input: Alg - the algorithm for online matrix prediction.

For t = 1, . . . , T ,

1. Receive example xt = xit,jt .

2. Give (it, jt) as indexes to Alg. Let Alg choose ŷt ∈ [−1, 1].

3. Let ŷt∗ = 1 with probability max(ŷt, 0) and 0 otherwise. Output ŷt∗.

4. Observe yt and pass this to Alg.

Figure 4: Algorithm for online agnostically learning monotone disjunctions over X2.

such that errs(f) = minf ′∈MON-DISJ errs(f
′).

T · (errs(MON-DISJ2-Learn)− errs(f)) = E

[
T∑
t=1

|ŷt∗ − yt| − |f(xt)− yt|

]

=
T∑
t=1

|max(ŷt, 0)− yt| − |f(xt)− yt|

≤
T∑
t=1

|ŷt − yt| − |W f
it,jt − y

t|

≤ Regret(Alg),

where the expectation is taken over the random choices of the algorithm, MON-DISJ2-Learn. Then,
by Theorem 15 and Lemma 16, Regret(Alg) ≤ O(

√
n log(n)T ), and hence errs(MON-DISJ2-Learn) ≤

errs(f) +O(
√
n log(n)/T ).

All that remains to prove is Lemma 16.

Proof of Lemma 16. Let W ∈ W and let S ⊆ [n] be such that Wi,j = 1 ⇐⇒ i ∈ S ∨ j ∈ S.
Without loss of generality, S = {1 · · · k} and

W =

(
1k×k 1k×(n−k)

1(n−k)×k 0(n−k)×(n−k)

)
.

Let

W = P −N =

(
1k×k 1k×(n−k)

1(n−k)×k 1(n−k)×(n−k)

)
−
(

0k×k 0k×(n−k)

0(n−k)×k 1(n−k)×(n−k)

)
.

Clearly P and N are symmetric positive semidefinite matrices with trace at most n and maximum
entry at most 1, as required.
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