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1 Occam’s Razor

In the first part of this lecture, we’ll study an explanatory framework for learning. In the PAC
learning framework, what is important is a guarantee that, with high probability, the output
hypothesis performs well on unseen data, i.e., data drawn from the distribution D. Here
we consider the following question: Given (x1, y1), (x2, y2), . . . , (xm, ym), where xi ∈ Xn and
yi ∈ {0, 1}, can we find some hypothesis, h : Xn → {0, 1} that is consistent with the observed
data, i.e., for all i, h(xi) = yi.

If there is no restriction on the output hypothesis, then this can be simply achieved by
“memorizing” the data. In particular, one could output a program of the form, “if x = x1,
output y1, else if x = x2, output y2, . . . , else if x = xm, output ym, else output 0”. This
output hypothesis is correct on all of the observed data and predicts 0 on all other instances.
Clearly, we would not consider this as a form of learning. The basic problem here is that the
“explanation” of the data is as long as the data itself.

Exercise: Show that there is a DNF formula with O(m) terms that is consistent with the data.

The condition that we want to impose is that the explanation of the data be succinct, at
the very least, asymptotically shorter than the length of the data itself. In computational
learning theory, this is referred to as the Occam Principle or Occam’s Razor, named after the
medieval philosopher and theologian, William of Ockham, who expounded the principle that
“explanations should be not made unnecessarily complex”.1

Philosophical Implications*

The notion of succinct explanations can be formalised in several ways and has deep connections
to various areas of mathematics and philosophy. There are connections to Kolmogorov com-
plexity which leads to the “minimum description length” (MDL) principle. The MDL principle
itself can be given a Bayesian interpretation of assigning a larger prior probability to shorter
hypotheses. The existence of a short description also implies existence of compression schemes.
We will not discuss these issues in detail in this course; the interested student is referred to the
following sources as a starting point (de Wolf, 1997; Jaynes, 2003; Grünwald, 2007).

Typically, finding the “shortest hypothesis” consistent with the data may be intractable or
even uncomputable. In order to get useful results out of this principle, we do not need to find
the shortest description or achieve optimal compression. It turns out that it is enough for the
description of the output hypothesis to be slightly shorter than the amount of data observed.
We’ll formalise this notion to derive PAC-learning algorithms from explanatory hypotheses.

2 Consistent Learning

We’ll define the notion of a consistent learning algorithm, or consistent learner, for a concept
class C.

1This is by no means a wholly accurate depiction of the writings of William of Ockham. Those interested in
the history are encouraged to look up the original work.
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Definition 1 (Consistent Learner). We say that an algorithm L is a consistent learner for
a concept class C using hypothesis class H, if for all n, for all c ∈ Cn and for all m, given
(x1, c(x1)), (x2, c(x2)), . . . , (xm, c(xm)) as input, where xi ∈ Xn, L outputs h ∈ Hn such that for
i = 1, . . . ,m, h(xi) = c(xi). We say that L is an efficient consistent learner if the running time
of L is polynomial in n, size(c) and m.

A consistent learning algorithm is simply required to output a hypothesis that is consistent
with all the training data provided to it. So far, we have not imposed any requirement on
the hypothesis class H. This notion of consistency is closely related to the empirical risk
minimisation principle in the machine learning literature, where the risk is defined using the
zero-one loss.

The main result we will prove that if H is “small enough”, something that is made precise
in the theorem below, then a consistent learner can be used to derive a PAC-learning algorithm.
This theorem shows that short explanatory hypotheses do in fact also possess predictive power.

Theorem 2 (Occam’s Razor, Cardinality Version). Let C be a concept class and H a hypothesis
class. Let L be a consistent learner for C using H. Then for all n ≥ 1, for all c ∈ Cn, for all
D over Xn, for all 0 < ε < 1/2 and all 0 < δ < 1/2, if L is given a sample of size m drawn
from EX(c,D), such that,

m ≥ 1

ε

(
log |Hn|+ log

1

δ

)
,

then L is guaranteed to output a hypothesis h ∈ Hn that with probability at least 1− δ, satisfies
err(h) ≤ ε.

If further more, L is an efficient consistent learner, log |Hn| is polynomial in n and size(c),
and H is polynomially evaluatable, then C is efficiently PAC-learnable using H.

Proof. Fix a target concept c ∈ Cn and the target distribution D over Xn. Call a hypothesis,
h ∈ Hn “bad” if err(h) ≥ ε. Let Ah be the event that m independent samples drawn from
EX(c,D) are all consistent with h. Then, if h is bad, P [Ah] ≤ (1− ε)m ≤ e−εm.

Consider the event,

E =
⋃

h∈Hn:h bad

Ah

Then, by a simple application of the union bound we have,

P [E ] ≤
∑

h∈Hn:h bad

P(Ah) ≤ |Hn| · e−εm

Thus, whenever m is larger than the bound given in the statement of the theorem, except with
probability δ, no “bad” hypothesis is consistent with m random examples drawn from EX(c,D).
However, any hypothesis that is not “bad”, satisfies err(h) ≤ ε as required.

Remark 3. The version of the theorem described above only allows Hn to depend on Cn and n.
It is possible to have a much more general version, where Hn may depend also on m, ε, and δ.
As long as log |Hn| is a small enough function of these parameters, a PAC-learning algorithm
can still be derived from a consistent learner. These more general versions appear in the book
by Kearns and Vazirani (1994, Chap. 2).

3 Improved Sample Complexity

Learning CONJUNCTIONS

Let us revisit some of the learning algorithms we’ve seen so far. We derived an algorithm for
learning conjunctions. At the heart of the algorithm was in fact a consistent learner, obtained
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only using positive examples. Thus, for the conjunction learning algorithm Cn = Hn. Note that
the number of conjunctions on n literals is 3n (each variable may appear as a positive literal,
negative literal, or not at all).

Our analysis of the conjunction learning algorithm showed that if the number of examples

drawn from EX(c,D) was at least 2n
ε

(
log(2n) + log 1

δ

)
, the output hypothesis with high proba-

bility has error at most ε. Theorem 2 shows that in fact even a sample of size 1
ε

(
n log 3 + log 1

δ

)
would suffice.

Learning 3-TERM-DNF

Let us now consider the question of learning 3-TERM-DNF. We have shown that finding a 3-
term DNF formula ϕ that is consistent with a given sample is NP-complete. On the other hand,
we saw that it is indeed possible to find a 3-CNF formula that is consistent with a given sample.
Let us compare the sample complexity bounds given by Theorem 2 in both of these cases. In
order to do that we need good bounds on |3-TERM-DNF| and |3-CNF|. Any 3-term DNF formula
can be encoded using at most 6n bits, each term (or a conjunction) can be represented by a
a bit string of length 2n to indicate whether a variable appears as a positive literal, negative
literal, or not at all. Thus, |3-TERM-DNF| ≤ 26n.

Similarly, there are (2n)3 possible clauses with three literals. Thus, each 3-CNF formula can
be represented by a bit string of length (2n)3, indicating for each of the possible clauses whether
they are present in the formula or not. Thus, |3-CNF| ≤ 28n

3
. It is also not hard to show that

|3-CNF| ≥ 2κn
3

for some universal constant κ > 0. Thus, it is the case that log |3-CNF| = Ω(n3).
Thus, in order to use a consistent learner that outputs a 3-CNF formula, we need a sample

that has size Ω
(
n3

ε

)
;2 on the other hand if we had unbounded computational resources and

could solve the NP-complete problem of finding a 3-term DNF consistent with a sample, then
a sample of size O

(
n
ε

)
is sufficient to guarantee a hypothesis with error at most ε (assuming

δ is constant). This suggests that there may be tradeoff between running time and sample
complexity. However, it does not rule out that there may be another computationally efficient
algorithm for learning 3-TERM-DNF that has a better bound in terms of sample complexity.
This question is currently open.
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2At the very least, this is the lower bound we get if we apply Theorem 2. We will see shortly that in fact this
is a lower bound on sample complexity for learning 3-CNF, no matter what algorithm is used.
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