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We have seen a few algorithms in the PAC learning framework for concept classes such
as those of conjunctions, decision lists and linear halfspaces. We’ve also studied the Occam
principle that “short consistent hypotheses” generalise well on unseen data. For finite hypothesis
classes the sample complexity scales polynomially with log |H|, 1/ε and 1/δ. When using infinite
hypothesis classes, the Vapnik Chervonenkis (VC) dimension plays a similar role as log |H|.
We’ve seen upper and lower bounds on sample complexity in terms of VC-dimension that
almost match. In particular, provided one can identify a hypothesis that is consistent with the
observed data (as long as the sample size is large enough as a function of the VC dimension, ε
and δ), we obtain a hypothesis that has error bounded by ε with respect to the target concept
and distribution.

Thus, in a sense the VC-dimension captures learnability exactly, if sample complexity is the
only thing we care about. However, when we consider computational complexity the picture
is considerably different. We’ve already shown that there are concept classes for which finding
proper consistent learners is NP-hard. In the case of 3-term DNF formulae, we can avoid this
NP-hardness by identifying the output hypothesis from a larger concept class, that of 3-CNF
formulae. One may wonder, whether this is always the case, i.e., can we always identify a larger
hypothesis class from which we can identify a consistent learner?

In this lecture, we’ll answer this question in the negative, provided a certain widely believed
assumption in cryptography holds. We will show that there are concept classes that cannot
be efficiently PAC-learnt, even in the case improper learning where the output hypothesis is
allowed to come from any polynomially evaluatable hypothesis class.

1 The Discrete Cube Root Problem

Let p and q be two large primes that require roughly the same number of bits to represent.
Furthermore, we’ll assume that these primes are of the form 3k+ 2. Let N = pq be the product
of these primes. It is widely believed that factoring such an N , when p and q are chosen to be
random n bit primes, cannot be performed in polynomial time. Let ϕ denote Euler’s totient
function, then we have ϕ(N) = (p− 1)(q − 1). As p and q are chosen to be of the form 3k + 2,
3 does not divide ϕ(N).

Let Z∗N = {i | 0 < i < N, gcd(i,N) = 1}. It is well-known that Z∗N forms a group under
the operation of multiplication modulo N . We consider a function fN : Z∗N → Z∗N defined as
fN (y) = y3 mod N . As 3 does not divide ϕ(N), it is straightforward to observe that fN is a
bijection. As gcd(3, ϕ(N)) = 1, there exist d, d′ ≥ 1 such that 3d = ϕ(N)d′ + 1 (the existence
of d, d′ can be shown by a constructive proof of Euclid’s algorithm to obtain the gcd). Then,
we have,

(fN (y))d = y3d = yϕ(N)d′+1 = y mod N

The last equality follows as yϕ(N) = 1 mod N for all y ∈ Z∗N .

Definition 1 (Discrete Cube Root Problem). Let two n-bit primes p and q of the form 3k+ 2,
and let N = pq. Let ϕ(N) = (p− 1)(q− 1) and note that 3 does not divide ϕ(N). Given N and
x ∈ Z∗N as input, output y ∈ Z∗N , such that y3 = x mod N .
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Observe that if we can factorise N , the discrete cuberoot problem is easy to solve. We can
simply obtain ϕ(N) and then find d such that 3d = 1 mod ϕ(N) using Euclid’s algorithm.
However, factoring N is believed to be hard in general and in fact, no polynomial-time al-
gorithm that finds the discrete cube root is known. Note that in this case, polynomial-time
means polynomial in n, not N . The discrete cube root problem is also widely believed to be
computationally intractable. We define the formal hardness assumption and use this to show
that there are concept classes that are computationally hard to learn.

Definition 2 (Discrete Cube Root Assumption (DCRA)). For any polynomial P (·), there does
not exist any algorithm, A, that runs in time P (n) and on input N and x, where N is the
product of two random n bit primes of the form 3k + 2 and x is chosen randomly from Z∗N ,
outputs y ∈ Z∗N that with probability at least 1/P (n) satisfies y3 = x mod N . The probability
is over the random draws of p, q, x and any internal randomisation of A.

Although this is not the main point of this course, let us quickly note how this assumption
may be used in cryptography. The integer N is the public key, and any message that can be
encoded as an element of Z∗N can be encrypted simply by taking its cube modulo N . Under
the discrete cuberoot assumption, this cannot be decrypted, except if one has access to d, such
that 3d = 1 mod ϕ(N). The integer d is the private key.

2 A learning problem based on DCRA

Let us try to phrase the question of finding the cuberoot of x ∈ Z∗N as a learning question.
Let us suppose that we have access to a sample, (x1, y1), (x2, y2), . . . , (xm, ym), where y3i = xi
mod N for i = 1, . . . ,m, and xi are drawn uniformly at random from Z∗N . The learning question
is given such examples, can we obtain h : Z∗N → Z∗N , such that for x drawn uniformly at random
from Z∗N , it holds with probability at least 1− δ, that P

[
(h(x))3 6= x mod N

]
≤ ε?

How can these pairs (xi, yi) help? It is easy to see that they cannot help, as it is easy to
generate these pairs ourselves. For instance, although finding the cuberoot is hard, finding the
cube is easy. As fN is a bijection, we can choose yi ∈ Z∗N uniformly at random, and then set
xi = y3i mod N . Note that this implies that the distribution of xi is uniform over Z∗N . Thus,
clearly access to random examples of the form (xi, yi) where xi is drawn from the uniform
distribution over Z∗N and y3i = xi mod N , can’t help to find h : Z∗N → Z∗N , that satisfies
P
[
(h(x))3 6= x mod N

]
≤ ε, under the DCRA.

This almost fits into our notion of PAC learning, except that the output of the target
function is not in {0, 1}. This can be fixed rather easily. We know that the output of f−1N is
some 2n bit string. Thus, we can consider 2n different target functions, (f−1N,i)

2n
i=1, where f−1N,i is

a function which outputs the ith bit of the function f−1N . If we could learn all the function, f−1N,i
to accuracy ε

2n , then we can reconstruct f−1N to accuracy ε. Thus, if learning f−1N is hard, then
at least one of the boolean functions (f−1N,i)

2n
i=1 must also be hard to learn.

2.1 A hard-to-learn concept class

So far, we’ve established that if we choose random n bit primes p and q of the form 3k+2, there
exists a boolean function, f−1N,i, such that if we get labelled examples from a specific distribution
D over 2n bit strings, viz. the uniform distribution over bit representatations of elements in Z∗N ,

we cannot output a (polynomially evaluatable) hypothesis h, such that Px∼D
[
f−1N,i(x) 6= h(x)

]
≤

ε
2n . If we can identify a class, C, such that f−1N,i ∈ C2n, then this also implies that the class C
is not PAC-learnable.

Let us try and understand what such a concept class could be. First, we note that if d
is known, there is a rather simple polynomial time algorithm to output f−1N (x). All we need
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to do is perform the operation xd mod N . Näıvely computing xd is not efficient as d may
be as large as ϕ(N), i.e., d may itself be 2n bit long. The first thing we need to ensure is
that all operations are repeatedly performed modulo N ; this way none of the representations
get too large. The second is that we start by computing, x mod N, x2 mod N, x4 mod N, x8

mod N, . . . , x2
blogϕ(N)c

mod N , i.e., we compute x2
i

mod N for i = 0, 1 . . . , blogϕ(N)c. To
obtain xd mod N , we simply take the product of the terms x2

i
mod N such that the ith bit of

d is 1. This shows that there exists a circuit of polynomial size that computes f−1N where d is
hard-wired into the circuit itself. In particular, this also implies that there exist polynomial-size
circuits for f−1N,i for all i = 1, . . . , 2n. This gives us the following result.

Theorem 3. There exists a polynomial P (·), such that class of circuits, C, where Cn consists
of circuits of size at most P (n), is not PAC-learnable under the discrete cube root assumption.

2.2 Reducing the depth

We’ve established that under DCRA, PAC-learning polynomial-sized circuits is hard. However,
in a way, this is the weakest such result one could hope for. Polynomial-sized circuits are in
some sense the most expressive class that we could ever hope to learn. The question is whether
there exist significantly weaker concept classes that are also hard to learn. We will outline a
proof that one such class, that of circuits whose depth is only logarithmic in the number of
inputs, is also hard to PAC-learn under DCRA. The complete proof requires showing how low-
depth circuits for repeated multiplication and division can be designed; we will not see these
constructions here as they are quite involved. We will highlight the basic idea and point to the
appropriate references for complete details.

One of the reasons why the circuit described above is deep (it has depth Θ(n)) is that
it requires computing the powers x2

i
for i = 0, 1, . . . , blogϕ(N)c; the reason being that x2

i+1

mod N can only be computed after x2
i

mod N has been computed. However, we note that
this computation does not require the knowledge of d, the secret key, at all! So, if instead of
being given the input x, we were given a longer string of length (2n)2 as input, the concate-

nation of (x mod N, x2 mod N, x4 mod N, . . . , x2
blogϕ(N)c

mod N), the question of learning
f−1N,i would still remainin tractable under the DCRA, as the additional input just represents
something we could have computed ourselves in polynomial time. Note that a hard to learn
target function and distribution now would involve having a distribution over strings of length
(2n)2, where the first 2n bit represent x ∈ Z∗N chosen at the uniformly at random and the

remaining bits are the powers, x2
i

mod N , i = 1, 2, . . . , blogϕ(N)c. It is relatively straight-
forward to show that there exists a circuit of depth O((log n)2) that when given as input (x

mod N, x2 mod N, . . . , x2
blogϕ(N)c

mod N) outputs f−1N (x). To show that there is a circuit of
depth O(log n) requires more work using the techniques of Beame et al. (1986). To summarise,
we have the following theorem.

Theorem 4. There exists a constant κ0 > 0, such that the class of circuits, C, where Cn consists
of circuits on n inputs with depth bounded by κ0 log n is not PAC-learnable under DCRA.

3 Bibliographic Notes

The material covered in this lecture is presented in greater detail in the textbook by Kearns and
Vazirani (1994, Chap. 6). Further details, including complete proofs and reductions showing
cryptographic hardness of learning other concept classes such as finite automata appear in the
original paper by Kearns and Valiant (1994). The proof that the class of polynomial-size circuits
cannot be PAC-learnt if one-way functions exist, even when membership queries are qllowed
(cf. Lec. 6), first appeared in the work of Goldreich et al. (1984). The assumption that one-way
functions exist is much weaker than the discrete cube root assumption; indeed, it is hardly
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conceivable to have any cryptography at all if one-way functions don’t exist. On the other
hand, if the discrete cube root assumption were to be untrue, it would simply question the RSA
cryptosystem, but not rule out the existence of other kinds of cryptosystems.

In general, making stronger assumptions leads to stronger hardness of PAC-learning results.
Recently, there has been work using different kinds of assumptions, not directly related to cryp-
tography, to establish hardness of PAC-learning of much smaller classes such as DNF (Daniely
et al., 2014; Daniely and Shalev-Shwartz, 2014; Daniely, 2015). However, it is worth bearing in
mind that the more obscure assumptions may not have been thoroughly tested; for example,
recently Allen et al. (2015) showed that one of the assumptions made by Daniely et al. (2014)
was in fact not true.
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