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All the learning frameworks we’ve studied so far have assumed that the learning algorithms
have access to “perfect data”. This is clearly not an accurate reflection of what one would
encounter when accessing data in the real-world. Over the next few lectures, we will study
several models that seek to capture noise or imperfections in the observed data. Some of the
learning algorithms we’ve studied are not robust to noise; we’ll study modifications to these
algorithms that make them robust to noise. For some concept classes, there is evidence that
while these are learnable in the absence of noise, there may not exist any efficient algorithms
for learning these classes in the presence of noise.

1 Random Classification Noise Model

The model we’ll study today is what can be considered as a “white noise” model. The data
we receive may have labels flipped indepdently with probability η. Let us define the example
oracle with random classification noise formally.

Definition 1 (RCN Example oracle). An example oracle with random classification noise rate
η, for a concept c over instance space X and for distribution D over X, when called returns the
following: x ∈ X is drawn according to distribution D, with probability 1−η, it returns (x, c(x))
and with probability η returns (x, 1− c(x)).

Before we study algorithms that can be implemented using a noisy example oracle, let us
make a couple of brief remarks. The noise is assumed to be independent in each example; the
case when noise could be correlated or a function of the instance can be much harder to deal
with. Clearly, no learning algorithm can succeed when the noise rate η = 1

2 , as the labels
have nothing to do with the target concept in that case. We’ll assume that η < 1

2 ; if η > 1
2 ,

we are just trying to learn the flipped concept. The quantity of interest is 1 − 2η–the smaller
this quantity the harder the learning problem. Thus, we will allow the sample complexity and
running time of our algorithms to depend polynomially on 1

1−2η . The requirement of the output
hypothesis h is exactly the same as in the PAC-learning framework—we want err(h; c,D) =
Px∼D

[
h(x) 6= c(x)

]
≤ ε, i.e., we are comparing ourselves to the true target function (not with

a noisy target). Let us formally define the model of PAC-learning in the presence of random
classification noise.

Definition 2 (PAC Learning with Random Classification Noise). Let C be a concept class and
H a hypothesis class. We say that C is PAC-learnable with random classification noise using H,
if there exists a learning algorithm L that for every n ≥ 1, target concept c ∈ Cn, distribution
D over X, accuracy parameter 0 < ε < 1

2 , confidence parameter 0 < δ < 1
2 and noise rate

0 < η < 1
2 , with access to the noisy example oracle EXη(c,D) and inputs ε, δ, size(c), and η0

such that 1
2 > η0 ≥ η, outputs a hypothesis h ∈ Hn such that with probability at least 1 − δ,

err(h; c,D) ≤ ε.
We say that C is efficiently learnable if H is polynomially evaluatable and the running time

of L is polynomial in n, size(c), 1
ε , 1

δ and 1
1−2η0

.

In the definition above, instead of the (clean) example oracle EX(c,D) introduced in the
PAC learning framework, the learning algorithm has access to the noisy oracle, EXη(c,D). The
learning algorithm is also given as input a parameter η0 <

1
2 , which is an upper bound on the
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noise rate. It is straightforward to show that this input, η0, is not really required, the learning
algorithm can simply try all possible upper bounds (up to some granularity) and then test which
of the produced hypotheses is the (almost) best one (see Exercise 5.4 in (Kearns and Vazirani,
1994, Chap. 5)).

1.1 Learning Conjunctions

Let us revisit one of the first algorithms we studied, that of learning conjunctions, when there
was no noise in the data. The algorithm started with a hypothesis consisting of a conjunction of
all 2n literals; thus it begins with a hypothesis that always predicts 0. Then for every positive
example (a, 1), it deletes the literals present in its hypothesis that cause this example to be
classified as negative. As long as sufficiently many examples are used, it is guaranteed that this
algorithm outputs a hypothesis that has error at most ε.

This algorithm does not work when there is noise in the data. For instance, if an example
that was a negative example was observed with label 1 (due to noise), the algorithm may drop
several literals from the hypothesis that are actually required. The decisions made by the
algorithm are not robust as they are based on a single example. We will design a more robust
algorithm for learning conjunctions. To begin with, let us continue to assume that the data we
recive is noise-free; late, we’ll discuss how this more robust algorithm can also be used when
the data is noisy.

Let c be the target conjunction and let ` be a literal that appears in c. We will use the
notation `(x) = 1 to indicate that the literal ` evaluates to 1 (true) on the instance x ∈ X. For
any literal ` that is present in the target conjunction, it holds that Px∼D

[
`(x) = 0 ∧ c(x) = 1

]
=

0. We would like to identify all such literals and put them in the output hypothesis. Of course,
it is only important to do this for literals that have a significant probability mass of being false
under the distribution. Let us make this idea more concrete.

• A literal ` is said to be significant if Px∼D
[
`(x) = 0

]
≥ ε

8n

• A literal ` is harmful if Px∼D
[
`(x) = 0 ∧ c(x) = 1

]
≥ ε

8n

Clearly, all harmful literals are also significant. Let h be a hypothesis that is a conjunction
of all literals that are significant, but not harmful. Let L denote the set of all 2n literals, S the
set of significant literals, and T the set of harmful literals; then we have T ⊆ S ⊆ L. Let us
analyse the error of h.

err(h) = Px∼D
[
h(x) = 0 ∧ c(x) = 1

]
+ Px∼D

[
h(x) = 1 ∧ c(x) = 0

]
If h(x) = 0, but c(x) = 1, it must be due to a significant literal that is not harmful which was
added to h. If h(x) = 1, but c(x) = 0, it must be due to an insignificant literal that was not
added to h.

err(h) ≤
∑

`∈(S\T )

Px∼D
[
`(x) = 0 ∧ c(x) = 1

]
+

∑
`∈(L\S)

Px∼D
[
`(x) = 0

]
≤ |S \ T | · ε

8n
+ |L \ S| · ε

8n
≤ ε

2

We haven’t said how exactly to find significant and harmful literals; however, it is easy to see
that they could be identified correctly with high probability. The size of the sample required to
guarantee correctness can be obtained using the Chernoff-Hoefdding bound and is polynomial
in n, 1

ε and 1
δ . We’ve left enough room in our calculations, so that even when using empirical

estimates of these probabilities to identify significant and harmful literals, the output hypothesis
will have error bounded by ε. Compared to the earlier algorithm we’ve seen, this new algorithm
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is more robust. A single example is not used to determine whether or not a literal should be
present in the target hypothesis. This decision is made using aggregate statistics.

It is not too hard to show that if we know the noise rate η, these probability estimates can be
obtained even when receiving samples from EXη(c,D), rather than EX(c,D). However, rather
than do that we’ll see a model that formalises this idea of using ‘statistics’ to design learning
algorithms and show that any algorithm in this framework can always be simulated with access
to a noisy example oracle, EXη(c,D).

2 Statistical Query Model

In the statistical query model, the learning algorithm is not given any access to examples at
all, but instead is given access to a statistical query oracle, STAT(c,D). As was the case in
PAC-learning, let X be the instance space, c : X → {0, 1} the target concept, and D the target
distribution over X. A statistical query is a tuple, (χ, τ), where χ : X × {0, 1} → {0, 1} is a
boolean function that takes as input an instance x ∈ X and a bit b ∈ {0, 1} (one of the two
possible labels of the instance), and τ is the tolerance parameter. The response of the oracle
STAT(c,D) to the query (χ, τ), is a value v ∈ [0, 1], such that,∣∣∣Ex∼D [χ(x, c(x))

]
− v
∣∣∣ ≤ τ.

Learning Conjunctions using Statistical Queries

Before, we formally define the notion of learning using statistical queries, let us see how the
algorithm we described above can be implemented using statistical queries. The first task was
to identify significant literals. This can be done easily, for a literal, `, define the query function,
χ` : X × {0, 1} → {0, 1}, as follows:

χ`(x, b) =

{
1 if `(x) = 0

0 if `(x) = 1

The above query does not depend on the bit b ∈ {0, 1} at all. Thus, χ`(x, b) = 1(`(x) = 0),
and hence Ex∼D

[
χ`(x, c(x))

]
= Px∼D

[
`(x) = 0

]
. We set the tolerance parameter τ = ε

32n . Let
v` be the response received from STAT(c,D) to (χ`,

ε
32n), then we treat all literals for which

v` ≥ ε
16n as significant. This guarantees that any literal that we call as insignificant is such that

Px∼D
[
`(x) = 1

]
≤ 3ε

32n .
In order to identify harmful literals, we use the query χ̃` defined as follows:

χ̃`(x, b) =

{
1 if `(x) = 0 and b = 1

0 otherwise

Again it is easy to see that χ̃`(x, c(x)) = 1(`(x) = 0∧c(x) = 1), and hence Ex∼D
[
χ̃`(x, c(x))

]
=

Px∼D
[
`(x) = 0 ∧ c(x) = 1

]
. Thus, the STAT(c,D) oracle can be used to identify harmful literals.

The exact details of choosing the tolerance values and completing the proof are left as an exercise.

2.1 Statistical Query Learnability

Let us formally define the notion of learning with statistical queries.

Definition 3 (Statistical query (SQ) learnability). Let C be a concept class and H a hypothesis
class. We say that C is efficiently learnable from statistical queries using H, if there exists a
learning algorithm, L, and polynomials p(·, ·, ·), q(·, ·, ·), and r(·, ·, ·) such that, for all n ≥ 1, for
every target c ∈ Cn, for every distribution D over Xn, for any accuracy parameter 0 < ε < 1

2 ,
L with access to the statistical query oracle, STAT(c,D), and inputs ε and size(c), satisfies the
following:
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• For any query (χ, τ) made by L, the predicate χ can be evaluated in time q(n, size(c), 1
ε )

and 1
τ is bounded by r(n, size(c), 1

ε )

• L halts in time bounded by p(n, size(c), 1
ε )

• L outputs h ∈ H, such that err(h; c,D) ≤ ε

The confidence parameter δ no longer appears in the definition; this is because we require
the statistical query oracle, STAT(c,D), to return a value that is within the tolerance with
probability 1. We could extend the definition of statistical query learnability to allow randomised
algorithms, in which case the confidence parameter would be required to bound the failure of
the algorithm itself. Let us first establish the relatively simple result that any concept class
that is efficiently SQ-learnable is also efficiently PAC-learnable. We’ll only provide a sketch of
the proof, but the main idea is that with access to the example oracle, EX(c,D), the algorithm
can simulate STAT(c,D) with high probability.

Theorem 4. If C is efficiently SQ-learnable using H, then C is efficiently PAC-learnable using
H.

Proof. Let A be the algorithm that learns C using H in the SQ model. Let k be an upper
bound on the total number of queries made to the STAT(c,D) oracle by A. We simulate the
algorithm A; every time a query (χ, τ) is made, we draw m = Θ( 1

τ2 log k
δ ) samples from EX(c,D),

say (x1, c(x1)), . . . , (xm, c(xm)), and return 1
m

∑m
i=1 χ(xi, c(xi)). Using the Chernoff-Hoeffding

bound, we know that with probability at least 1− δ
k , the following holds:∣∣∣∣∣∣ 1

m

m∑
i=1

χ(xi, c(xi))− Ex∼D
[
χ(x, c(x))

]∣∣∣∣∣∣ ≤ τ.
When A halts, we simply output the hypothesis h that was produced by A. By using the union
bound and as A makes at most k queries, we know that with probability at least 1 − δ, all
simulations of the statistical query oracle used to provide responses to A are valid, and hence
the output hypothesis h satisfies, err(h; c,D) ≤ ε.

The more surprising result that we’ll prove is that the statistical query oracle can be simu-
lated even with access to noisy examples, i.e., the oracle EXη(c,D). This automatically implies
that all concept classes learnable in the SQ framework are also PAC-learnable with random
classification noise. This formalises the intuition that “robust” algorithms that make decisions
on the basis of statistics rather than individual examples can be adapted to work with noisy
data.

2.2 Simulating STAT(c,D) using EXη(c,D)

In order to make the mathematical manipulations simpler, we’ll assume that the output of
boolean functions are in the set {−1, 1}, rather than the more common {0, 1}. For reasons that
will be clear later, we’ll map 0 to 1, and 1 to −1. We will also require that the query, χ, is defined
as, χ : X×{−1, 1} → {−1, 1}. Note that this still allows us to compute, Px∼D

[
χ(x, c(x)) = −1

]
,

which is what we want as part of the statistical query learning framework, rather easily. To see
this, observe that:

Px∼D
[
χ(x, c(x)) = −1

]
= Ex∼D

[
1− χ(x, c(x))

2

]
=

1

2
− 1

2
Ex∼D

[
χ(x, c(x))

]
Furthermore, for any query, χ : X × {−1, 1} → {−1, 1}, we can express this as follows:

Ex∼D
[
χ(x, c(x))

]
= Ex∼D

[
χ(x, 1) · 1(c(x) = 1)

]
+ Ex∼D

[
χ(x,−1) · 1(c(x) = −1)

]
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As c(x) ∈ {−1, 1}, 1(c(x) = 1) = 1+c(x)
2 ; similarly, 1(c(x) = −1) = 1−c(x)

2 . Thus,

Ex∼D
[
χ(x, c(x))

]
= Ex∼D

[
χ(x, 1) · 1 + c(x)

2

]
+ Ex∼D

[
χ(x,−1) · 1− c(x)

2

]
Ex∼D

[
χ(x, c(x))

]
=

1

2

(
Ex∼D

[
χ(x, 1)

]
+ Ex∼D

[
χ(x,−1)

]
+ Ex∼D

[
χ(x, 1)c(x)

]
− Ex∼D

[
χ(x,−1)c(x)

])
We observe that χ(·, 1) and χ(·,−1) are simply functions from X → {−1, 1}. The first two

expectations on the RHS above don’t depend on the target concept at all; the last two compute
the correlation between the some function from X → {−1, 1} and the target. Formally, we allow
the learning algorithm to make two kinds of queries—target independent and correlational. A
target-independent query is of the form (ψ, τ), where ψ : X → {−1, 1} and τ ∈ (0, 1), and
it receives an answer vψ from STAT(c,D), such that |Ex∼D

[
ψ(x)

]
− vψ| ≤ τ . A correlational

query is also of the form (ϕ, τ), where ϕ : X → {−1, 1} and τ ∈ (0, 1); in this case, however,

the response vϕ of STAT(c,D), satisfies,
∣∣∣Ex∼D [ϕ(x)c(x)

]
− vϕ

∣∣∣ ≤ τ . Thus, it suffices to show

that we can simulate responses of STAT(c,D) to target-independent and correlational queries
using the noisy oracle EXη(c,D). For target-independent queries, the label noise is irrelevant,
as the response to the query doesn’t depend on the target at all. We only need samples drawn
from the distribution D; these are obtained by simply ignoring the labels of the observed data.
We will now show how to simulate the responses of STAT(c,D) using examples from EXη(c,D)
for correlational queries.

2.2.1 Simulating responses to correlational queries

Let Z ∼ B(η) denote that Z is a random variable taking values in {−1, 1}, such that Z = 1 with
probability 1 − η and Z = −1 with probability η. Observe that E[Z] = 1 − 2η. Let (X, c(X))
denote a random example drawn from EX(c,D), then (X, c(X)Z) is distributed as a random
example drawn from EXη(c,D). Consider the following:

E(x,y)∼EXη(c,D)

[
ϕ(x) · y

]
= Ex∼D

[
EZ∼B(η)

[
ϕ(x)c(x)Z

]]
= Ex∼D

[
ϕ(x)c(x)EZ∼B(η) [Z]

]
As Z is independent

= (1− 2η) · Ex∼D
[
ϕ(x)c(x)

]
Suppose we drawm examples from EXη(c,D), say (x1, y1), . . . , (xm, ym) and let v̂ = 1

m

∑m
i=1 ϕ(xi)yi.

Let m be chosen to be large enough such that |v̂−E(x,y)∼EXη(c,D)

[
ϕ(x)y

]
| ≤ τ1 with probability

at least 1 − δ. Suppose that we don’t have access to the exact value of η, but only to some
η̂ ≤ η0 (where η0 is an upper-bound on the noise rate) such that |η̂ − η| ≤ ∆/2. We have the
following:∣∣∣∣ v̂

1− 2η̂
− Ex∼D

[
ϕ(x)c(x)

]∣∣∣∣ ≤
∣∣∣∣∣ v̂

1− 2η̂
− v̂

1− 2η
+

v̂

1− 2η
−

E(x,y)∼EXη(c,D)

[
ϕ(x)y

]
1− 2η

∣∣∣∣∣
≤ |v̂| ·

∣∣∣∣ 1

1− 2η̂
− 1

1− 2η

∣∣∣∣+
1

1− 2η
·
∣∣∣v̂ − E(x,y)∼EXη(c,D)

[
ϕ(x)y

]∣∣∣
≤ 2∆

(1− 2η0)2
+

τ1

1− 2η0

If ∆ and τ1 are chosen so that the RHS above is at most τ , then we have successfuly simulated
the response of the statistical query oracle. Choosing such a τ1 is relatively straightforward, we
simply use a sample size m that is polynomially large in n, 1

1−2η0
, 1
δ and 1

τ . In order to find a
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suitable η̂, we simply run the algorithm with all possible values of η̂ = i∆ for i = 1, . . . , bη0

∆ c.
Clearly, one of the values among these satisfies the properties that we require of η̂. When we run
the procedure for that particular value, we will obtain a h that with high probability satisfies,
err(h; c,D) ≤ ε. We obtain h1, h2, . . . , hb η0

∆
c, and we know that with high probability at least

one of theses hypotheses is “good”, in that it has error at most ε. In order to identify the best
(or good enough) hypothesis from this set, we can simply test each of them on a fresh sample
drawn from EXη(c,D). Simply using the hypothesis h that has the smallest empirical error
does the trick.

We’ve described all the main ingredients of the proof of the following theorem; although we
have not provided the formal proof; writing the proof in full detail is left as an exercise.

Theorem 5. If C is efficiently SQ-learnable using H, then C is efficiently PAC-learnable with
random classification noise using H.

3 A hard-to-learn concept class

We have seen an algorithm for learning conjunctions using only statistical queries. In some of
the exercises, you are asked to design algorithms for learning rectangles, decision lists, 3-CNF
formulae, etc. using only statistical queries. Given this one may wonder, if in fact, every concept
class that is PAC-learnable is also SQ-learnable. We answer the question in the negative. We
show that the class PARITIES is not efficiently learnable using statistical queries. Formally, we
will prove the following theorem in this section.

Theorem 6. Any algorithm for learning PARITIES using statistical queries with ε = 1
10 , and

which makes queries of the form (χ, τ), where τ ≥ τ0 for each query, must make Ω(τ2
0 · 2n)

queries.

Before we sketch a proof of the result, let us look at the statement of the theorem in greater
detail. Efficient SQ learnability requires that the tolerance parameter for any query not be
too small. In particular for efficient learning parities to accuracy 1

10 , we require that 1
τ0

be
bounded by a polynomial in n (in the case of parities size(c) = O(n)). The statement of the
theorem implies that if the inverse tolerance for all queries is bounded by some polynomial
in n, the algorithm must make 2Ω(n/ logn) queries! In particular, this rules out a polynomial
time algorithm for learning PARITIES in the statistical query model. Furthermore, observe that
unlike the result where we showed that proper learning 3-TERM-DNF is hard unless RP = NP,
there are no unproven conjectures required to prove the hardness of learning PARITIES in the
statistical query framework. The reason for this is that the proof is purely information-theoretic.
In particular, even an algorithm that uses unbounded computation and uses query functions χ
that are not evaluatable in polynomial time (or indeed even uncomputable ones!), requires a
superpolynomial number of queries to the STAT(c,D) oracle.

Let us now sketch a proof of the result. To make our notation simpler, we will assume that
the instance space is {−1, 1}n, rather than {0, 1}n. We will also assume that the output of
boolean functions is in the set {−1, 1}. Then for a subset S ⊆ [n], the parity function on bits
in S, is defined as:

fS(x) =
∏
i∈S

xi

If we interpret a bit xi = −1 as being on and xi = +1 as being off, then fS(x) = −1 if and
only if an odd number of bits in S are on, i.e., fS computes the parity over bits in S. We will
consider U , the uniform distribution over {−1, 1}n, as the target distribution. We will assume
that the distribution is known to the algorithm, and as a result, without loss of generality, we
may assume that the algorithm only makes correlational queries to the oracle STAT(c,D).
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Let us observe some basic facts about PARITIES with respect to the uniform distribution
U . For any non-empty set S, Ex∼U

[
fS(x)

]
= 0. This is because the uniform distribution U

over {−1, 1}n can be viewed as a product distribution over the individual bits, i.e., all bits are
independent. The distribution over each bit is also uniform, so that E [xi] = 0 for each i. Then,
we also have:

Ex∼U
[
fS(x)fT (x)

]
= Ex∼U

∏
i∈S

xi
∏
i∈T

xi


= Ex∼U

 ∏
i∈S∆T

xi

 .
Above, S∆T denotes the symmetric difference of the sets S and T . This establishes that if
S 6= T , then Ex∼U

[
fS(x)fT (x)

]
= 0. Clearly, it is also the case that Ex∼U

[
(fS(x))2

]
= 1, since

fS(x) ∈ {−1, 1}. Since there are 2n such parity functions and there are exactly 2n points in
{−1, 1}n, the set of parity functions form an orthonormal basis for the vector space of real-valued
functions defined over {−1, 1}n, with inner product 〈ϕ,ψ〉 = Ex∼U

[
ϕ(x)ψ(x)

]
. Formally, any

ϕ : {−1, 1}n → R can be expressed as:

ϕ(x) =
∑
S⊆[n]

ϕ̂(S)fS(x)

Furthermore, Parseval’s identity establishes that Ex∼U
[
(ϕ(x))2

]
=
∑

S⊆[n](ϕ̂(S))2. In particu-

lar, if ϕ : {−1, 1}n → {−1, 1}, then
∑

S⊆[n](ϕ̂(S))2 = 1; the coefficient ϕ̂(S) = Ex∼U
[
ϕ(x)fS(x)

]
.

Suppose that there is an algorithm, A, that learns PARITIES using at most q queries, each
of which has a tolerance parameter larger than τ0. We show that it must be the case that
q/τ2

0 > 2n−2. For the sake of contradiction, suppose that this is not the case. We show that in
fact there must be a target parity on which the algorithm fails. The definition of SQ learning
requires that a single algorithm work for all target functions. We will show that this cannot be
the case. We run the algorithm A and every time a query is made, we return the answer 0. Let
h be the target hypothesis when A terminates. We will show that when q/τ2

0 ≤ 2n − 2, there
must be at least two parity functions, represented by subsets S and S′, such that for all the
queries made by the algorithm 0 was a valid answer. Let’s first see that this finishes the proof.
Clearly, both fS and fS′ could be a valid target; thus it must be the case that err(h; fS ,U) ≤ 1

10
and err(h; fS′ ,U) ≤ 1

10 . However, Px∼U
[
fS(x) 6= fS′(x)

]
= 1

2 ; thus h cannot be a 1
10 accurate

hypothesis for both fS and fS′ .
Let ϕ1, . . . , ϕq denote the queries made by the algorithm. There is a subtle point to be

mentioned here; in principle the queries made by the algorithm could be adaptive, i.e., the
query depends on past answers from the oracle STAT(c,D). However, since we always supply
0 as the answer, we may as well assume that the queries ϕ1, . . . , ϕq are known ahead of time.
We claim that for any ϕ : {−1, 1} → {−1, 1}, there are at most 1

τ2
0

parity functions, such∣∣∣Ex∼U [ϕ(x)fS(x)
]∣∣∣ ≥ τ0. This follows from that fact that

∑
S⊆[n](ϕ̂(S))2 = 1 and that ϕ̂(S) =

Ex∼U
[
ϕ(x)fS(x)

]
. Thus, a single query rules out at most 1

τ2 parities as the possible target,
if we supply a response of 0. Consequently, q queries rule out at most q/τ2

0 parities as the
possible target. Provided, q/τ2

0 ≤ 2n − 2, there must be at least two different parity functions
that are consistent with all the answers supplied to the algorithm, as a simulation of the oracle
STAT(c,D). This completes the proof.

4 Bibliographic Notes

The variant of PAC learning with random classification noise was introduced in the work of An-
gluin and Laird (1988). Our presentation of the statistical query model differs a bit from that

7



in the textbook by Kearns and Vazirani (1994, Chap. 5). Bshouty and Feldman (2002) first
used the idea of separating a general statistical query into target-independent and correlational
queries. The proof that PARITIES cannot be learnt in the statistical query model appeared in
the work of Kearns (1998). The proof provided in the lecture follows along the lines of that
introduced by Blum et al. (1994) who also show lower bounds for general concept classes in
terms of what is called the statistical query dimension.

Of course, the fact that PARITIES is not SQ-learnable does not rule out an efficient algorithm
for learning PARITIES is the presence of random classification. Blum et al. (2003) provide an
algorithm whose complexity matches that suggested by the lower bound in the SQ model.
Improving this dependence is a long standing open problem. It is widely believed that learning
parities with noise is hard and cryptographic systems based on the hardness of this and related
problems have been desgined. Blum et al. (2003) also demonstrate the existence of a concept
class that is not polynomial-time learnable in the SQ model, but can be learnt in polynomial
time in the PAC model with random classification noise.
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