
Advanced Machine Learning - Hilary Term 2017

9 : Agnostic Learning

Lecturer: Varun Kanade

So far in all the learning frameworks we’ve studied, we’ve made an assumption that there is
some “ground truth” target function that we attempt to learn. Our goal has been to identify
a hypothesis that is close to this target, with respect to the target distribution. Learning
algorithms are given access to the target function in the form of labelled observations, which
in some cases may be noisy. In this lecture, we’ll drop the assumption of a ground-truth target
completely; it is for this reason that the framework is called agnostic learning. As there is no
longer a well-defined notion of target, our goal will be to identify a hypothesis that is competitive
with respect to the best concept from a particular class.

1 Agnostic Learning

We’ll focus our attention on boolean functions, although real-valued functions and more general
loss functions can also be considered in the agnostic learning framework. We will (annoyingly)
switch between {0, 1} and {−1, 1} as the range of boolean functions (and also bit-values) from
time to time, and use the one that is mathematically convenient for the particular calculation
at hand. Let us formally define the framework and then making a few observations.

Definition 1 (Agnostic Learning). Let C be a concept class and H a hypothesis class. We say
that C is agnostically learnable using H, if there exists a learning algorithm L that for all n ≥ 1,
for any D over Xn × {0, 1}, for all 0 < δ < 1 and for all 0 < ε < 1

2 , with access to a sample
of size m(ε, δ, n, size(c)) drawn independently from the distribution D, and inputs ε, δ, size(c),
outputs h ∈ Hn that with probability at least 1− δ, satisfies,

err(h;D) ≤ opt + ε,

where err(h;D) = P(x,y)∼D
[
h(x) 6= y

]
and opt = min

c∈Cn
err(c;D).

Furthermore, we say that C is efficiently agnostically learnable if there exists a polynomially
evaluatable H, such that C is agnostically learnable using H and the corresponding algorithm
L runs in time polynomial in n, 1

ε , 1
δ and size(c).

Before we investigate learnability in the agnostic framework, let us make a few brief obser-
vations.

• We no longer assume that the observed data is perfectly labelled according to some concept
c ∈ C. In fact, we make no assumption at all about a target concept (clean or corrupted).
Instead, we just assume that we are getting labelled data from some process. We’d like
our algorithm to guarantee that if the data is well-explained by some concept from a class,
then our algorithm will find a hypothesis that’s almost as good. This is much closer in
spirit to machine learning methods in practice, where of course we have no knowledge of
the functional form of the true target. Nevertheless, we attempt to find linear separators,
decision trees, boosted random forests, kernel SVMs, neural networks, etc. that fit the
data “well”.

• If we restrict the joint distribution, D, over Xn×{0, 1} to be such that there exists c ∈ Cn,
such that the support of D is contained in the set {(x, c(x)) | x ∈ Xn}, then we recover the
probably approximately correct (PAC) framework. In this case, clearly we have opt = 0,
thus we require that err(h;D) ≤ ε.
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• The PAC framework with random classification noise can also be viewed as a restriction
of the agnostic learning framework, where conditioned on x, (x, c(x)) has probability mass
1−η and (x, 1−c(x)) has probability mass η.1 In this setting, any function f : Xn → {0, 1}
must have err(f ;D) ≥ η, thus opt = η and is achieved by the target, c. If we run an
agnostic learning algorithm with the accuracy parameter set to (1 − 2η)ε, we obtain a
hypothesis h with the desired guarantee, i.e., Px∼DX

[
h(x) 6= c(x)

]
≤ ε, where DX is the

marginal distribution over Xn.

What classes are agnostically learnable? The above observations suggest that agnostic
learning is challenging—at the very least, algorithms for agnostic learning imply algorithms
for PAC learning in the presence of random classification noise. If we restrict our attention to
efficient sample complexity and ignore the running time, then agnostic learning is characterised
very well by the VC-dimension. Let S = {(x1, y1), . . . , (xm, ym)} ⊆ Xn × {0, 1} be a sample of
size m. For any h : Xn → {−1, 1}, define

êrr(h;S) =
1

m

m∑
i=1

1(h(xi) 6= yi)

The following theorem relates the empirical error on a sample to the expected error with respect
to the underlying distribution. We will not give a proof here, but the proof is similar to that of
other results of this type that we’ve seen earlier.

Theorem 2. Let H be a hypothesis class with VC dimension d and let D be any distribution
over X × {0, 1}. Then there exists c0 > 0 such that for all ε, δ > 0, if S is a sampe of size

m drawn independently from D, where m ≥ c0
ε2

(
d log 1

ε + log 1
δ

)
, then with probability at least

1− δ, it holds for every h ∈ H that |êrr(h;S)− err(h;D)| ≤ ε.

Let us see how this result may be applied to yield learning algorithms. Let C be a concept
class for which we are interested in designing an agnostic learning algorithm. Let H be some
hypothesis class such that C ⊆ H; we consider a more general H as the problem of minimising
empirical error using H might be easier than if using C (as in the case of 3-TERM-DNF vs
3-CNF). We choose S be a sample of size m that is large enough so that the above theorem
may be applied with confidence parameter δ and accuracy parameter ε/2. Let h ∈ H be the
hypothesis that minimises êrr(h;S) and let c∗ ∈ C be the concept that minimises err(c;D), so
that err(c∗;D) = min

c∈C
err(c,D) = opt. Thus, we have:

err(h;D) ≤ êrr(h;S) +
ε

2
Using Theorem 2

≤ êrr(c∗;S) +
ε

2
As c∗ ∈ H and h ∈ H was chosen to minimise êrr(h;S)

≤ err(c∗;D) + ε Using Theorem 2

The difficulty is, of course, in finding h ∈ H that minimises êrr(h;S). In Section 2, we’ll
see a result showing that proper agnostic learning linear halfspaces is hard unless NP = RP.
In Section 3, we’ll see that even for improper agnostic learning, it would be highly surprising
if efficient agnostic learning algorithms could be obtained for classes such as CONJUNCTIONS
and linear halfspaces. If one is not concerned with computational complexity, then the results
obtained using Theorem 2 are essentially tight; the following theorem shows this.

Theorem 3. Any algorithm for agnostically learning a concept class C with VC dimension d

that achieves an error of at most opt+ε with probability at least 1−δ requires Ω

(
1
ε

2
(
d+ log 1

δ

))
examples.

1Here we are assuming Xn is finite; in any case, we’ll ignore issues related to measurability in this course.
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We will not give a proof of this theorem, but let us understand why the linear dependence on
1
ε2

is necessary in the case of agnostic learning. (The correponding dependence for PAC learning
is linear in 1

ε .) Let us consider a very simple hypothesis class, consisting of only two hypotheses,
the constant functions which take the values 0 and 1. Suppose the data is generated using a
coin with bias for heads either 1

2 + ε or 1
2 − ε, i.e., a coin is tossed and if heads appears the

label returned is 1 and otherwise the label is 0. In the former case, the algorithm must output
the constant hypothesis 1, and in the latter case the constant hypothesis that always predicts
0. By computing the variance of the random variable that is the number of heads, it can be
seen that unless at least 1

ε2
observations are made, it is impossible to distinguish between the

two cases. (In the PAC setting, we are interested in separating a coin with bias 0 from those
with bias at least ε; in this case, if we toss 1

ε times we expect to see at least one heads if the
bias is not 0.)

Remark: Proofs of Theorems 2 and 3 can be found in the textbook by Mohri et al. (2012,
Chap. 3).

2 Hardness of Proper Agnostic Learning

In this section, we’ll focus on proper agnostic learning, i.e., when the hypothesis class, H, from
which the algorithm chooses the output hypothesis is the same as the concept class, C. We will
show that proper agnostical learning of linear halfspaces is hard unless NP = RP. The proof is
similar to other such results that we’ve seen in the context of PAC-learning.

Theorem 4. The class of linear halfspaces, LTF =
⋃
n≥1

LTFn, where,

LTFn = {x 7→ 1≥0(w · x+ w0) | w ∈ Rn, ‖w‖2 = 1, w0 ∈ R},

is not efficiently agnostically learnable using LTF unless NP = RP.

Proof. We will reduce from MAX-INDSET, the problem of finding the largest independent set
in a graph, which is known to be NP-hard. Let G = (V,E) be a graph; a set I ⊆ V is an
independent set if there does not exist (i, j) ∈ E, such that i ∈ I and j ∈ I, i.e., an independent
set is a set of vertices with no edges among them.

Given a graph G = (V,E), we will construct S ⊆ Rn × {0, 1}. For vertex i, let vi ∈ Rn
denote the point that is 0 in all co-ordinates except i and let the ith co-ordinate be 1. For every
edge, (i, j), let ei,j ∈ Rn denote the point that has 0 in all co-ordinates except i and j, and both
the ith and the jth co-ordinate are 1. Notice that ei,j = vi + vj , an observation that we will use
later on. Let 0 be the origin in Rn. Consider the set S of labelled points,

S = {(vi, 1) | i ∈ V } ∪ {(ei,j , 0) | (i, j) ∈ E} ∪ {(0, 0)}

We will count weighted error—each point in S is given some non-negative weight and the total
weight is 1. In particular, we’ll set the weight of (0, 0) to be 2

3 and the remaining 1
3 weight is

distributed equally among all the other points in S.
Let I ⊆ V be the largest independent set in G, and let I = V \ I. Consider the following

linear halfspace, fI(x) given by

fI(x) = 1≥0

∑
i∈I

xi −
∑
i∈I

xi −
1

2


Let us compute the weighted error made by fI on S. The point (0, 0) is classified correctly. All
the points (ei,j , 0) are also classified correctly, since each edge (i, j) has at least one end-point
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that is not in I. Finally, all the vertices in I are classified correctly, while those in I are classified
incorrectly. Thus, the weighted error made by fI on S is given by |V |−|I|

3(|V |+|E|) .
The argument that a proper agnostic learning algorithm gives, with probability at least 1−δ,

a linear halfspace that minimises the weighted error on S is essentially the same as in other
such proofs. We set ε = 1

10(|V |+|E|) , and D to be the distribution given by the weights of points
in S and that has support only over S. Thus, any halfspace that has weighted error at most
opt+ ε, where opt is the least weighted error made by any linear halfspace on S, essentially has
to produce such a halfspace (as any additional mistake increases the weighted error by at least

1
3(|V |+|E|)). Thus, using the proper agnostic learning algorithm, we get a randomised algorithm,
that with probability at least 1 − δ, finds a linear halfspace that minimises the weighted error
on S.

The last part that remains to be shown is that if we can find a linear halfspace that minimises
the weighted error on S, then we can find a maximum independent set. Let g(w,w0)(x) =
1≥0(w · x + w0) be such a linear halfspace. As there exists a linear halfspace with weighted
error at most 1

3 , namely one that classifies the point (0, 0) correctly, we know that the error of
g(w,w0) is at most 1

3 . Thus in particular, (0, 0) is classified correctly by the halfspace g(w,w0),
which implies that w0 < 0. Thus, it suffices to compare g(w,w0) and fI in terms of the mistakes
made on the set S′ := S \ {(0, 0)}, as both of these linear halfspaces classify the point (0, 0)
correctly.

Let J = {i | w · vi +w0 < 0} and let F = {(i, j) | w · ei,j +w0 ≥ 0}. Clearly, the number of
mistakes made by the g(w,w0

) on S′ is |J |+ |F |. The number of mistakes made by fI on S′ is |I|.
Let J = V \J . As g(w,w0) was chosen to have the least weighted error on S and both g(w,w0) and

fI clasify (0, 0) correctly, it must be the case that |J |+ |F | ≤ |I|—alternatively |J | ≥ |I|+ |F |.
Note that J may not be an independent set, but we’ll describe how to obtain an independent
set from J that is at least as large as I. Suppose there is an edge (i, j) such that i ∈ J and
j ∈ J . We claim that it must be the case that (i, j) ∈ F . This follows by using the facts that
w · vi + w0 ≥ 0, w · vj + w0 ≥ 0, ei,j = vi + vj and that w0 < 0. In particular, this means

w · ei,j + w0 ≥ w · (vi + vj) + 2w0 ≥ 0

Thus, for any edge (i, j) with both endpoints in J , we can remove one of the points from J . As
|J | ≥ |I|+ |F | and every such edge must be from F , in the end we are left with a set that is at
least as large as I.

Thus, the existence of a proper agnostic learning algorithm for LTF implies RP = NP.

The above theorem shows that in the agnostic setting, proper learning linear halfspaces, a
problem that was easy in the PAC framework, is already hard. On the problem sheets you
have been asked to prove that even learning monotone conjunctions is hard. This provides
some indication that agnostic learning is significantly more challenging than PAC learning. Of
course, one may hope that allowing the learning algorithm to output hypotheses from larger
classes would overcome some of these difficulties. In the next section, we show that it is unlikely
to be the case.

3 Hardness Results for Improper Agnostic Learning

In this section we’ll show that agnostic learning continues to be challenging, even when learning
algorithms are allowed to output any polynomial-time evalutable hypothesis. Obviously, we
are not able to show these results unconditionally, or even on relatively standard assumptions
such as RP 6= NP. Instead, we’ll reduce other believed-to-be-hard learning problems to agnostic
learning certain concept classes. This also gives us the opportunity to explicity state two well-
known challenging learning problems in computational learning theory.
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3.1 Learning Parities with Noise

Recall that the class PARITIESn consists of functions of the form fS(x) =
⊕
i∈S

xi for x ∈ {0, 1}n.

Let us list some key results about about this problem.

• In the PAC framework, with access to the oracle EX(fS , D), there is a simple learning al-
gorithm for PARITIES. The algorithm essentially performs Gaussian elimination, treating
parities as linear functions from GF(2)n → GF(2).

• In the statistical query framework, any algorithm that makes queries to STAT(fS ,U),
where U is the uniform distribution on {0, 1}n with tolerance at least τ , must make
Ω(τ22n) queries. As we’ve seen earlier, this result is unconditional. Thus, the class
PARITIES cannot be efficiently learnt in the statistical query framework.

• In the PAC framework with random classification noise, i.e., with access to the oracle
EXη(fS , D), this problem is widely believed to be hard. One of the hard cases is believed
to be the case where D = U , the uniform distribution over {0, 1}n. As a statistical
query algorithm for PARITIES does not exist, we cannot apply the general reduction
to obtain an algorithm for learning PARITIES in the presence of random classification
noise. The current best algorithm due to Blum et al. (2003) has running time 2O(n/ logn).
Cryptosystems have been designed based on the assumption that learning PARITIES with
noise is hard (and more often, on the harndness of learning noisy linear functions on larger
finite fields; see (Regev, 2009) for further details).

We will show how an agnostic learning algorithm for linear halfspaces yields an algorithm for
learning PARITIES with noise. Rather than give a formal proof, we will describe the key ideas
in sufficient detail for the interested student to complete the formal proof. We will consider the
concept class of MAJORITIES. As in the case of parities, these are functions defined over some
subset of the variables, the difference being that the function evaluates to 1 if at least half the
bits in the subset are 1 and 0 otherwise. Formally, MAJORITIESn, contains functions gS defined
as,

gS(x) = 1≥0

∑
i∈S

xi −
|S|
2


for all S ⊆ [n].

To make calculations slightly simpler, we’ll use the transformation 0 7→ 1 and 1 7→ −1 both
for inputs and outputs. This means that a parity on subset S is simply defined as fS(x) =∏
i∈S xi and the majority is defined as gS(x) = sign

(∑
i∈S xS −

1
2

)
. Furthermore, we’ll assume

that the target parity is defined on some set S, such that |S| is even.2 Then, we show that∣∣∣∣ Ex∼U [gS(x)fS(x)
]∣∣∣∣ = Ω

(
1√
|S|

)
. For any input x ∈ {−1, 1}n, let xS denote the input obtained

by flipping every bit of x in the set S. Both parity and majority are symmetric functions on
the set S, i.e., they only depend on the number of bits that are −1, but not on specific bits.
If x is such that k bits in S are −1 for k ∈ {0, 1, . . . , |S|/2 − 1}, then gS(x) = −gS(xS) and
fS(x) = fS(xS). Now for k = 0, . . . , |S|/2 − 1, the probability distribution (under the uniform
distribution over {−1, 1}n) of having k bits be −1 is exactly the same as having |S| − k bits
be −1. Thus, the only contribution to E

x∼U

[
gS(x)fS(x)

]
comes from points x ∈ {−1, 1}n, such

that exactly |S|/2 out of the |S| bits in S are −1. Thus,∣∣∣∣ Ex∼U [gS(x)fS(x)
]∣∣∣∣ =

( |S|
|S|/2

)
2|S|

= Ω

(
1√
|S|

)
2Otherwise, it is possible to guess one of the bits in the target parity, say by trying all n bits, and flip the

sign of the labels. In at least one case, we’ve reduced the problem to learning a parity on an even set.
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Now suppose that the data was noisy, then we get that the correlation of the function gS , with

the observed data (labels treated as being in {−1, 1}), is at least Ω

(
1−2η√
|S|

)
. Essentially, this

is E
x∼U ,Z

[
fS(x)gS(x)Z

]
, where Z is a random variable that takes value 1 with probability 1− η

and −1 with probability η. Thus, an agnostic learning algorithm for learning halfspaces would

give us some h : {−1, 1}n → {−1, 1}, such that E
x∼U

[
fS(x)h(x)

]
= Ω

(
1−2η√
|S|

)
, with probability

at least 1− δ.
Once we have obtained h, we are able to evaluate h on any point in the set {−1, 1}n. It is

well-known that there is an algorithm, that given black-box access to h, and in time polynomial

in 1
δ and 1

τ , outputs all subsets T , such that

∣∣∣∣ Ex∼U [h(x)fT (x)]
]∣∣∣∣ ≥ τ . Essentially, the set of

all parity functions forms an orthogonal basis for functions defined from {−1, 1} → R, with
respect to the uniform distribution over {−1, 1}n. This algorithm finds all the large “Fourier”
coefficients of any h : {−1, 1}n → R. The interested student is referred to the excellent survey
by Mansour (1994).

3.2 PAC-Learning DNF

Let CONJUNCTIONSn denote the class of conjunctions over {0, 1}n. Let s(·) be a polynomial.
Define the class,

DNFn,s(n) = {c1 ∨ · · · ∨ ck | ci ∈ CONJUNCTIONSn, k ≤ s(n)}

and DNFs =
⋃
n≥1 DNFn,s(n), to be the class of boolean functions over n variables that can be

expressed as a DNF formula with at most s terms. Thus, an efficient algorithm for learning
DNFs runs in time polynomial in n, 1

ε and 1
δ (the parameter size(c) is not necessary as it is

always polynomial in n). Let us recall some known results regarding learning DNFs.

• Learning DNFs was posed an open problem by Valiant (1984). It has remained open
despite much effort for the last three decades.

• Any statistical query algorithm with tolerance τ , such that τ−1 is bounded by a polynomial
in n, has to make nΩ(logn) queries to the STAT(c,D) oracle. The key idea here is that
parities over log n bits can be expressed as a DNF formula of polynomial size; there are
nΩ(logn) such parity functions. Details appear in the paper by Blum et al. (1994).

• The current best known algorithm for PAC learning DNFs is due to Klivans and Servedio

(2001) and has running time 2Õ(n1/3), where the notation Õ(·) hides poly-logarithmic
factors.

• Recent work by Daniely and Shalev-Shwartz (2014) has shown that under plausible, but
as yet unproven complexity-theoretic assumptions, learning DNFs is hard for some poly-
nomial s(·).

Thus, the problem of PAC learning DNFs is widely considered to be hard. We will show
that a computationally efficient algorithm for agnostically learning conjunctions would imply
a computationally efficient algorithm for PAC learning DNFs, thus providing evidence, that
agnostically learning conjunctions, even improperly, is hard.

As in the previous section, we will focus on the key ideas rather than provide a formal proof.
Let ϕ ∈ DNFs and let D be some distribution over {0, 1}n. Let

opt = min
c∈CONJUNCTIONSn

err(c;ϕ,D),
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i.e., opt is the least error made by a conjunction when the data is labelled according to a
DNF formual ϕ. The claim is that opt ≤ 1

2 −
1

10s(n) . In fact, you have already proved this
on one of the problem sheets. You were asked to show that some function from the set H =
{0, 1, x1, x1, . . . , xn, xn} is a good candidate weak hypothesis for learning conjunctions; the same
applies to disjunctions. A DNF formula is essentially a disjunction on an expanded input space,
which includes the evaluation of all possible conjunctions on the original n-bit input. This
means that the output h of an agnostic learning algorithm, when run with ε = 1

20s(n) and with

access to examples drawn from EX(ϕ,D), satisfies, err(h;ϕ,D) ≤ 1
2 −

1
20s(n) . Such an algorithm

serves as a 1
20s(n) -weak learner and hence using a boosting algorithm, such as Adaboost, yields a

PAC-learning algorithm for learning DNFs. Thus, it is unlikely that there is a computationally
efficient agnostic learning algorithm for CONJUNCTIONS.

Remark 5. In fact, the problem of agnostically learning conjunctions may be significantly
harder than PAC learning polynomial-size DNF formulas. The current best known algorithm

for agnostically learning conjunctions is due to Kalai et al. (2008) and runs in time 2Õ(
√
n).

4 Distribution-Specific Agnostic Learning

As we’ve seen by now, agnostic learning is highly challenging, and if one is to obtain positive
results, further relaxations will need to be made in terms of what is asked of the learning
algorithm. One such assumption that is common in the literature, and which we’ll study, is the
requirement that the learning algorithm work no matter what the distribution over the data.
We’ll relax this requirement by making assumptions regarding the marginal distribution DX

over X. In keeping with the spirit of agnostic learning, we’ll make no assumptions whatsoever
about how the data is labelled. Formally, for a joint distribution D over X × {−1, 1}, let DX

denote the marginal distribution over X. We will only require the learning algorithm to succeed
provided the marginal distribution, DX , comes from a relatively benign class of distributions.
Our focus will be on the setting where DX is the spherical normal distribution in Rn, N (0, σ2I).

Let us first formally define distribution-specific agnostic learning.

Definition 6 (Distribution-specific Agnostic Learning). Let D be a class of distributions over
X. We say that C is agnostically learnable with respect to the class of distributions D, if there
exists a polynomially evaluatable hypothesis class H and a learning algorithm L, that for all
n ≥ 1, for every D over Xn×{−1, 1}, such that the marginal distribution DX is in D, for every
0 < δ < 1 and 0 < ε < 1, with access to EX(D) and with inputs ε, δ and size(c), outputs h that
with probability at least 1− δ, satisfies

err(h;D) ≤ min
c∈C

err(c;D) + ε.

We’ve dropped the notion of efficient learning from the definition. This is because most of
the algorithms that we’ll design will not be polynomial in 1

ε , rather we will get some dependence

of the form n
1
εκ for some constant κ. This means that the overall running time is polynomial

only if ε is chosen to be a constant. Even after the restriction on the marginal distribution
and fixing ε to be a constant, designing learning algorithms is quite a challenge. We will see
the main ideas that are required to design and analyse an algorithm for agnostically learning
halfspaces. The full algorithm and detailed proofs can be found in the article by Kalai et al.
(2008).

4.1 Agnostically Learning Halfspaces

We will restrict our attention to the case where the marginal distribution DX is the spherical
normal distribution with covariance matrix 1

nI, i.e., DX = N (0, 1
nI). As part of the algorithm,
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we will use real-valued functions and real-valued losses as intermediate steps, before produc-
ing a boolean function as an output hypothesis. Along the way, we’ll use some results from
approximation theory.

Definition 7 (ε-`1-Approximation). Let Φ = {φ1, . . . , φM} be a collection of basis functions,
where φi : X → R. We say that a concept class C can be ε-`1-approximated by Φ with respect
to a distribution DX over X, if for every c ∈ C, there exist a1, . . . , aM ∈ R, such that,

E
x∼DX

∣∣∣∣∣∣c(x)−
M∑
j=1

ajφj(x)

∣∣∣∣∣∣
 ≤ ε

The following result shows that ε-`1-approximability of a class C is sufficient for agnostic
learning. Observe the polynomial dependence on M , the size of Φ, of the sample and compu-
tational complexity of the algorithm. The challenge is to show that a concept class C can be
approximated by using a basis that is not too large.

Theorem 8. If C can be ε-`1-approximated by some collection of basis functions Φ = {φ1, . . . , φM}
with respect to distribution DX , then C is agnostically learnable with respect to DX . Further-
more, the sample complexity and running time of the algorithm is polynomial in M, 1

ε ,
1
δ .

Proof. Let S = {(x1, y1), . . . , (xm, ym)} be obtained from a distribution D over X×{−1, 1} such
that the marginal distribution over X is DX . We perform the following optimisation problem.
Find a1, . . . , aM that minimise the following objective:

J(a1, . . . , aM ;S) =
1

m

m∑
i=1

∣∣∣∣∣∣
M∑
j=1

ajφj(xi)− yi

∣∣∣∣∣∣
It is left as an exercise to show that this optimisation problem can be expressed as a linear
program. (See the Appendix of the article by Kalai et al. (2008) for the solution.)

Output Hypothesis: Let h : X → {−1, 1} be the boolean function given by

h(x) = sign

 M∑
j=1

ajφj(x)− t

 ,

where t is chosen to minimise êrr(h;S) from among hypotheses of this form. Note that the
values a1, . . . , aM were already obtained as part of the optimisation algorithm, thus only t is
chosen so that the empirical error is minimised. This is just a simple one dimensional problem
and can be solved easily.

We claim that êrr(h;S) ≤ 1
2J(a1, . . . , aM ;S). To see this, imagine that t ∈ [−1, 1] was chosen

uniformly at random (denoted by t ∼ U([−1, 1])) and let ht be the corresponding hypothesis;
for x ∈ Rn, let z =

∑M
j=1 ajφj(x) and suppose y ∈ {−1, 1}. Clearly, if z < −1 or z > 1, for

every t ∈ [−1, 1].

1(sign(z − t) 6= y) =
|sign(z)− y|

2
≤ |z − y|

2
.

On the other hand, if z ∈ [−1, 1], then for t ∈ [z, 1] if y = 1 and for t ∈ [−1, z] if y = 1, it is the
case that 1(sign(z − t) 6= y) = 1, hence,

E
t∼U([−1,1])

[
1(sign(z − t) 6= y)

]
=
|z − y|

2

Thus, in all cases, we obtain E
t∼U([−1,1])

[
êrr(ht;S)

]
≤ 1

2J(a1, . . . , aM ;S). This in particular

implies that there exists t ∈ [−1, 1] such that err(ht;S) ≤ 1
2J(a1, . . . , aM ;S), and as the output
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hypothesis h was obtained by choosing t that minimises the number of mistakes on the sample
S, it must be the case that êrr(h;S) ≤ 1

2J(a1, . . . , aM ;S). We will choose m to be large enough
so that |êrr(h;S)− err(h;S)| ≤ ε/4 for every h that is a linear halfspace over the basis functions
φ1, . . . , φM with probability at least 1 − ε

4 . Note that this is possible for some m that is still
polynomially bounded in M , 1

ε , and 1
δ . Note that h is still a function of the sample S and hence

is considered as a random variable. We thus obtain the following (after some calculations of
conditional expectations):

E
S∼Dm

[
err(h;D)

]
≤ 1

2
E

S∼Dm

[
J(a1, . . . , aM ;S)

]
+
ε

4

Let c∗ ∈ C be such that,

err(c∗;D) = opt = min
c∈C

err(c;D).

Let a∗1, . . . , a
∗
M be such that E

x∼DX

[∣∣∣∑M
j=1 a

∗
jφj(x)− c∗(x)

∣∣∣] ≤ ε. Using the fact that a1, . . . , aM

were chosen to optimise J(a1, . . . , aM ;S) and a∗1, . . . , a
∗
M constitute a feasible solution, we get

E
S∼Dm

[
err(h;D)

]
≤ 1

2
E

S∼Dm

[
J(a∗1, . . . , a

∗
M ;S)

]
+
ε

4

≤ 1

2
E

S∼Dm

 1

m

m∑
i=1

|yi − c∗(xi)|

+
1

2
E

S∼Dm

 1

m

m∑
i=1

∣∣∣∣∣∣c∗(xi)−
M∑
j=1

a∗jφj(xi)

∣∣∣∣∣∣
+

ε

4

≤ 1

2
E

(x,y)∼D

[
|y − c∗(x)|

]
+

1

2
E

x∼DX

∣∣∣∣∣∣c∗(x)−
M∑
j=1

a∗jφj(x)

∣∣∣∣∣∣
+

ε

4

As c∗(x) ∈ {−1, 1} and y ∈ {−1, 1}, E
(x,y)∼D

[
|y − c∗(x)|

]
= 2err(c∗;D) = 2opt. Hence, we have,

E
S∼Dm

[
err(h;D)

]
≤ opt +

3ε

4

Finally, we apply Markov’s inequality to obtain:

PS∼Dm
[
err(h;D) ≥ opt +

7ε

8

]
≤

E
S∼Dm

[
err(h;D)

]
opt + 7ε

8

≤
opt + 3ε

4

opt + 7ε
8

≤ 1− ε

16

Repeating the entire algorithm N = Θ
(

1
ε log 1

δ

)
times and choosing the hypothesis with the best

performance among the N obtained hypothesis on a freshly drawn sample of size O
(

1
ε2

log N
δ

)
yields a hypothesis that with probability at least 1− δ, satisfies err(h;D) ≤ opt + ε.

Approximating Linear Halfspaces using Polynomials

What is left to prove is that there exists a suitable family of basis functions that can ε-`1-
approximate linear halfspaces when the marginal distributionDX isN (0, 1

nI). The next theorem

shows that monomials of degree O
(

1
ε4

)
provide such a family of basis functions, or alternatively,

degree O
(

1
ε4

)
-multivariate polynomials provide ε-`1-approximations to linear halfspaces for the

distribution N (0, 1
nI).

Theorem 9. Let Φ be the set of all monomials over {x1, . . . , xn} of degree at most d, then for

some d = O
(

1
ε4

)
, linear halfspaces in Rn are ε-`1-approximated by Φ with respect to N (0, 1

nI).
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In order to prove this theorem, we will use the following lemma, whose proof we can be
found in the article by Kalai et al. (2008).

Lemma 1. For any d ≥ 1 and for any θ ∈ R, there is a degree d univariate polynomial, pd,θ,
such that,

1√
2π

∫ ∞
−∞

(pd,θ(z)− sign(z − θ))2e−z
2/2 dz = O

(
1√
d

)
Proof of Theorem 9. Let f(x) = sign(w · x + w0) denote some linear halfspace, where w ∈ Rn
with ‖w‖2 = 1 and w0 ∈ R. Let θ = −

√
nw0 and let P be a multivariate polynomial defined as

P (x) = pd,θ(
√
n(w · x)). Note that P is a degree d multivariate polynomial. Then, we have

E
x∼DX

[
|P (x)− f(x)|

]
≤
√

E
x∼DX

[
(P (x)− f(x))2

]
As w is a unit vector and DX = N (0, 1

nI), the marginal (univariate) distribution of
√
n(w · x)

is N (0, 1). Substituting z =
√
n(w · x) we have,

E
x∼DX

[
(P (x)− f(x))2

]
=

1√
2π

∫ ∞
−∞

(pd,θ(z)− sign(z − θ))2 dz = O

(
1√
d

)
Thus, for some d = O

(
1
ε4

)
we get the required result.

As a consequence of Theorems 8 and 9, we have the following corollary.

Corollary 1. The class of linear halfspaces in Rn is agnostically learnable with respect to the

spherical normal distribution with sample complexity and running time polynomial in n
1
ε4 , 1

δ ,
1
ε .

5 Notes

In a sense, the agnostic learning framework pre-dates the PAC learning framework; the essential
components are present in the statistical learning framework formulated by Vapnik in the 1970s.
Kearns et al. (1994) formulated the framework as described in the network, bringing the study
of boolean functions and computational complexity at the forefront. Without restrictions on
the marginal distribution over X, positive results are known essentially only for trivial concept
classes for boolean functions. For real-valued functions it it possible to have such results for
some general classes for certain kinds of convex loss functions.

In the computational learning theory and theoretical computer science community, much
effort has been expended on designing algorithms that work under restrictions on the marginal
distribution. We have studied one such result in this lecture. We can consider learning using
membership queries in the agnostic learning setting. A few more positive results are known in
that case, including learning parities and decision trees (cf. (Gopalan et al., 2008)). However,
when restrictions are not made on the marginal distribution, membership queries provided no
added benefit in the case agnostic learning! The intuition behind this is that as the labels have
nothing to do with any specific target function, querying the label at specific points is unlikely
to be helpful; this was formalised and proved by Feldman (2009).

The techniques to design agnostic learing algorithms typically use results from approxima-
tion theory. The proof of Lemma 1 uses the fact that Hermite polynomials form an orthogonal
basis for square integrable functions with respect to the standard normal distribution. For
boolean functions, positive results are mainly known for the case where the marginal distribu-
tion over X is the uniform (or some other product) distribution on the boolean cube. In this
case, techniques from discrete Fourier analyis can be used to obtain results in learning theory
and beyond (cf. (O’Donnell, 2014)).
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