
Online Learning, Mistake Bounds, Perceptron Algorithm∗

1 Online Learning

So far the focus of the course has been on batch learning, where algorithms are presented with
a sample of training data, from which they must produce hypotheses that generalise well to
unseen data. In what follows, we will cover online learning. In this setting, algorithms are
sequentially given examples over time and must do two things at each time step: generate
predictions, and upon recieving feedback on the performance of this prediction, update a
current working hypothesis. This setting is useful when it is prohibitive to train on an entire
set of data, or when algorithms need to respond dynamically to environments.

To be specific, suppose that C is an underlying concept class that we are trying to learn
with H. The basic online setting for learning a concept c ∈ C consists of t = 1, 2, ... rounds
(this can be finite or infinite) where the following happens:

• The learner has a current working hypothesis ht.

• The learner is presented with an unlabeled example, xt.

• The learner predicts a label ŷt = ht(xt).

• Upon this prediction, the learner is informed of the true label, yt = c(xt).

• The learner updates the current working hypothesis to ht+1.

One of the fundamental difference from the PAC framework we have studied before is
the fact that there are no distributional assumptions made about the sequence of samples
presented to the learner. Before we may have supposed that each xi was generated inde-
pendently from some distribution D over the input space X, but we may now even assume
that the sequence is generated in an “adversarial” fashion to make our algorithm incur the
largest loss possible. In fact, it is precisely this adversarial nature to the example sequence
that yields important connections to Game Theory which we will hopefully explore later.

Since there are no distributional assumptions, an appropriate metric for algorithm per-
formance we will look at is that of mistakes which is precisely as it sounds; a mistake is

∗These notes are partially based off of Prof. Worrell’s from previous years’ Computational Learning
Theory lectures.

1

an unlabeled example where the current working hypothesis of an online algorithm does not
match the true label. (i.e. ht(xt) 6= yt). The goal of our algorithms will thus be to minimize
the overall number of mistakes made over an arbitrary sequence of samples.

Example: Disjunctions

Suppose that our concept class C is the set of all monotone disjunctions on X = {0, 1}n.
Consider the following online algorithm for learning C:

• Begin with h1(x) = ∨ni=1xi

• For each t if ht(xt) = ŷt = c(xt) leave ht unchanged, otherwise remove all literals set
to 1 in xt from ht.

It is straightforward to see that each time a mistake is made, the disjunctno in the current
hypothesis decreases by at least one literal. For this reason the total number of mistakes is
at most n.

On the other hand, one can never design a deterministic algorithm that can guarantee
making less than n mistakes. To see this, consider the sequence of basis vectors in {0, 1}n,
given by e1, ..., en. No matter what current hypothesis an algorithm has, an adversary can
always force a mistake on all these points.

2 Mistake-bound Learning

Now we proceed to formally define what we mean for a concept class to be learnable in the
mistake-bound model of online learning.

Definition 1. For a given hypothesis class C, and instance space X =
⋃
Xn, we say that an

algorithm A learns C with mistake bound M if for some polynomial, p(·, ·), A makes at most
M = p(n, size(c)) mistakes on any sequence of samples consistent with a concept c ∈ C. If
the runtime of A is also polynomial in n and size(c), then we say that A efficiently learns
C in the mistake bound model.

As we have seen above, the class of monotone disjunctions is learnable in the mistake-bound
model with a mistake bound of n.

Remark: It is not difficult to see that there is a close connection between learning in the
mistake-bound model and exact learning with equivalence queries. Suppose that c ∈ C can
be learned by an algorithm A, with mistake bound M . As an exercise use this algorithm
as a subroutine in an exact learning algorithm with equivalence queries that uses at most
M + 1 queries. Conversly, show that if a concept class C can be exactly learned with N
equivalence queries, then there is also mistake-bound algorithm for learning C that makes
at most N mistakes.

2

Mistake-bound learning implies PAC learning

Definition 2. We say an online learning algorithm is conservative if it only updates its
current hypothesis when making a mistake.

Lemma 1. Suppose that A learns a hypothesis class C with mistake bound M . Then there
exists a conservative algorithm A′ that also learns C with the same mistake bound, M .

Proof. The algorithm A′ will be the same as A except for when the latter recieves an example
it correctly labels. In this case, since A is not necessarily conservative, it may update its
current hypothesis. A′ simply “undoes” this update (or rather, acts as if this example had
not arrived), and maintains the previous current hypothesis. Thus on a given sequence of
elements, x1, ..., xt, ... suppose that the updates of A′ are given by the indices i1, ..., ik, then
A′ performs as if A had seen the sequence xi1, ..., xik, which are indeed all mistakes, but
there are at most M of these as assumed.

With the previous lemma in hand, it suffices to restrict our attention to conservative algo-
rithms.

Theorem 1. Suppose that a concept class C is learnable in the mistake-bound model. Then
C is also PAC-learnable.

Proof. We assume that C is learned in the mistake-bound model by the conservative algo-
rithm A that makes at most M mistakes. Furthermore, since we are in the PAC-learning
paradigm, we have access to an example oracle EX(c,D). We simply sample from the oracle
in an online manner, and if ever the current hypothesis, say h, of A survives for more than
m = 1

ε
log
(
M
δ

)
samples, then return h.

The algorithm makes a mistake if it returns a hypothesis, h such that err(h) > ε For a
given sequence of m samples this happens with probability at most (1 − ε)m < δ

M
. Since

the algorithm is conservative, the working hypothesis of A can change at most M times,
therefore the total probability of error is bounded by M(1− ε)m < M δ

M
= δ. Furthermore,

the total number of samples needed is at most M
ε

log
(
M
δ

)
Remark: Recall how this is similar to an exercise on the problem sheets where you were
asked to simulate equivalence queries with queries from EX(c,D).

Lower Bounds

Theorem 2. Suppose that C is a concepet class with V C(C) = d. Then for any deterministic
online learning algorithm there is a sequence of inputs for which the algorithm makes at least
d mistakes.

Proof. Since V C(C) = d, let S = x1, , , .xd be a shatterable set under C. This means an
adversary can label these points in any dichotomy that is still consistent with some c ∈ C.
Therefore no matter what guess an algorithm gives on those points, an adversary can still
force an error from a valid hypothesis.

3

Even for randomised algorithms, it is simple to see that a lower bound on mistakes of d
2

in expectation still holds. All an adversary has to do is label x1, ..., xd uniformly randomly.

Halving Algorithm

In what follows, we focus on learning finite hypothesis classes C with finite instance spaces
X =

⋃
Xn.

If we are not concerned with computational tractability, we have the following simple
halving algorithm to show give a mistake bound to learning C in an online setting:

• Let C1 = C

• At time step t, we are given xt and we compute the majority label vote of c(xt) for all
c ∈ Ct and choose this as a label for ŷt.

• If ŷt is correct, then Ct+1 = Ct, otherwise Ct+1 = Ct \ {c ∈ Ct | c(xt) = ŷt}

Since we decrease the set of feasible hypothesis by at least a factor of 1
2
, then we get the

following:

Theorem 3. The number of mistakes made by the halving algorithm is at most log2 |C|.

For example, if we let C be disjunctions over {0, 1}n, then |C| = 3n and we get that
the halving algorithm gives us a mistake bound of n log2(3). The problem however is in the
computational cost of maintaining a list of feasible hypotheses and evaluating an input for
all of them.

Also note that for a given finite hypothesis class, C, if we denote OPTM(C) as the best
mistake bound achievable by an an online algorithm, then our results imply the following
bounds:

V C(C) ≤ OPTM(C) ≤ log2 |C|

It is straightforward to come up with examples where these inequalities are not tight.

Example: Projections

Suppose that we consider an example space, {0, 1}n and we let C = {π1, ..., πn} where
πj(x) = xj. It is straightforward to see that the halving algorithm only makes one mistake
at most (on the positive example).

Example: Binary Search

Suppose that Xn = {1, ..., 2n} ⊂ N and that C is composed of all ordered half-interval
functions c such that:

4

cj(x) =

{
−1 x ≥ j

+1 x < j

It is straightforward to see that V C(C) = 1, as no two-element set can be shattered. How-
ever, an adversary can always ensure that any online algorithm makes at least ≈ n mistakes.
Suppose that the first element in the sequence is x1 = 2n−1. Roughly half of the concepts
in C1 = C label this point as −1 and vice versa the other half labels as +1. This means
that whatever label is returned, the remaining set of valid hypotheses, call it C2 is half of
C. For the second element in the sequence, if y1 = −1, consider x2 = 2n−2, otherwise if
y1 = +1, consider x2 = 3 · 2n−2. This will ensure once again that half of the remaining
hypotheses in C2 label x2 with +1 and the other half with −1. Thus the remaining set of
valid hypothes after the second example, C3, is once again half the size of C2. This can
continue for approximately n turns, after which there is only one valid hypothesis left. At
every stage of this processes, an adversary can incur an error on any online algorithm, and
thus the bound holds.

Standard Optimal Algorithm

It is also natural to ask whether the halving algorithm is optimal, and the answer turns out
to be no in general. The halving algorithm essentially maximally reduces the number of
hypotheses in the worst case choice of label given by the adversary at time t, but this is not
the right question to be asking if one is seeking to minimize the number of mistakes made
overall, as the number of functions in a class does not have to correlate to the number of
mistakes made on a sequence of inputs.

On the other hand, it is better to make a prediction such that if the prediction is wrong,
the mistake bound of the remaining valid hypotheses is maximally reduced. You can see
this as a game between the algorithm and the adversary, where the optimal strategy is
“minimizing” the “maximal damage” an adversary can cause in the worst case. This is
what is called the Standard Optimal Algorithm. As an exercise try to come up with an
example where the optimal algorithm differs from the halving algorithm and results in lower
mistake bounds.

3 Seperable Perceptron

We end this lecture by looking at the Perceptron algorithm which is an online algorithm
for learning linear threshold functions. By linear threshold functions we mean functions
f : R→ {−1,+1} of the following form:

f(x) =

{
+1 w · x ≥ b

−1 w · x < b

5

Here w is a normal vector to the seperating hyperplane and b is a constant. Without loss of
generality however, we can embed the elements x ∈ Rn into Rn+1 via x → (x, 1), in which
case w′ = (w,−b) ∈ Rn+1 defines an equivalent threshold function with a constant term
of 0. Therefore it suffices to consider separating hyperplanes that pass through the origin.
Also note that this hypothesis class is infinite, unlike when we were considering the halving
algorithm.

Algorithm 1 Perceptron Algorithm
w1 ← 0
for t← 1 to T do

Recieve (xt)
if wt · xt ≥ 0 then
ŷt ← +1

else
ŷt ← −1

Recieve yt
if yt 6= ŷt then
wt+1 ← wt + ytxt

else
wt+1 ← wt

return wT+1

The intuition behind the algorithm is that whenever it makes a mistake, if the mistake
was on a positive example mislabeled as negative, then the weight vector shifts towards
that example, on the other hand, if a mistake is made on a negative example mislabeled as
positive, the weight vector is moved away from that point.

In order to give a mistake bound for the perceptron algorithm, we will resort to the notion
of a margin. Consider a linear threshold function f : Rn → {−1,+1} defined by a normal
vector, u, of unit norm. The margin of a f at a labelled point (x, y) is defined to be y(x ·u).
This quantity is positive when correctly labeled and negative otherwise. Furthermore, its
magnitude gives a distance of a point to the separating hyerplane.

Theorem 4. Suppose that (x1, y1), ..., (xT , yT) are such that ‖xt‖2 ≤ D for some diameter
D > 0. Suppose also that for some unit vector u (in the `2 norm) and γ > 0 the margin
bound yt(xt · u) ≥ γ holds for all t = 1, ..., T . Then the perceptron algorithm makes at most
(D/γ)2 mistakes

Proof. Let mt denote the number of mistakes before round t. We break the proof into two
lemmas. The first shows that the projection of wt on u gets longer with each mistake.

Lemma 2. wt · u ≥ mtγ for all t

Proof. We induct on t. The case where t = 0 is trivial since m1 = 0. Now suppose that the
assumption holds for t. If there is no mistake in round t, then mt+1 = mt and wt+1 = wt
and the claim clearly holds. Let us suppose that there is a mistake in round t.

6

wt+1 · u = (wt + ytxt) · u
= wt · u+ yt(xt · u)

≥ mtγ + γ (By the induction hypothesis and margin assumption)

= mt+1γ

(1)

The next lemma bounds the growth of ‖wt‖2 (in the `2 norm) in terms of the number of
mistakes.

Lemma 3. ‖wt‖2 ≤ mtD
2

Proof. Once again we induct on t, focusing on the non-trivial case when there is a mistake
in round t.

‖wt+1‖2 = ‖wt + ytxt‖2

= ‖wt‖2 + 2yt(wt · xt) + ‖xt‖2

≤ ‖wt‖2 + ‖xt‖2 (since there was a mistake)

≤ mtD
2 +D2 (inductive assumption)

= mt+1D
2

(2)

Now we can complete the proof of the theorem as follows:

D
√
mt ≥ ‖wt‖ (Lemma 3)

= ‖wt‖‖u‖
≥ wt · u (Cauchy-Schwarz)

≥ mtγ (Lemma 2)

(3)

It follows that mt ≤ (D/γ)2

Let us consider an application of the above mistake bound. Suppose that there are
n financial analysts who predict every day whether the market will go up or down. We
represent the prediction at time step t as a vector xt ∈ {−1, 1}n and the actual outcome of
the market as yt ∈ {−1, 1}. We would like to use the Perceptron algorithm to figure out
what analysts to follow. (The normal vector of a linear threshold function learned by the
Perceptron algorithm can be seen as assigning a weight to each analyst).

Suppose that there is a subset of k “experts” (Suppose k is odd) within the group of n
analysts, such that a majority vote of the k experts always gives the right prediction about
the movement of the market. Define a unit vector:

7

u =
1√
k
v

Where v is a 0-1 vector that is the characteristic vector of the k experts.
Then u defines a linear separator with margin at least 1√

k
since yt(xt · u) ≥ 1√

k
for all t.

Also ‖xt‖ ≤
√
n for all t. Therefore the previous theorem gives a mistake bound of nk in

this case.

References

[1] N. Littlestone. Learning Quickly When Irrelevant Attributes Abound: A New Linear-
threshold Algorithm. Machine Learning, 2(1):285-318, 1988.

8

	Online Learning
	Mistake-bound Learning
	Seperable Perceptron

