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Preface

What is computational learning theory?

Machine learning techniques lie at the heart of many technological applications
that are used on a daily basis. When using a digital camera, the boxes that
appear around faces are produced using a machine learning algorithm. When
streaming portals such as BBC iPlayer or Netflix suggest what a user might
like to watch next, they are also using machine learning algorithms to provide
these recommendations. In fact, more likely than not, any substantial technol-
ogy that is in use these days has some component that uses machine learning
techniques.

The field of (computational) learning theory develops precise mathematical
formulations of the more vague notion of learning from data. Having precise
mathematical formulations allows one to answer questions such as:

(i) What types of functions are easy to learn?
(ii) Are there types of functions that are hard to learn?
(iii) How much data is required to learn a function of a particular type?
(iv) How much computational power is needed to learn certain types of func-

tions?

Positive as well as negative answers to these questions are of great interest.
For example, one of the key considerations is to design and analyse learning
algorithms that are guaranteed to learn certain types of functions using modest
amount of data and reasonable runnning time. For the most part, we will take
the view that as long as the resources used can be bounded by a polynomial
function of the problem size, the learning algorithm is efficient. Obviously, as
is the case in the analysis of algorithms, there may be situations where just
being polynomial time may not be considered efficient enough; the existence of
polynomial-time learning algorithms is however a good first step in separating
easy and hard learning problems. Some of the algorithms we study will not
run in polynomial time at all, but they will still be much better than brute
force algorithms.

There is a vast body of literature that is often called Statistical Learning
Theory. To some extent this distinction between statistical and computational
learning theory is rather artificial and we shall make use of several concepts in-
troduced in that theory such as VC dimension and Rademacher complexity. In
this course, greater emphasis will be placed on computational considerations.
Research in computational learning theory has uncovered interesting phenom-
ena such as the existence of certain types of functions that can be learnt if

iii
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computational resources are not a consideration, but cannot be learnt in poly-
nomial time. Other examples demonstrate a tradeoff between the amount of
data and the algorithmic running time, i.e. the running time of the algorithm
can be reduced by using more data. More importantly, placing the question
of learning in a computational framework allows one to reason about other
kinds of (computational) resources such as memory, communication, privacy,
etc. that may be a consideration for the learning problem at hand.



Chapter 1

Probably Approximately Correct
Learning

Our goal in this chapter is to gradually build up the probably approximately
correct (PAC) learning framework while emphasizing the key components of
the learning model. We will discuss various model choices in detail; the ex-
ercises and some results in later chapters explore the robustness of the PAC
learning framework to slight variants of these design choices. As the goal of
computational learning theory is to shed light on the phenomenon of automated
learning, such robustness is of key importance.

1.1 A Rectangle Learning Game

Let us consider the following rectangle learning game. We are given some points
in the Euclidean plane, some of which are labeled positive (+) and others
negative (−). Furthermore, we are guaranteed that there is an axis-aligned
rectangle such that all the points inside it are labelled positive, while those
outside are labelled negative. However, this rectangle itself is not revealed
to us. Our goal is to produce a rectangle that is “close” to the true hidden
rectangle that was used to label the observed data (see Fig. 1.1(a)).

Although the primary purpose of this example is pedagogical, it may be
worth providing a scenario where such a (fake) learning problem may be rel-
evant. Suppose that the two dimensions measure the curvature and length of
bananas. The points that are labelled positive have medium curvature and
medium length and represent the bananas that would pass “stringent” EU reg-
ulations. However, the actual lower and upper limits that “define” medium in
each dimension are hidden. Thus, we wish to learn some rectangle that will be
good enough to predict whether bananas we produce would pass the regulators’
tests or not.

Let R be the unknown rectangle used to label the points. We can express the
labelling process using a boolean function cR : R2 → {+,−}, where cR(x) = +,
if x is inside the rectangle R and cR(x) = −, otherwise.1

1We refer to functions whose range has size at most 2 as boolean functions. From the point
of view of machine learning, the exact values in the range are unimportant. We will frequently
use {+,−}, {0, 1} and {−1,+1} as the possible options for the range depending on the context
(and at times make rather unintuitive transformations between these possibilities).

1
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Figure 1.1: (a) Data received for the rectangle learning game. The rectangle R
used to generate labels is hidden from the learning algorithm. (b) The tightest
fit algorithm produces a rectangle R′. (c) & (d) The regions T1, T2, T3 and T4
contain ε/4 mass each under D (for two different distributions D).

Let us consider the following simple algorithm. We consider the tightest
possible axis-aligned rectangle that can fit all the positively labelled data inside
it; let us denote this rectangle by R′ (Fig. 1.1(b)). Our prediction function or
hypothesis hR′ : R2 → {+,−} is the following: if x ∈ R′, hR′(x) = +, else
hR′(x) = −.2 Let us consider the following questions:

– Have we learnt the function cR ?
– How good is our prediction function hR′?

Let R denote the true rectangle that actually defines the labelling function
cR. Since we’ve chosen the tightest possible fit, the rectangle R′ must be
entirely contained inside R. Consider the shaded region shown in Fig. 1.1(b).
For any point x that is in this shaded region, it must be that hR′(x) = −, while
cR(x) = +. In other words, our prediction function hR′ would make errors on
all of these points. If we had to make predictions on points that mostly lie in
this region our hypothesis would be quite bad. This raises an important point
that the data that is used to learn a hypothesis should be similar to the data
on which the hypothesis will be tested. We will now formalise this notion.

Let D be a probability distribution over R2; in the ensuing discussion, we
will assume that D can be expressed using a density function that is defined

2For the sake of concreteness, let us say that points on the sides are considered to be
inside the rectangle.
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While no knowledge of machine learning is required to complete this
course, it would of course be helpful to make connections with the tech-
niques and terminology in machine learning. This discussion appears
in coloured boxes and can be safely ignored for those uninterested in
applied machine learning.

In machine learning, one makes the distinction between the training
and test datasets; when done correctly the empirical error on the test
dataset would give an unbiased estimate of what we refer to as error in
Eqn. (1.1). In machine learning it is also common to use a validation set;
this is often done because multiple models are trained on the training
set (possibly because of hyperparameters) and one of them needs to be
picked. Picking them using their performance on the training set may
result in overfitting. In this course, we will adopt the convention that
model selection is also part of the learning algorithm and not make a
distinction between the training and validation sets. (For example, see
Exercise 1.3.)

over all of R2 and is continuous.3 The training data consists of m points that
are drawn independently according to D and then labelled according to the
function cR. We will define the error of a hypothesis hR′ with respect to the
target function cR and distribution D as follows:

err(hR′ ; cR, D) = Px∼D
[
hR′(x) 6= cR(x)

]
(1.1)

Whenever the target cR and distribution D are clear from context, we will
simply refer to this as err(hR′).

We will now show that in fact our algorithm outputs an hR′ that is quite
good, in the sense that given any ε > 0 as the target error, with high probability
(at least 1 − δ), given a sufficiently large training sample, it will output hR′
such that err(hR′ ; cR, D) ≤ ε. Consider four rectangular strips T1, T2, T3, T4
that are chosen along the sides of the rectangle R (and lying inside R) such
that the probability that a random point drawn according to D lands in some
Ti is exactly ε/4.4 Note that some of these strips overlap, e.g. T1 and T2 (see
Fig. 1.1(c)). The probability that a point drawn randomly according to D lies
in the set T1∪T2∪T3∪T4 is at most ε (a fact that can be proved formally using
the union bound (cf. Appendix A.1)). If we can guarantee that the training
data of m points contains at least one point from each of T1, T2, T3 and T4,
then the tightest fit rectangle R′ will be such that R \R′ ⊂ T1 ∪ T2 ∪ T3 ∪ T4,
and as a consequence, err(hR′ ; cR, D) ≤ ε. This is shown in Fig. 1.1(c); note
that if even one of the Ti do not contain any point in the data, this may cause
a problem, in the sense that the region of disagreement between R and R′ may
have probability mass greater than ε (see Fig. 1.1(d)).

Let A1 be the event that when m points are drawn independently according
to D, none of them lies in T1. Similarly, define the events A2, A3, A4 for

3This assumption is not required; in the exercises you are asked to show how the assump-
tion can be removed.

4Assuming that the distribution D can be expressed using a continuous density function
that is defined over all of R2, such strips always exist. Otherwise, the algorithm is still
correct, however, the analysis is slightly more tedious and is left as Exercise 1.1.
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T2, T3, T4. Consider the event E = A1 ∪ A2 ∪ A3 ∪ A4. If E does not occur,
then we have already argued that err(hR′ ; cR, D) ≤ ε. We will use the union
bound to bound P [E ] (cf. Appendix A.1). To begin, let us compute P [A1].
The probability that a single point drawn according to D does not land in T1 is
exactly 1−ε/4; so the probability that afterm independent draws fromD, none
of the points are in T1 is

(
1− ε

4
)m. By a similar argument, P [Ai] =

(
1− ε

4
)m

for i = 1, . . . , 4. Thus, we have

P [E ] ≤
4∑
i=1

P [Ai] The Union Bound (A.1).

= 4
(

1− ε

4

)m
≤ 4 exp

(
−mε4

)
. As 1− x ≤ e−x (B.1).

For any δ > 0, picking m ≥ 4
ε log

( 4
δ

)
suffices to ensure that P [E ] ≤ δ. In

other words, with probability at least 1− δ, err(hR′ ; cR, D) ≤ ε.
A couple of remarks are in order. We should think of ε as being the accuracy

parameter and δ being the confidence parameter. The bound m ≥ 4
ε log

( 4
δ

)
suggests that as we demand higher accuracy (smaller value of ε) and higher
confidence (smaller value of δ) of our learning algorithm, we need to supply
more data.5 This is indeed a reasonable requirement. Furthermore, the cost
of achieving higher accuracy and higher confidence is relatively modest. For
example, if we want to halve the error while keeping the confidence parameter
constant, say go from ε = 0.02 to ε = 0.01, the amount of data required (as
suggested by the bound) only doubles.6

1.2 Key Components of the PAC Learning Framework

We will use the insights gleaned from the rectangle learning game to develop key
components of a mathematical framework for automatic learning from data.
First let us make a few observations:

1. The learning algorithm does not know the target concept to be learnt (obvi-
ously, otherwise there is nothing to learn!). However, the learning algorithm
does know the set of possible target concepts. In the rectangle learning
game, the unknown target is always an axis-aligned rectangle.

2. The learning algorithm has access to data drawn from some distribution
D. We do assume that the observations are drawn independently according
to D. However, no assumption is made on the distribution D itself. This
reflects the fact that the environments in which learning agents operate may
be very complex and it is unrealistic to assume that the observations are
generated according to some distribution that is easy to describe.
5So far, we have only established sufficient conditions, i.e. upper bounds, on the sample

complexity required for learning. In later chapters we will establish necessary conditions, i.e.
lower bounds on the amount of data required for learning algorithms.

6We are using the word “required” a bit losely here. All we can say is our present analysis
of this particular algorithm suggests that the amount of data required scales linearly as 1

ε
.

We will see lower bounds of this nature that hold for any algorithm in later chapters.



1.2. KEY COMPONENTS OF THE PAC LEARNING FRAMEWORK 5

3. The output hypothesis is evaluated with respect to the same distribution D
that generated the training data.

4. We would like learning algorithms to be statistically efficient, i.e. they
should require a relatively small training sample to guarantee high accuracy
and confidence, as well as computationally efficient, i.e. they should run
in a reasonable amount of time. In general, we shall take the view that
learning algorithms for which the training sample size and running time
scales polynomially with the size parameters are efficient. However, in some
cases we will be more precise and specify the exact running time and sample
size.

Let us now formalise a few other concepts related to learning.

Instance Space
Let X denote the set of possible instances; an instance is the input part, x, of
a training example (x, y), and y is the target label. In the rectangle learning
game, the instances were points in R2; the instance space was R2. When
considering binary classification problems for images, the instances may be 3
dimensional arrays, containing the RGB values of each pixel. Mostly, we shall
be concerned with the case when X = {0, 1}n or X = Rn; other instance spaces
can be usually mapped to one of these, as is often done in machine learning.

Concept Class
A concept c over an instance space X is a boolean function c : X → {0, 1}. (We
will consider learning target functions that are not boolean later in the course.)
A concept class C over X is a collection of concepts c over X. In the rectangle
learning game, the concept class is the set of all axis-aligned rectangles in R2.
The learning algorithm has knowledge of C, but not of the specific concept
c ∈ C that is used to label the observations. A concept class that contains
concepts that are too simple may not be expressive enough to describe the
real-world process we are trying to learn. On the other hand, considering a
concept class that is too large, e.g. all boolean functions, would not allow us
to design efficient learning algorithms.

Data Generation
Let D be a probability distribution over X. The training data is obtained as
follows. An instance x ∈ X is drawn according to the distribution D. If c is
the target concept, the instance x is labelled accordingly as c(x). The learning
algorithm observes the example (x, c(x)). We will refer to this process as an
example oracle, denoted by EX(c,D). We assume that a learning algorithm can
query the oracle EX(c,D) at unit cost and each query yields an independent
training example.

1.2.1 PAC Learning: Take I
Let h : X → {0, 1} be some hypothesis; we typically refer to the boolean
function output by a learning algorithm as a hypothesis to distinguish it from
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the target. For a distribution D over X and a fixed target c ∈ C, the error of
h with respect to c and D is defined as:

err(h; c,D) = Px∼D
[
h(x) 6= c(x)

]
. (1.2)

When c and D are clear from context, we will simply refer to this as err(h).

Definition 1.1 – PAC Learning: Take I. Let C be a concept class over X.
We say that C is PAC (take I) learnable if there exists a learning algorithm L
that satisfies the following: for every concept c ∈ C, for every distribution D
over X, for every 0 < ε < 1/2 and 0 < δ < 1/2, if L is given access to EX(c,D)
and inputs ε and δ, L outputs a hypothesis h ∈ C that with probability at least
1 − δ satisfies err(h) ≤ ε. The probability is over the random examples drawn
from EX(c,D) as well as any internal randomisation of L. The number of calls
made to EX(c,D) (sample complexity) must be bounded by a polynomial in 1

ε
and 1

δ .
We further say that C is efficiently PAC (take I) learnable if the running

time of L is polynomial in 1/ε and 1/δ.

The term PAC stands for probably approximately correct. The approxi-
mately correct part captures the notion that the most that can be guaranteed
is that the error of the output hypothesis can be bounded to be below a desired
level; demanding higher accuracy (lower ε) is possible, but comes at a cost of
increased running time and sample complexity. In most cases, achieving ex-
actly zero error is infeasible as it is possible that two target concepts may be
identical except on one instance which is very unlikely to be drawn according to
the distribution D.7 The probably part captures the notion that there is some
chance that the algorithm may fail completely. This may happen because the
observations are not representative of the underlying data distribution, a low
probability event, though very much a possible event. Our confidence (lower
δ) in the correctness of our algorithm is increased as we allow more sample
complexity and running time.

Based on our analysis of the rectangle learning game in Section 1.1, we have
essentially already proved the following theorem.

Theorem 1.2. The concept class of axis-aligned rectangles in R2 is efficiently
PAC (take I) learnable.

1.2.2 PAC Learning: Take II
Having proved our first result in PAC learning, let us discuss a couple of is-
sues that we have glossed over so far. The first question concerns that of the
complexity of the concepts that we are trying to learn. For example, consider
the question of learning rectangles (Fig. 1.2(a)) versus more complex shapes
such as shown in Fig. 1.2(b). Intuitively, we believe that it should be harder
to learn concepts defined by shapes like in Fig. 1.2(b) than rectangles. Thus,
within our mathematical learning framework, an algorithm that learns a more
complex class should be allowed more resources (sample size, running time,
memory, etc.). In order to represent an axis-aligned rectangle, we only need to

7In later chapters, we will consider different learning frameworks under which exact
learning, i.e. achieving zero error, is possible.
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(a) (b)

Figure 1.2: Different shape concepts in R2.

store four real numbers, the lower and upper limits in both the x and y direc-
tions. The number of real numbers used to represent more complex shapes is
higher.8

The question of representation is better elucidated by taking the case of
boolean functions defined on the boolean hypercube X = {0, 1}n, the set of
length n bit vectors. Consider a boolean function f : X → {0, 1}; there are
several ways of representing boolean functions. One option is to keep the entire
truth table with 2n entries. Alternatively, we may represent f as a circuit
using ∧ (and), ∨ (or) and ¬ (not) gates. We may ask that f be represented in
disjunctive normal form (DNF), i.e. of the form shown below

(z1 ∧ z3 ∧ z7 ∧ · · · ) ∨ (z2 ∧ z4 ∧ z8 ∧ · · · ) ∨ · · · ∨ (z1 ∧ z3).

The choice of representation can make a huge difference in terms of the amount
of memory required to store a description of the boolean function. You are
asked to show this in the case of the parity function f = z1 ⊕ z2 ⊕ · · · ⊕ zn
in Exercise 1.2. There are other possible representations of boolean functions,
such as decision lists, decision trees, neural networks, etc., which we will en-
counter later in the course.

Representation Scheme
Abstractly, a representation scheme for a concept class C is an onto function
R : Σ∗ → C, where Σ is a finite alphabet.9 Any σ ∈ Σ∗ satisfying R(σ) = c is
called a representation of c. We assume that there is a function, size : Σ∗ → N,
that measures the size of a representation. A concept c ∈ C may in general
have multiple representations under R. For example, there are several boolean
circuits that compute exactly the same boolean function. We can define the
function size on the set C by defining, size(c) = min

σ:R(σ)=c
{size(σ)}. When we

refer to a concept class, we will assume by default that it is associated with
a representation scheme and a size function, so that size(c) is well defined for
c ∈ C. In most cases of interest, there will be a natural notion of size that
makes sense for the learning problem at hand; however, some of the exercises

8We shall assume that our computers can store and perform elementary arithmetic op-
erations (addition, multiplication, division) on real numbers at unit cost.

9If representing the concept requires using real numbers, such as in the case of rectangles,
we may use R : (Σ ∪ R)∗ → C. Representing a real number will assumed to be unit cost.
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and coloured boxes encourage you to explore the subtleties involved with rep-
resentation size in greater detail.

Instance Size
Typically, instances in a learning problem also have a natural notion of size
associated with them; roughly we may think of the size of an instance as the
amount of memory required to store it. For example, 10× 10 black and white
images can be represented using 100 bits, whereas 1024 × 1024 colour images
will require over 3 million real numbers. When faced with larger instances, we
should expect that learning algorithms will require more time; at the very least
they have to read the input data!10 In this course, we will only consider settings
where the instance space is either Xn = {0, 1}n or Xn = Rn. We denote by Cn
a concept class over Xn. We consider the instance space X =

⋃
n≥1Xn and

the concept class C =
⋃
n≥1 Cn as representing increasingly larger instances

(and concepts on them).

Definition 1.3 – PAC Learning: Take II. For n ≥ 1, let Cn be a concept
class over instance space Xn and let C =

⋃
n≥1 Cn and X =

⋃
n≥1Xn. We say

that C is PAC (take II) learnable if there exists a learning algorithm L that
satisfies the following: for every n ∈ N, for every concept c ∈ Cn, for every
distribution D over Xn, for every 0 < ε < 1/2 and 0 < δ < 1/2, if L is given
access to EX(c,D) and inputs n, size(c), ε and δ, L outputs h ∈ Cn that with
probability at least 1−δ satisfies err(h) ≤ ε. The probability is over the random
examples drawn from EX(c,D) as well as any internal randomization of L. The
number of calls made to EX(c,D) (sample complexity) must be bounded by a
polynomial in n, size(c), 1

ε and 1
δ .

We further say that C is efficiently PAC (take II) learnable if the running
time of L is polynomial in n, size(c), 1/ε and 1/δ.

1.3 Learning Conjunctions

Having formulated a notion of learning, let us consider a second learning prob-
lem. Let Xn = {0, 1}n represent the instance space of size n; note that each
element x ∈ Xn denotes a possible assignment to n boolean variables z1, . . . , zn;
let X =

⋃
n≥1Xn. Let CONJUNCTIONSn denote the concept class of conjunc-

tions over the n boolean variables z1, . . . , zn. A literal is either a boolean
variable zi or its negation zi. A conjunction (sometimes also called a term) is
simply an and (∧) of literals. An example conjunction ϕ with n = 10 (say) is

ϕ = z1 ∧ z3 ∧ z8 ∧ z9. (1.3)

Formally, a conjunction over z1, . . . , zn can be represented by two subsets
P,N ⊂ [n]. Such a pair of sets P,N represents the conjunction ϕP,N defined
as

ϕP,N =
∧
i∈P

zi ∧
∧
i∈N

zi. (1.4)

10Assuming we know how the data is stored and that we can access specific parts of the
data, in certain cases learning algorithms that do not even have to read the entire data can
be designed. This field of research is known as sketching.
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When learning a target concept c ∈ Cn, in general, allowing the learning
algorithm resources that increase with size(c) will be necessary. Mostly,
we will consider concept classes Cn over Xn for which every size(c) can
be bounded for every c ∈ Cn by some fixed polynomial function of n.
Thus, efficient PAC learning simply requires designing algorithms that
run in time polynomial in n, 1

ε and 1
δ .

Definition 1.3 is general enough to allow for the existence of “efficient”
PAC learning algorithms if an overly verbose representation scheme is
chosen. For example, the class of all boolean functions is efficiently
PAC-learnable when the representation scheme uses truth tables. On the
other hand, if we represent boolean functions as decision trees, or boolean
circuits, or even boolean formulae in disjunctive normal form (DNF), it
is widely believed that the class of boolean functions is not efficiently
PAC-learnable. We will provide some evidence for this assertion based on
cryptographic assumptions and on hardness of learning in the statistical
query (SQ) learning model in later chapters.

In (1.4), the sets P and N represent the positive and negative literals that ap-
pear in the conjunction ϕP,N respectively. We have not required that P∩N = ∅;
this allows us to represent a boolean function that is 0 over the entire hyper-
cube (falsehood), e.g. as z1 ∧ z1. Both P and N could be empty, representing
an empty conjuntion that is 1 over the entire boolean hypercube (tautology).
Formally

CONJUNCTIONSn = {ϕP,N | P,N ⊂ [n]},

CONJUNCTIONS =
⋃
n≥1

CONJUNCTIONSn.

When representing a conjunction over n boolean variables, each of the sets P
and N can be represented by a bit-string of length n; as a result any conjunc-
tion can be represented using a bit-string of length 2n. As there are at least 2n
conjunctions (can you count the number of conjunctions exactly?) we should
expect to need at least n bits to represent a conjunction. Thus, this represen-
tation scheme is fairly succinct. Thus, our goal is to design an algorithm that
runs in time polynomial in n, 1/ε and 1/δ.

Let c denote the target conjunction. The example oracle EX(c,D) returns
examples of the form (x, y) where y ∈ {0, 1}. y = 1 if c evaluates to 1 (true)
after assigning zi = xi for i = 1, . . . , n. In other words, y = 1 if x is a satisfying
assignment of the conjunction c, and 0 otherwise.

Algorithm 1.1 is learns the concept class CONJUNCTIONS. We describe
the high-level idea before giving the complete proof.

i) The algorithm begins by conservatively constructing a hypothesis h that
is a conjunction of all the 2n possible literals. Clearly, this conjunction
will always output 0 on any given input. The algorithm then makes use
of data to remove harmful literals from h.

ii) The algorithm draws m independent examples (xi, yi) from the oracle
EX(c,D); all the negatively labelled examples (yi = 0) are ignored. For
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Algorithm 1.1: CONJUNCTIONS Learner
1 Input: n, m, access to EX(c,D)
2 // initialize hypothesis conjunction with all literals
3 Set h = z1 ∧ z1 ∧ z2 ∧ z2 ∧ · · · ∧ zn ∧ zn
4 for i = 1, . . . ,m do
5 draw (xi, yi) from EX(c,D)
6 if yi == 1 then // ignore negative examples
7 for j = 1, . . . n do
8 if xi,j = 0 then // jth bit of ith instance is 0
9 Drop zi from h

10 else // jth bit of ith instance is 1
11 Drop zi from h

12 Output: h

positively labelled examples literals that would cause these to be labelled
as negative by h are dropped from h. The resulting hypothesis h is
returned. Thus, the algorithm outputs the “longest” conjunction (con-
taining the most number of literals) that is consistent with the observed
data. This is because only those literals that absolutely cannot be part
of the target conjunction (as dictated by the positively labelled data) are
dropped.

Theorem 1.4. Provided m ≥ 2n
ε log

( 2n
δ

)
, Algorithm 1.1 efficiently PAC (take

II) learns the concept class CONJUNCTIONS.

Proof. Let c be the target conjunction and D the distribution over {0, 1}n.
For a literal ` (which may be zi or zi), let p(`) = Px∼D

[
c(x) = 1 ∧ `(x) = 0

]
;

here, we interpret ` itself as a conjunction with 1 literal. Thus, if ` = zi, then
`(x) = xi; if ` = zi, then `(x) = 1−xi. Notice that if p(`) > 0, then the literal
` cannot be present in c; if it were, then there can be no x such that c(x) = 1
and `(x) = 0.

We define a literal ` to be harmful if p(`) ≥ ε
2n . We will ensure that all

harmful literals are eliminated from the hypothesis h. For a harmful literal `,
let A` denote the event that after m independent draws from EX(c,D), ` is not
eliminiated from h. Note that this can only happen if no x such that c(x) = 1
but `(x) = 0 is drawn. This can happen with probability at most

(
1− ε

2n
)m.

Let B denote the set of harmful literals and let E =
⋃
`∈B A` be the event that

at least one harmful literal survives in h. We shall choose m large enough so
that P [E ] ≤ δ. Consider the following,

P [E ] ≤
∑
`∈B

P [A`] By the Union Bound (A.1).

≤ 2n
(

1− ε

2n

)m
|B| ≤ 2n and for each ` ∈ B,P [A`] ≤

(
1− ε

2n

)m
.

≤ 2n exp
(
−mε2n

)
. As 1− x ≤ e−x (B.1).

Thus, whenever m ≥ 2n
ε log

( 2n
δ

)
, we know that P [E ] ≤ δ. Now, suppose that

E does not occur, i.e. all harmful literals are eliminated from h. Let Bc be the
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set of literals that are not harmful.

err(h) = Px∼D
[
c(x) = 1 ∧ h(x) = 0

]
≤
∑
`∈Bc

Px∼D
[
c(x) = 1 ∧ `(x) = 0

]
≤ 2n · ε2n ≤ ε.

This completes the proof.

It is worth pointing out that Algorithm 1.1 only makes use of positively
labelled examples. The algorithm works correctly even if no positively labelled
examples are obtained from the oracle EX(c,D); this is because if no positive
examples are obtained after drawingm independent examples (for a sufficiently
large m), then returning a hypothesis h that always predicts 0 is sufficient to
achieve low error.

1.3.1 Learning k-CNF
We can generalize Algorithm 1.1 to learn richer classes of boolean functions.
A clause is a disjunction (∨) of boolean literals. The length of a clause is the
number of (not necessarily distinct) literals in it. For example, z1∨z7∨z15 is a
clause of length 3. Let clausesn,k denote the set of all clauses of length exactly k
on the n boolean variables z1, . . . , zn. We define the class of boolean functions
that can be written in conjunctive normal form using clauses of length exactly
k as:

k-CNFn = {
∧
i

ci | ci ∈ clausesn,k},

k-CNF =
⋃
n≥1

k-CNFn.

A representation of boolean function as in the class k-CNF is called a k-CNF
formula. There are at most (2n)k possible clauses of length k on n boolean
variables and so each k-CNF formula over n variables can have at most (2n)k
clauses. (Allowing clauses to have the same literal multiple times and letting
the order of literals matter, we shall assume in the rest of this section that
there are exactly (2n)k clauses of length k.)

It is completely straightforward to modify Algorithm 1.1 to start with a
hypothesis h that is a k-CNF formula with all (2n)k clauses and eliminate the
clauses that cause positive examples to be labelled negative. This algorithm is
efficient if we assume the representation scheme to have length (2n)k, and in
any case the running time and sample complexity is polynomial in n for any
fixed constant k.

Rather than redo the proof of Theorem 1.4, we shall sketch a different
approach that also introduces the notion of a reduction between learning prob-
lems. Suppose the target function is a k-CNF formula over the boolean variables
z1, . . . , zn; we create new boolean variables (z′`1,...,`k

) where each `i is either
some zj or zj . When placed in parentheses, (z′`1,...,`k

) denotes the set of all
possible (2n)k boolean variables; whereas by itself z′`1,...,`k

denotes the specific
variable corresponding to the tuple of literals (`1, . . . , `k). The boolean variable
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z′`1,...,`k
is meant to respresent the clause `1 ∨ · · · ∨ `k. Given an assignment

to the boolean variables z1, . . . , zn denoted by some bit-vector x ∈ {0, 1}n, an
assignment to (z′`1,...,`k

) can be uniquely determined, by assigning the variable
z′`1,...,`k

the value 1 if and only if x is a satisfying assignment of the clause
`1 ∨ · · · ∨ `k. This yields a bit vector in {0, 1}(2n)k that represents the assign-
ment to all (z′`1,...,`k

). Let us denote this map from {0, 1}n to {0, 1}(2n)k by f
and observe that it is injective.

Now consider the following “natural” bijective map, denoted by g, between
k-CNF formulae over z1, . . . , zn and monotone conjunctions over (z′`1,...,`k

):
given a k-CNF formula ϕ, the literal z′`1,...,`k

appears in the monotone con-
junction f(ϕ) if and only if ϕ contains the clause `1 ∨ · · · `k.11 (A conjunction
is monotone if it does not contain any negated literals; Algorithm 1.1 modified
to start with h = z1∧· · ·∧zn clearly learns the class of monotone conjunctions.)

Let D be a distribution over {0, 1}n and let f(D) denote the distribution
over {0, 1}(2n)k obtained by first drawing x according to D and then applying
f to x. Let c, h ∈ k-CNFn, then it can be easily verified that

err(h; c,D) = err(g(h); g(c), f(D)).

The only thing that remains is to observe that the maps f , g and g−1 are
(trivially) polynomial time computable and that given access to EX(c,D), the
hypothetical example oracle EX(g(c), f(D)) can be simulated in polynomial
time. Thus, we have proved the following result.

Theorem 1.5. The concept class k-CNF is efficiently PAC (take II) learnable.

1.4 Hardness of Learning 3-term DNF

Having seen a few examples of concept classes that are PAC (take II) learn-
able, we shall temper our optimism by proving that a class of boolean functions
(not significanly more complex than CONJUNCTIONS) is not PAC (take II)
learnable, assuming an unproven, but widely believed, conjecture from com-
putational complexity theory. The class is that of boolean functions that can
expressed as DNF formulae with exactly 3 terms. A term is simply a conjunc-
tion over n boolean variables z1, . . . , zn. Formally, the class is defined as

3-TERM-DNFn = {T1 ∨ T2 ∨ T3 | Ti ∈ CONJUNCTIONSn},

3-TERM-DNF =
⋃
n≥1

3-TERM-DNFn.

Note that any DNF formula with 3 terms can be expressed as a bit-string of
length at most 6n—there are three terms, each of which is a boolean conjunc-
tion expressible by a boolean string of length 2n; as a result, the representation
size for each c ∈ 3-TERM-DNFn can be bounded by 6n. Thus, an efficient al-
gorithm for learning 3-TERM-DNF needs to run in time polynomial in n, 1/ε
and 1/δ. The next result shows that such an algorithm in fact is unlikely to
exist. Formally, we’ll prove the following theorem.

11We treat this map as purely syntactic. In particular, for truth assignments the order of
the variables does not matter; however, for the purpose of the map g, the 2-CNF formulae
(x1∨x2)∧(x3∨x4) and (x2∨x1)∧(x4∨x3) would be mapped to the (distinct) conjunctions,
z′z1,z2 ∧ z

′
z3,z4 and z′z2,z1 ∧ z

′
z4,z3 respectively.
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Theorem 1.6. 3-TERM-DNF is not efficiently PAC (take II) learnable unless
RP = NP.

Let us first discuss the condition “unless RP = NP”. We will briefly define
the class RP here, but those unfamiliar with (randomized) complexity classes
may wish to refer to standard texts on complexity theory (cf. Chapter Notes
in Section 1.8). The class RP consists of languages for which membership can
be determined by a randomised polynomial time algorithm that errs on only
one side. More formally, a language L ∈ RP, if there exists a randomised
polynomial time algorithm A that satisfies the following

– For string σ 6∈ L, A(σ) = 0

– For string σ ∈ L, A(σ) = 1 with probability at least 1/2.

The rest of this section is devoted to prove Theorem 1.6. We shall reduce the
decision problem for an NP-complete language to the problem of PAC (take II)
learning 3-TERM-DNF. Suppose L is a language that is NP-complete. Given
an instance (string) σ we wish to decide whether σ ∈ L. We will construct
a training sample, a set of positive instances S+ and negative instances S−,
where S+ and S− are disjoint. We will show that there exists a 3-term DNF
formula ϕ such that all instances in S+ are satisfying assignments of ϕ and
that none of the instances in S− satisfy ϕ, if and only if σ ∈ L.

Let us see how an algorithm that PAC (take II) learns 3-TERM-DNF can
be used to test whether or not σ ∈ L. Let S = S+ ∪ S−, where S+ and S− are
the sets as constructed above, and let D be a distribution that is uniform over
S, i.e. a distribution that assigns probability mass 1

|S| to every instance that
appears in S, and 0 mass to all other instances. Let ε = 1

2|S| and δ = 1/2. Now,
let us suppose that σ ∈ L, then indeed there does exist 3-term DNF formula,
ϕ, that is consistent with the sample S. So we can simulate a valid example
oracle EX(ϕ,D), by simply returning a random example (x, y) where x is chosen
uniformly at random from S, and y = 1 if x ∈ S+, and y = 0 otherwise. By the
PAC (take II) learning guarantee, with probability at least 1/2, the algorithm
returns h ∈ 3-TERM-DNF, such that err(h) ≤ 1

2|S| . However, as there are only
|S| instances in S and the distribution is uniform, it must be that h correctly
predicts the labels of all instances in S, which implies σ ∈ L. Notice that given
h, it can easily be checked in polynomial time that h indeed correctly predicts
the labels for all instances in S.

On the other hand, if σ 6∈ L, there is no 3-term DNF formula that correctly
assigns labels to the instances in S. Hence, the learning algorithm cannot
output such an h ∈ 3-TERM-DNF. Again, given the output hypothesis h,
checking whether h correctly labels all the instances in S or not, can be easily
done in polynomial time. Thus, assuming a PAC (take II) learning algorithm
for 3-TERM-DNF exists, we also have a randomised algorithm to solve the
decision problem for the NP-complete language L. This in turn implies that
RP = NP, something that is widely believed to be untrue.

All that is left to do is to identify a suitable NP-complete language and
show how to construct a sample S with the desired property. In this case, we
will use the fact that graph 3-colouring is NP-complete.
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1

2 3
4

5
6

(a) Graph

v(1) (0, 1, 1, 1, 1, 1)
v(2) (1, 0, 1, 1, 1, 1)
v(3) (1, 1, 0, 1, 1, 1)
v(4) (1, 1, 1, 0, 1, 1)
v(5) (1, 1, 1, 1, 0, 1)
v(6) (1, 1, 1, 1, 1, 0)

(b) Positive Examples

e({1, 2}) (0, 0, 1, 1, 1, 1)
e({1, 6}) (0, 1, 1, 1, 1, 0)
e({2, 3}) (1, 0, 0, 1, 1, 1)
e({2, 4}) (1, 0, 1, 0, 1, 1)
e({3, 6}) (1, 1, 0, 1, 1, 0)
e({4, 5}) (1, 1, 1, 0, 0, 1)
e({4, 6}) (1, 1, 1, 0, 1, 0)
e({5, 6}) (1, 1, 1, 1, 0, 0)

(c) Negative Examples

Figure 1.3: (a) A graph G along with a valid three colouring. (b) Positive
examples of the sample generated using G. (c) Negative examples of the sample
generated using G.

Graph 3-Colouring reduces to PAC (Take II) Learning 3-TERM-DNF

The language 3-COLOURABLE consists of representations of graphs that can
be 3-coloured. We say a graph is 3-colourable if there is an assignment from the
vertices to the set of three colours, {r, g, b}, such that no two adjacent vertices
are assigned the same colour. As already discussed, given a graph G, we only
need to produce disjoint sets S+ and S− of instances that are positively and
negatively labelled respectively, such that the graph G is 3-colourable if and
only if there exists a 3-term DNF formula that correctly predicts the labels of
all instances in S+ ∪ S−.

For notational convenience, in this section, we will denote the instances
as v(i) and e(i, j) rather than the more usual x. Suppose G has n ver-
tices. For vertex i ∈ G, we let v(i) ∈ {0, 1}n that has a 1 in every posi-
tion except i. For an edge (i, j) in G, we let e({i, j}) ∈ {0, 1}n that has
a 1 in all positions except i and j. Let S+ = {v(i) | i a vertex of G} and
S− = {e({i, j}) | {i, j} an edge of G}; clearly S+ and S− are disjoint. Fig-
ure 1.3 shows an example of a graph that is 3-colourable along with the sets
S+ and S−.

First, suppose that G is 3-colourable. Let Vr, Vg, Vb be the set of vertices of
G that are labelled red (r), blue (b) and green (g) respectively. Let z1, . . . , zn
denote the n boolean variables (one corresponding to each vertex of G). Let
Tr =

∧
i6∈Vr zi. Tg and Tb are defined similarly. Consider the 3-term DNF

formula ϕ = Tr ∨ Tg ∨ Tb; we will show that all instances in S+ satisfy ϕ and
that none of the instances in S− do. First consider v(i) ∈ S+. Without loss of
generality, suppose i is coloured red, i.e. i ∈ Vr. Then, we claim that v(i) is
a satisfying assignment of Tr and hence also of ϕ. Clearly, the literal zi is not
contained in Tr and there are no negative literals in Tr. Since all the bits of v(i)
other than the ith position are 1, v(i) is a satisfying assignment of Tr. Now,
consider e({i, j}). We claim that e({i, j}) is not a satisfying assignment of any
of Tr, Tg or Tb and hence it also does not satisfy ϕ. For a colour c ∈ {r, g, b},
either i is not coloured c or j isn’t. Suppose i is the one that is not coloured c,
then Tc contains the literal zi, but the ith bit of e({i, j}) is 0 and so e({i, j})
is not a satisfying assignment of Tc. This argument applies to all colours and
hence e({i, j}) is not a satisfying assignment of ϕ. This completes the “if” part
of the proof.
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Next, suppose that ϕ = Tr ∨Tg ∨Tb is a 3-term DNF such that all instances
in S+ are satisfying assignments of ϕ and none in S− are. We use ϕ to assign
colours to the vertices of G that represent a valid 3-colouring. For a vertex i,
since v(i) is a satisfying assignment of ϕ, it is also a satisfying assignment of at
least one of Tr, Tg or Tb. We assign it a colour based on the term for which it is
a satisfying assignment (ties may be broken arbitrarily). Since for every vertex
i, there exists v(i) ∈ S+, this ensures that every vertex is assigned a colour.
Next, we need to ensure that no two adjacent vertices are assigned the same
colour. Suppose there is an edge {i, j} such that i and j are assigned the same
colour. Without loss of generality, suppose that this colour is red (r). Since
we know that e({i, j}) is not a satisfying assignment of ϕ, e({i, j}) also does
not satisfy Tr. Also, as i and j were both coloured red, v(i) and v(j) do satisfy
Tr. This implies that the literals zi and zj are not present in Tr. The fact that
v(i) satisfies Tr ensures that the literal zk for any k 6= i cannot appear in Tr.
However, if Tr does not contain any negated literal, other than possibly zi, and
if it does not contain the literals zi and zj , then e({i, j}) satisfies Tr and hence
ϕ, a contradiction. Hence, there cannot be any two adjacent vertices that have
been assigned the same colour. This completes the proof of the “only if” part
and with it also the proof of Theorem 1.6.

1.5 Learning 3-CNF vs 3-TERM-DNF

In Section 1.3.1, we proved that the concept class k-CNF, and hence 3-CNF, is
efficiently PAC (take II) learnable. On the other hand, Theorem 1.6 shows that
under the widely believed assumption that RP 6= NP, the class 3-TERM-DNF
is not efficiently PAC (take II) learnable. Let us recall the distributive law of
boolean operations

(a ∧ b) ∨ (c ∧ d) ≡ (a ∨ c) ∧ (a ∨ d) ∧ (b ∨ c) ∧ (b ∨ d). (1.5)

By applying the rule (1.5), we can express any ϕ ∈ 3-TERM-DNF as some
ψ ∈ 3-CNF.

ϕ = T1 ∨ T2 ∨ T3 ≡
∧
`1∈T1
`2∈T2
`3∈T3

(`1 ∨ `2 ∨ `3) = ψ

For any distribution D over Xn = {0, 1}n, the example oracles EX(ϕ,D) and
EX(ψ,D) are indistinguishable. Thus, if we use a PAC (take II) learning algo-
rithm for 3-CNF that outputs some h ∈ 3-CNF, with probability at least 1− δ,
we will have

err(h;ϕ,D) = err(h;ψ,D) ≤ ε.

What this suggests is that if our goal is simply to predict as well as the
target concept ϕ ∈ 3-TERM-DNF, then there is no impediment (in terms of
statistical or computational resources) to doing so. The difficulty arises be-
cause our definition of PAC (take II) learning requires us to express the output
hypothesis as a 3-term DNF formula. Arguably from the point of view of learn-
ing, being able to predict labels correctly is more important than the exact
hypothesis we use to do so. Our final definition of PAC learning in Section 1.6
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will allow learning algorithms to output hypothesis that do not belong to the
concept class being learnt. We will still need to put some restrictions on what
is allowable as an output hypothesis; you are asked to explore the implications
of loosening these requirements further in Exercise 2.4. It may also be the case
that the computational savings (being able to run in polynomial time) come at
a statistical cost, something we will explore in greater detail after having seen
some general methods of designing learning algorithms.12

1.6 PAC Learning

In our final definition of PAC learning, we shall remove the requirement that
the output hypothesis actually belongs to the concept class being learnt. We
then have to specify in what form an algorithm may output a hypothesis. As
was the case with concept classes, we can define a hypothesis class Hn over the
instances Xn (implicitly we assume that there is also a representation scheme
for Hn and an associated size function), and consider the hypothesis class
H =

⋃
n≥1Hn. We will wish to place some restrictions on the hypothesis class.

(To explore why consider Exercise 2.4.) The requirement we add is that the
hypothesis class H be polynomially evaluatable.

Definition 1.7 – Polynomially Evaluatable Hypothesis Class. A hy-
pothesis class H is polynomially evaluatable if there exists an algorithm that
on input any instance x ∈ Xn and any representation h ∈ Hn, outputs the
value h(x) in time polynomial in n and size(h).

In words, the requirement that H be polynomially evaluatable demands
that given the description of the “program” encoding the prediction rule, h,
and an instance, x, we should be evaluate h(x) in a reasonable amount of time.
Here reasonable means polynomial in the input, i.e. size(h) and x. We now give
the final defintion of PAC learning and then end by making a few observations.

Definition 1.8 – PAC Learning. For n ≥ 1, let Cn be a concept class over
instance space Xn and let C =

⋃
n≥1 Cn and X =

⋃
n≥1Xn. We say that C

is PAC learnable using hypothesis class H if there exists an algorithm L that
satisfies the following: for every n ∈ N, for every concept c ∈ Cn, for every
distribution D over Xn, for every 0 < ε < 1/2 and 0 < δ < 1/2, if L is given
access to EX(c,D) and inputs n, size(c), ε and δ, L outputs h ∈ Hn that with
probability at least 1−δ satisfies err(h) ≤ ε. The probability is over the random
examples drawn from EX(c,D) as well as any internal randomization of L. The
number of calls made to EX(c,D) (sample complexity) must be bounded by a
polynomial in n, size(c), 1

ε and 1
δ and H must be polynomially evaluatable.

We further say that C is efficiently PAC learnable using H, if the running
time of L is polynomial in n, size(c), 1/ε and 1/δ.

12The word “may” has been used in the above sentence because the claim is based only on
different upper bounds on the sample complexity of efficient learning algorithms. No “non-
trivial” lower bound on the sample complexity for a polynomial time algorithm for learning
3-TERM-DNF. This will be discussed in greater detail in Chapter 2.
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Some comments regarding the definition of PAC Learning

i) For efficient PAC learning, although no explicit restriction is put on what
size(h) can be, the requirement on the running time of the algorithm
ensures that size(h) itself must be bounded by a polynomial in n, size(c),
1
δ and 1

ε .

ii) When H is not explicitly specified, by efficient PAC learning C, we mean
that there exists some polynomially evaluatable hypothesis class H, such
that C is efficiently PAC learnable using H.

iii) In terms for our final definition of PAC learning, PAC (take II) learning C
refers to PAC learning C using C. When efficiency is a consideration, the
learning algorithm has to be efficient and C itself needs to be polynomially
evaluatable. In the literature (and in the rest of this course), (efficient)
PAC (take II) learning is referred to as (efficient) proper PAC learning.
Sometimes to distinguish PAC learning from proper PAC learning, the
word improper is added in front of PAC learning.

iv) In the definition of PAC learning (all of them), we do require that the
number of calls to EX(c,D) is bounded by a polynomial in n, size(c),
1
ε and 1

δ . This corresponds to the sample complexity or the amount of
data used by the learning algorithm. Even when we allow inefficient
algorithms, we do require the amount of data used to be modest; this
is mainly to capture the idea that automated learning is about learning
the target function using a modest amount of data. When arbitrary
computational power is permitted, there is not much to be gained from
using more data; this follows from Exercise 2.4.

1.7 Exercises

1.1. This question is about the rectangle learning problem.

a) Modify the analysis of the rectangle learning algorithm to work in
the case that D is an arbitrary probability distribution over R2.

b) The concept class of hyper-rectangles over Rn is defined as follows

RECTANGLESn = {1[a1,b1]×···×[an,bn] | ai, bi ∈ R, ai < bi}.

For a set S ⊂ Rn, the notation 1S represents its indicator, i.e. the
boolean function that is 1 if x ∈ S and 0 otherwise. Generalise the
algorithm for learning rectangles in R2 and show that it efficiently
PAC learns the class of hyper-rectangles. Give bounds on the num-
ber of examples required to guarantee that with probability at least
1−δ, the error of the output hypothesis at most ε. The sample com-
plexity and running time of your algorithm should be polynomial in
n, 1

ε and 1
δ .

1.2. Let f : {0, 1}n → {0, 1} be the parity function on the n bits, i.e. f =
z1 ⊕ z2 ⊕ · · · ⊕ zn. In words, when given n bits as input f evaluates to 1
if and only if an odd number of the input bits are 1.
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a) A boolean circuit with n inputs is a directed acyclic graph with
exactly n source nodes and 1 sink node. The source nodes contain
the inputs z1, . . . , zn (at the time of evaluation each zi is assigned
a value in {0, 1}). Each internal node is labelled with either ∧,
∨, or ¬; internal nodes labelled by ∧ or ∨ have in-degree exactly
2 and internal nodes labelled by ¬ have in-degree exactly 1. The
nodes labelled by ∧, ∨ and ¬, compute the logical and, or, and
not, of their inputs (the values at the one or two nodes that feed
into them) respectively. The sink node represents the output of the
circuit which will be either 0 or 1. The size of a boolean circuit
is defined to be the number of edges in the directed acyclic graph
that represents the circuit; the depth of a circuit is the length of the
longest path from a source node to the sink node. Show that f can
be represented as a boolean circuit of size O(n) and depth O(logn).

b) Show that representing f in disjunctive normal form (DNF) requires
at least 2n−1 terms.

1.3. Say that an algorithm L perhaps learns a concept class C using hypothesis
class H, if for every n, for every concept c ∈ Cn, for every distribution D
over Xn and for every 0 < ε < 1/2, L given access to EX(c,D) and inputs
ε and size(c), runs in time polynomial in n, size(c) and 1/ε, and outputs
a polynomially evaluatable hypothesis h ∈ Hn, that with probability at
least 3/4 satisfies err(h) ≤ ε. In other words, we’ve set δ = 1/4 in the
definition of efficient PAC learning. Show that if C is “perhaps learnable”
using H, then C is also efficiently PAC learnable using H.

1.4. Consider the question of learning boolean threshold functions. Let Xn =
{0, 1}n and for w ∈ {0, 1}n and k ∈ N, fw,k : Xn → {0, 1} is a boolean
threshold function defined as follows:

fw,k(x) =


1 if

n∑
i=1

wi · xi ≥ k

0 otherwise

Define the concept class of threshold functions as

THRESHOLDSn = {fw,k | w ∈ {0, 1}n, 0 ≤ k ≤ n},

THRESHOLDS =
⋃
n≥1

THRESHOLDSn.

Prove that unless RP = NP, there is no efficient proper PAC learning
algorithm for THRESHOLDS.

1.5. Let Xn = {0, 1}n be the instance space. A parity function, χS , over Xn

is defined by some subset S ⊆ {1, . . . , n}, and takes the value 1 if and odd
number of the input literals in the set {xi | i ∈ S} are 1 and 0 otherwise.
For example, if S = {1, 3, 4}, then the function χS = x1⊕x3⊕x4 computes
the parity on the subset {x1, x3, x4}. Note that any such parity function
can be represented by a bit string of length n, by indicating which indices
are part of S. Let PARITIESn denote the concept class consisting of all
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2n parity functions; observe that the the concept class PARITIESn has
representation size at most n. Show that the class PARITIES, defined as
PARITIES =

⋃
n≥1 PARITIESn, is efficiently proper PAC learnable. You

should clearly describe a learning algorithm, analyse its running time and
prove its correctness.

1.8 Chapter Notes

Material in this lecture is almost entirely adopted from Kearns and Vazirani
[20, Chap. 1]. The original PAC learning framework was introduced in a
seminal paper by Valiant [23].

While we will not make heavy use of deep results from Computational Com-
plexity theory, acquaintance with basic concepts such as NP-completeness, will
be necessary. Better understanding of computational complexity will also be
beneficial to understand hardness of learning based on the RP 6= NP conjecture
and other conjectures from cryptography. The classic text by Papadimitriou
[21], and the more recent book by Arora and Barak [4], are excellent resources
for students wishing to read up further on computational complexity theory.





Chapter 2

Consistent Learning and
Occam’s Razor

In the previous chapter, we studied a few different learning algorithms. Both
the design and the analysis of those algorithms was somewhat ad hoc, based on
first principles. In this chapter, we’ll begin to develop tools that will serve as
general methods to design learning algorithms and analyse their performance.

2.1 Occam’s Razor

In the first part of this chapter, we’ll study an explanatory framework for
learning. In the PAC learning framework, what is important is a guarantee
that, with high probability, the output hypothesis performs well on unseen
data, i.e. data drawn from the target distribution D. Here we consider the
following question: Given (x1, y1), (x2, y2), . . . , (xm, ym), where xi ∈ Xn and
yi ∈ {0, 1}, can we find some hypothesis, h : Xn → {0, 1} that is consistent
with the observed data, i.e. for all i, h(xi) = yi.1

If there is no restriction on the output hypothesis, then this can be simply
achieved by memorizing the data. In particular, one could output a program
of the form, “if x = x1, output y1, else if x = x2, output y2, . . . , else if
x = xm, output ym, else output 0”. This output hypothesis is correct on all
of the observed data and predicts 0 on all other instances. Clearly, we would
not consider this as a form of learning. The basic problem here is that the
“explanation” of the data is as long as the data itself. Even if one tries to rule
out programmes of this kind, it is easy to see that simple concept classes are
rich enough to essentially memorise the data (cf. Exercise 2.1).

The condition that we want to impose is that the explanation of the data
be succinct, at the very least, shorter than the length of the data itself. In
computational learning theory, this is referred to as the Occam Principle or
Occam’s Razor, named after the medieval philosopher and theologian, William
of Ockham, who expounded the principle that “explanations should be not
made unnecessarily complex”.2

1In order to avoid absurdities, we will assume that for all 1 ≤ i, j ≤ m, it is not the case
that xi = xj , but yi 6= yj .

2This is by no means a wholly accurate depiction of the writings of William of Ockham.
Those interested in the history are encouraged to look up the original work.
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Philosophical Implications*
The notion of succinct explanations can be formalised in several ways and has
deep connections to various areas of mathematics and philosophy. There are
connections to Kolmogorov complexity which leads to theminimum description
length (MDL) principle. The MDL principle itself can be given a Bayesian
interpretation of assigning a larger prior probability to shorter hypotheses. The
existence of a short description also implies existence of compression schemes.
We will not discuss these issues in detail in this course; the interested student
is referred to the following sources as a starting point [10, 17, 15].

Typically, finding the shortest hypothesis consistent with the data may be
intractable or even uncomputable. In order to get useful results out of this
principle, we do not need to find the shortest description or achieve optimal
compression. It turns out that it is enough for the description of the output
hypothesis to be slightly shorter than the amount of data observed. We’ll
formalise this notion to derive PAC-learning algorithms from explanatory hy-
potheses.

2.2 Consistent Learning

We’ll first define the notion of a consistent learning algorithm, or consistent
learner, for a concept class C.3

Definition 2.1 – Consistent Learner. We say that a learning algorithm
L is a consistent learner for a concept class C using hypothesis class H, if
for all n ≥ 1, for all c ∈ Cn and for all m ≥ 1, given as input the sequence
of examples, (x1, c(x1)), (x2, c(x2)), . . . , (xm, c(xm)), where each xi ∈ Xn, L
outputs h ∈ Hn such that for i = 1, . . . ,m, h(xi) = c(xi). We say that L
is an efficient consistent learner if the running time of L is polynomial in n,
size(c) and m. Furthermore, we shall say that a concept class C is (efficiently)
consistently learnable, if there exists a learning algorithm L and a polynomially-
evaluatable hypothesis class H, such that L is an (efficient) consistent learner
for C using H.

A consistent learning algorithm is simply required to output a (polynomially
evaluatable) hypothesis that is consistent with all the training data provided
to it. So far, we have not imposed any requirement on the hypothesis class H.
This notion of consistency is closely related to the empirical risk minimisation
(ERM) principle in the statistical machine learning literature, where the risk
is defined using the zero-one loss.

The main result we will prove is that if H is “small enough”, something that
is made precise in the theorem below, then a consistent learner can be used to
derive a PAC-learning algorithm. This theorem shows that short explanatory
hypotheses do in fact also possess predictive power.

Theorem 2.2 – Occam’s Razor, Cardinality Version. Let C be a concept
class and H a hypothesis class. Let L be a consistent learner for C using H.

3Starting from this chapter, we will avoid the cumbersome notation of treating a concept
class C as C = ∪n≥1Cn (likewise X = ∪n≥1Xn and H = ∪n≥1Hn) and shall assume that
this is implicitly the case. Where confusion may arise we shall continue to be fully explicit
about concept classes that contain concepts defined over instance spaces of increasing sizes.
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In statistical machine learning, the general setting is where the inputs
to the target function come from some space X (which in this course we
refer to as the instance space) and the outputs come from some set Y .
The case where Y = {0, 1} corresponds to binary classification problems,
such as the ones we are considering in this course, but in general Y can
be other sets. The data is assumed to come from some distribution over
X × Y .

A class of hypotheses H consists of functions h : X → Y ′, where
typically Y ⊆ Y ′. There is a loss function, ` : Y ′ × Y → R+ that
indicates the loss incurred by outputting y′ ∈ Y ′, when the true output
was y ∈ Y . The risk of a hypothesis with respect to a loss function `
and a data distribution D over X × Y is defined as

R(h) = E
(x,y)∼D

[
`(y, h(x))

]
. (2.1)

The empirical risk on a sample S of size m drawn from D is

R̂(h) = 1
m

∑
(x,y)∈S

`(y, h(x)). (2.2)

To be more precise, we should use the notation RD(h) and R̂S(h),
however, unless there is possibility of confusion, we shall drop these
subscripts. The Empirical Risk Minimization (ERM) principle suggests
that a learning algorithm should pick a hypothesis h ∈ H that minimizes
the empirical risk. So far in this course, we have restricted attention to
binary classification with Y = Y ′ = {0, 1} and the so-called zero-one
loss, `(y′, y) = 1(y′ 6= y). In the language of statistical learning, the
realisable setting is the one where there exists h ∈ H which has 0 risk;
in this case ERM is equivalent to consistent learning, and Theorem 2.2
can be applied. We will make further connections to the ERM principle
to topics covered in this course in later chapters.

Then for all n ≥ 1, for all c ∈ Cn, for all D over Xn, for all 0 < ε < 1/2 and
all 0 < δ < 1/2, if L is given a sample of size m drawn from EX(c,D), such
that,

m ≥ 1
ε

(
log |Hn|+ log 1

δ

)
, (2.3)

then L is guaranteed to output a hypothesis h ∈ Hn that with probability at
least 1− δ, satisfies err(h) ≤ ε.

If furthermore, L is an efficient consistent learner, log |Hn| is polynomial
in n and size(c), and H is polynomially evaluatable, then C is efficiently PAC-
learnable using H.

Proof. Fix a target concept c ∈ Cn and the target distribution D over Xn.
Call a hypothesis, h ∈ Hn “bad” if err(h) ≥ ε. Let Ah be the event that
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m independent examples drawn from EX(c,D) are all consistent with h, i.e.
h(xi) = c(xi), for i = 1, . . . ,m. Then, if h is bad, P [Ah] ≤ (1− ε)m ≤ e−εm.

Consider the event,
E =

⋃
h∈Hn:h bad

Ah

Then, by a simple application of the union bound (A.1), we have,

P [E ] ≤
∑

h∈Hn:h bad
P(Ah) ≤ |Hn| · e−εm

Thus, whenever m is larger than the bound given in the statement of the
theorem, except with probability δ, no “bad” hypothesis is consistent with m
random examples drawn from EX(c,D). However, any hypothesis that is not
“bad”, satisfies err(h) ≤ ε as required.

Remark 2.3. The version of the theorem described above only allows Hn to
depend on Cn and n. It is possible to have a much more general version, where
instead we consider the hypothesis class Hn,m where a consistent learner when
given m examples outputs some h ∈ Hn,m. As long as log |Hn,m| can be bounded
by poly(n, size(c)) ·mβ and for some β < 1, a PAC-learning algorithm can still
be derived from a consistent learner. Exercise 2.2 asks to you prove this more
general result. The proofs for this version appears in the book by Kearns and
Vazirani [20, Chap. 2].

2.3 Improved Sample Complexity

Learning CONJUNCTIONS
Let us revisit some of the learning algorithms we’ve seen so far. We derived
an algorithm for learning conjunctions. At the heart of the algorithm was,
in fact, a consistent learner, obtained only using positive examples. Thus,
for the conjunction learning algorithm Cn = Hn. Note that the number of
conjunctions on n literals is 3n (each variable may appear as a positive literal,
negative literal, or not at all).

Our analysis of the conjunction learning algorithm showed that if the num-
ber of examples drawn from EX(c,D) was at least 2n

ε

(
log(2n) + log 1

δ

)
, the

output hypothesis with high probability has error at most ε. Theorem 2.2
shows that in fact even a sample of size 1

ε

(
n log 3 + log 1

δ

)
would suffice.

Learning 3-TERM-DNF
Let us now consider the question of learning 3-TERM-DNF. We have shown
that finding a 3-term DNF formula ϕ that is consistent with a given sample
is NP-complete. On the other hand, we saw that it is indeed possible to find
a 3-CNF formula that is consistent with a given sample. Let us compare the
sample complexity bounds given by Theorem 2.2 in both of these cases. In
order to do that we need good bounds on |3-TERM-DNF| and |3-CNF|. Any
3-TERM-DNF formula can be encoded using at most 6n bits, each term (or
a conjunction) can be represented by a a bit string of length 2n to indicate
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whether a variable appears as a positive literal, negative literal, or not at all.
Thus, |3-TERM-DNF| ≤ 26n.

Similarly, there are (2n)3 possible clauses with three literals. Thus, each
3-CNF formula can be represented by a bit string of length (2n)3, indicating
for each of the possible clauses whether they are present in the formula or not.
Thus, |3-CNF| ≤ 28n3 . It is also not hard to show that |3-CNF| ≥ 2κn3 for
some universal constant κ > 0. Thus, it is the case that log |3-CNF| = Ω(n3).
Thus, in order to use a consistent learner that outputs a 3-CNF formula, we
need a sample that has size Ω

(
n3

ε

)
;4 on the other hand if we had unbounded

computational resources and could solve the NP-complete problem of finding a
3-term DNF consistent with a sample, then a sample of size O

(
n
ε

)
is sufficient

to guarantee a hypothesis with error at most ε (assuming δ is constant). This
suggests that there may be tradeoff between running time and sample complex-
ity. However, it does not rule out that there may be another computationally
efficient algorithm for learning 3-TERM-DNF that has a better bound in terms
of sample complexity. This question is currently open.

2.4 Exercises

2.1 Given (x1, y1), (x2, y2), . . . , (xm, ym), such that xi ∈ Xn and yi ∈ {0, 1},
and for all 1 ≤ i, j ≤ m, it is not the case that xi = xj , but yi 6= yj , show
that there is a DNF formula of length O(m) that is consistent with the
observed data.

2.2 Formulate Remark 2.3 as a precise mathematical statement and prove
it. Observe that when Hn,m instead of Hn is used in Equation (2.3),
m appears on both sides of the equation. You should justify that there
exists m that is still polynomial in n, size(c), 1

δ and 1
ε that satisfies the

modified form of Equation (2.3).

2.3 Let Xn = {0, 1}n be the instance space. A parity function, χS , over Xn

is defined by some subset S ⊆ {1, . . . , n}, and takes the value 1 if and odd
number of the input literals in the set {xi | i ∈ S} are 1 and 0 otherwise.
For example, if S = {1, 3, 4}, then the function χS = x1⊕x3⊕x4 computes
the parity on the subset {x1, x3, x4}. Note that any such parity function
can be represented by a bit string of length n, by indicating which indices
are part of S. Let PARITIESn denote the concept class consisting of all
2n parity functions; observe that the the concept class PARITIESn has
representation size at most n. Show that the class PARITIES, defined as
PARITIES =

⋃
n≥1 PARITIESn, is efficiently proper PAC learnable. You

should clearly describe a learning algorithm, analyse its running time and
prove its correctness.

2.4 Recall that in the definition of PAC-learning, we require that the hypoth-
esis output by the learning algorithm be evaluatable in polynomial time.
Suppose we relax this restriction, and let H be the class of all Turing

4At the very least, this is the lower bound we get if we apply Theorem 2.2. We will
see shortly that in fact this is a lower bound on sample complexity for learning 3-CNF, no
matter what algorithm is used.
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machines (not necessarily polynomial time)—so the output of the learn-
ing algorithm can be any program. Let Cn be the class of all boolean
circuits of size at most p(n) for some fixed polynomial p and having n
boolean inputs. Show that C =

⋃
n≥1 Cn is PAC-learnable using H (un-

der this modified definition). Argue that this solution shows that the
relaxed definition trivialises the model of learning.

2.5 A k-decision list over n boolean variables x1, . . . , xn, is defined by an
ordered list

L = (t1, t1), (t2, b2), . . . , (tl, bl),

and a bit b, where each ti is a term (conjunction) of at most k literals
(positive or negative) and each bi ∈ {0, 1}. For a ∈ {0, 1}n the value
L(a) is defined to be bj , where j is the smallest index satisfying tj(a) = 1
and L(a) = b if no such index exists. Pictorially, a decision list can be
depicted as shown below. As we move from left to right, the first time a
term is satisfied, the corresponding bj is output, if none of the terms is
satisfied the default bit b is output.

x1 ∧ x3

b1

x4

b2

x2 ∧ x3

b3

x1 ∧ x5

b4

x4 ∧ x6

b5

x1 ∧ x6

b6

b

Give an efficient consistent learner for the class of decision lists. As a
first step, argue that it is enough to just consider the case where all the
terms have length 1, i.e. in fact they are just literals.



Chapter 3

The Vapnik Chervonenkis
Dimension

We have studied how a consistent learner can be used to design a PAC-learning
algorithm, provided the output hypothesis comes from a class that is not too
large, in particular as long as the logarithm of the size of the hypothesis class
can be bounded by a polynomial in the required factors. However, when the
concept class or hypothesis class is infinite, this result cannot be applied at
all. Concept classes that are uncountably infinite are often used in machine
learning, linear threshold functions, also referred to as linear halfspaces, being
the most common one. We have already studied the class of axis-aligned rect-
angles, and proved the correctness of a PAC-learning algorithm for this class
using first principles. In this chapter, we’ll study a specific capacity measure
called the Vapnik Chervonenkis (VC) dimenion of a concept class, and show
that provided this can be bounded, a consistent learner can be used to design
PAC-learning algorithms. In particular, the VC dimension can be finite even
for concept classes that are uncountably infinite.

3.1 The Vapnik Chervonenkis (VC) Dimension

In order to keep the notational overhead to a minimum, we will elide the use of
the subscript n indicating the instance size. However, it should be clear that
the discussion applies to a concept class defined as

⋃
n≥1 Cn, where Cn is a class

of concepts over Xn. Let S ⊂ X be a finite set of instances. For a concept
c : X → {0, 1}, we can consider the restriction of c to S, c|S : S → {0, 1},
where c|S(x) = c(x) for x ∈ S. We define the following:

ΠC(S) = {c|S | c ∈ C}. (3.1)

The set ΠC(S) is the class of distinct restrictions of concepts in C defined by
the set S. Alternatively, if S = {x1, . . . , xm}, we can associate each element of
ΠC(S) with the function values at each of the m points,

ΠC(S) = {(c(x1), . . . , c(xm)) | c ∈ C} (3.2)

Thus, the set ΠC(S) can also be viewed as the set all possible dichotomies
on S induced by C. Clearly for a set S of size m, |ΠC(S)| ≤ 2m, as C consists

27
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Figure 3.1: (a) All possible dichotomies on 2 points can be realised using
intervals. (b) A dichotomy on three points that cannot be realised by intervals.

of boolean functions. If for a set S of size m, |ΠC(S)| = 2m, we say that S is
shattered by C.

Definition 3.1 – Shattering. We say that a finite set S ⊂ X is shattered
by C, if |ΠC(S)| = 2|S|. In other words, S is shattered by C if all possible
dichotomies over S can be realised by C.

We can now define a notion of dimension for a concept class C, called the
Vapnik-Chervonenkis dimension, named after the authors of the seminal paper
that introduced this notion to statistical learning theory.

Definition 3.2 – Vapnik Chervonenkis (VC) Dimension. The Vapnik-
Chervonenkis dimension of C denoted as VCD(C) is the cardinality d of the
largest finite set S shattered by C. If C shatters arbitrarily large finite sets,
then VCD(C) =∞.

3.1.1 Examples
The language used to define VC-dimension is a bit different from that com-
monly used in machine learning. Let us use some examples to clarify this idea.
The notion of shattering can be phrased as follows, given a finite set of points
S ⊂ X, if we assign labels 0 or 1 (or + or −) to the points in S arbitrarily,
is there a concept c ∈ C that is consistent with the labels? If the answer is
always yes, then the set S is shattered by C, otherwise it is not.

Intervals in R

Let X = R and let C = {ca,b | a, b ∈ R, a < b} be the concept class of intervals,
where ca,b : R → {0, 1} is defined as ca,b(x) = 1 if x ∈ [a, b] and 0 otherwise.
What is VCD(C)? It is easy to see that any subset S ⊂ R of size 2 can be
shattered by C, but not a set of size 3 as shown in Figure 3.1. Given a set of
size three, if the middle point is labelled negative and the other two positive,
there is no interval consistent with the labelling. Thus, VCD(C) = 2.

Rectangles in R2

Let X = R2 and let C be the concept class of axis-aligned rectangles. Fig-
ure 3.2(a) shows a set of size 4 that can be shattered, Fig. 3.2(b) shows a set
of size 4 that cannot be shattered, by providing an explicit labelling that can-
not be achieved. However, the definition of VC dimension only requires the
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Figure 3.2: (a) A set of 4 points on which all dichotomies can be realised using
rectangles. (b) A set of 4 points with a dichotomy that cannot be realised by
rectangles. (c) Any set of 5 points always has a dichotomy that cannot be
realised using rectangles.

existence of one set of a certain size that is shattered. It is possible to show
that no set of size 5 can be shattered. The reason being that there must be
one of the five points that is not the extreme left, right, bottom or top point
(at least not uniquely so). If this point is labelled as negative and all the other
(extreme) points are labelled as positive, then there is no rectangle that can
achieve this dichotomy.

Linear Threshold Functions or Linear Halfspaces
The concept class of linear threshold functions is widely used in machine learn-
ing applications. Let us show that the class of linear threshold functions in R2

has VC-dimension 3. Fig. 3.3(a) shows a set of size 3 that can be shattered
by linear threshold functions; Fig. 3.3(b) shows a set of size 3 that cannot be
shattered by linear threshold functions. No set of size 4 can be shattered by
linear threshold functions. There are two possibilities, either the convex hull
has four vertices in which case if the opposite ends of the quadrilateral are
given the same labels, but adjacent vertices are given opposite ones, then no
linear threshold function can achieve this labelling (Fig. 3.3 (c)). If on the other
hand the convex hull only contains three vertices, if the vertices of the convex
hull are labelled positive and the point in the interior is labelled negative, this
labelling is not consistent with any linear threshold function (see Fig. 3.3 (d)).
The degenerate case when three or more points lie on a line can be treated
easily (e.g. as in the case of Fig. 3.3(b)). Exercise ?? asks the reader to show
that the VC dimension of linear halfspaces in Rn is n+ 1.

3.2 Growth Function

Let C be a concept class over an instance space X. The growth function
captures the maximum number of dichotomies of a set of size m that can
be realized by C. Clearly if C can shatter some set of size m, then all 2m
dichotomies can be realised—this is the case for any m ≤ VCD(C). We are
interested in understanding the maximum possible growth of the number of
dichotomies for m ≥ VCD(C). We will show that this growth can be bounded
by a polynomial in m of degree VCD(d), rather than exponential in m.

Formally, define the growth function, as follows:
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Figure 3.3: (a) A set of 3 points shattered by linear threshold functions. (b)
A dichotomy on a set of 3 points that cannot be realised by linear threshold
functions. (c) & (d) No set of 4 points can be shattered by linear threshold
functions.

Definition 3.3 – Growth Function. For any natural number m, define,

ΠC(m) = max{|ΠC(S)| | S ⊂ X, |S| = m}.

The goal of this section is to prove Lemma 3.4, known as Sauer’s Lemma.

Lemma 3.4 – Sauer’s Lemma. Let C be a concept class over X with
VCD(C) = d, then for m ≥ d, ΠC(m) ≤

(
me
d

)d.
In order to prove Sauer’s Lemma, it will be helpful to define a function

Φ : N× N→ N defined below.

Definition 3.5. For any m, d ∈ N, define the function,

Φ(m, d) =
d∑
i=0

(
m

i

)
. (3.3)

From the definition of Φ, it is immediate that Φ(m, 0) = Φ(0, d) = 1 for all
m, d ∈ N. Furthermore, Φ is monotonically increasing in both m and d. We
will make use of two additional properties of Φ which are established in the
lemma below.

Lemma 3.6. Consider the function Φ defined in Definition 3.5. The following
hold:

Φ(m, d) = Φ(m− 1, d) + Φ(m− 1, d− 1), (3.4)

Φ(m, d) ≤
(
me

d

)d
. for m ≥ d (3.5)

Proof. The proofs are quite elementary. We will prove (3.4) first.

Φ(m, d) =
d∑
i=0

(
m

i

)
=
(
m

0

)
+

d∑
i=1

(
m

i

)
.
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Using the fact that
(
m
0
)

=
(
m−1

0
)
and the combinatorial identity

(
m
r

)
=
(
m−1
r

)
+(

m−1
r−1
)
,

=
(
m− 1

0

)
+

d∑
i=1

((
m− 1
i

)
+
(
m− 1
i− 1

))

=
d∑
i=0

(
m− 1
i

)
+
d−1∑
i=0

(
m− 1
i

)
= Φ(m− 1, d) + Φ(m− 1, d).

Next, we prove (3.5). Using the fact that d/m ≤ 1, we have

Φ(m, d) =
d∑
i=0

(
m

i

)
=
(
m

d

)d d∑
i=0

(
m

i

)
·
(
d

m

)d

≤
(
m

d

)d d∑
i=0

(
m

i

)
·
(
d

m

)i
≤
(
m

d

)d m∑
i=0

(
m

i

)
·
(
d

m

)i
=
(
m

d

)d(
1 + d

m

)m
≤
(
me

d

)d
,

where above we used the fact that for d/m ≤ 1 and i ≤ d, (d/m)d ≤ (d/m)i,
and that 1 + (d/m) ≤ ed/m. (As an aside, observe that for m ≤ d, Φ(m, d) =
2m.)

Finally Lemma 3.7 together with Lemma 3.6 completes the proof of Sauer’s
Lemma (Lemma 3.4).

Lemma 3.7. For any concept class C with VCD(C) = d, ΠC(m) ≤ Φ(m, d).

Proof. We will prove this by induction on m and d simultaneously. We first
check the base cases. If d = 0, then no non-empty finite set can be shattered,
so C contains at most one concept. Thus, for all m, ΠC(m) = 1 = Φ(m, 0).
If m = 0, since there is only one dichotomy of the empty set, clearly ΠC(0) ≤
Φ(0,m). Now, suppose that the result holds for all d′ ≤ d and m′ ≤ m, when
at least one of the inequalities is strict. We also observe that the function Φ is
monotonically increasing in both m and d.

Let S be any set of size m. Let x be a distinguished point of S. Then, by
using the induction hypothesis,

|ΠC(S \ {x})| ≤ ΠC(m− 1) ≤ Φ(m− 1, d). (3.6)

Let us look at the difference between ΠC(S) and ΠC(S \ {x}). Consider
the set

C ′ = {c ∈ ΠC(S) | c(x) = 0,∃c̃ ∈ ΠC(S), c̃(x) = 1,∀z ∈ S \ {x}, c(z) = c̃(z)}.

In words, we look at a dichotomy in ΠC(S \ {x}) and see whether this can
be extended in two distinct ways in ΠC(S), i.e. whether we can keep the
assignments on points in S \ {x} as they were and still retain the choice to
label x as either 1 or 0. Then, we have

|ΠC(S)| = |ΠC(S \ {x})|+ |ΠC′(S \ {x})|. (3.7)
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The first term accounts for all the dichotomies on S \ {x}, and the second one
accounts for the dichotomies on S \ {x} that can be extended to two distinct
dichotomies on S.

It suffice to show that VCD(C ′) ≤ d−1, to complete the proof by induction
and (3.4). Note that the concept class C ′ is only defined over the set S. Let
S′ ⊆ S \ {x} be shattered by C ′. (Note that x cannot be included in any set
shattered by C ′ since c′(x) = 0 for all c′ ∈ C ′.) Then, by definition S′ ∪ {x} is
shattered by C, so it must be the case that |S′| ≤ d − 1. This completes the
proof.

3.3 Sample Complexity Upper Bound

In this section, we’ll prove that the VC dimension plays a role analogous to
that played by log |Hn| in the case of finite hypothesis classes. Provided the
learning algorithm outputs a consistent hypothesis from some hypothesis class
H which has bounded VC dimension, say d, and the sample size is sufficiently
large as a function of the d, 1/ε and 1/δ (though while still being polynomially
bounded), this yields a PAC-learning algorithm.

Theorem 3.8. Let C be a concept class. Let H ⊇ C be a hypothesis class
with VCD(H) = d, where 1 ≤ d < ∞. Let L be a consistent learner for C
that outputs a hypothesis h ∈ H. Then for every 0 < ε, δ ≤ 1/2, L is a PAC-
learning algorithm for C provided it is given as input a random sample of size
m drawn from EX(c,D), for

m ≥ κ0

(
1
ε

log 1
δ

+ d

ε
log 1

ε

)
,

for some universal constant κ0.

Proof. For two boolean functions f and g, denote by f ⊕ g the boolean defined
as follows:

(f ⊕ g)(x) =
{

1 if f(x) 6= g(x)
0 if f(x) = g(x)

.

Now suppose that c ∈ C is the target concept and D is the target distribu-
tion over the instance space X. For any hypothesis h ∈ H, err(h; c,D) =
Px∼D

[
(c⊕ h)(x) = 1

]
.

Let H ⊕ c = {h ⊕ c | h ∈ H}. It is easy to show that VCD(H ⊕ c) =
VCD(H) (see Exercise 3.4). We say that a finite set S ⊂ X is an ε-net for
H ⊕ c with respect to distribution D, if for every h ⊕ c ∈ H ⊕ c, such that
Px∼D

[
(h⊕ c)(x) = 1

]
≥ ε, there exists some x ∈ S, such that (h⊕ c)(x) = 1.

We observe that a hypothesis, h, for which Px∼D
[
(h⊕ c)(x) = 1

]
≥ ε is

problematic, as err(h; c,D) ≥ ε. We want to ensure that the consistent learner
does not output any such hypothesis. Any S that is an ε-net for H ⊕ c with
respect to D, rules out such hypotheses being output by a consistent learner, as
they would not be consistent! Thus, it suffices to show that a random sample
of size m drawn from EX(c,D) actually yields an ε-net for H ⊕ c with respect
to D.



3.3. SAMPLE COMPLEXITY UPPER BOUND 33

The rest of the proof is essentially a clever argument about the probabilities
of certain events set up by doubling the sample size and symmetrizing. This
idea appears in most proofs related to sample complexity bounds, and is our
first introduction to this proof technique.

We will draw a sample S of size 2m in two phases. First draw a sample S1
of size m from EX(c,D). Let A be the event that S1 (actually, the input part
of S1 obtained by ignoring the labels) is not an ε-net for H ⊕ c with respect
to D.1 Now, suppose the event A occurs, then there exists h̃ ∈ H such that
(h̃ ⊕ c)(x) = 0 for all x ∈ S1 and Px∼D

[
(h̃⊕ c)(x) = 1

]
≥ ε . Fix such a

h̃ ∈ H and draw a second sample S2 of size m. Now, let us obtain a lower
bound on the number of elements x in S2 that satisfy (h̃ ⊕ c)(x) = 1. Let Xi

denote the random variable that takes value 1 if the ith element of S2 satisfies
(h̃ ⊕ c)(x) = 1 and Xi takes value 0 otherwise. Thus, if X =

∑m
i=1Xi, then

X is the (random) number of such points in S2. Note that, E [X] ≥ εm, so by
using a Chernoff bound from Eq. (A.3), we have

P
[
X < εm/2

]
≤ P

[
X ≤ E [X]

(
1− 1

2

)]
≤ exp

(
−εm16

)
Provided εm ≥ 16 (which our final bound will ensure), the probability that
|{x ∈ S2 | (h̃⊕ c)(x) = 1}| ≥ εm/2 is at least 1/2.

Now consider the eventB defined as follows: A sample S = S1∪S2 of size 2m
with |S1| = |S2| = m is drawn from EX(c,D), there exists a h̃⊕ c ∈ ΠH⊕c(S),
such that |{x ∈ S | (h̃⊕c)(x) = 1}| ≥ εm/2 and (h̃⊕c)(x) = 0 for all x ∈ S1. We
have slightly abused notation and used h̃⊕c to denote the function in H⊕c and
its retriction to the set S in ΠH⊕c(S). Note that P [B] ≥ 1

2P [A], since if S1 fails
to be an ε-net forH⊕c with respect to D, then as argued above, the probability
of there being a (h̃⊕ c) ∈ ΠH⊕c(S) such that |{x ∈ S1 | h̃⊕ c(x) = 1}| = 0 and
|{x ∈ S2 | c̃(x) = 1}| ≥ εm/2 is at least 1/2. Thus, P [A] ≤ 2P [B].

We will now bound P [B] which is a purely combinatorial problem. Let

Πε
H⊕c(S) =

{
h⊕ c ∈ ΠH⊕c(S) | |{x ∈ S | (h⊕ c)(x) = 1}| ≥ εm/2

}
.

In defining the event B, we can first imagine the entire sample S of size 2m
being drawn from D, denoted by S ∼ D2m, and then for the fixed sample
S a uniformly random partition into S1 and S2 being made. Note that the
distribution over S1 obtained by first drawing S and then randomly partition-
ing is exactly the same as that obtained by drawing m examples directly from
EX(c,D). For any fixed h ⊕ c ∈ Πε

H⊕c(S), let Bh⊕c|S denote the event (con-
ditioned on S) that |{x ∈ S1| (h ⊕ c)(x) = 1}| = 0. Then calculating the
probabilty of Bh⊕c|S is equivalent to the following question: Given 2m balls
out of which r ≥ εm/2 are red and the remaining are black, if we divided them
into two sets of size m each, without seeing the colours, what is the probability
that the first set has no red balls and the second set has all of them? This
probability is simply given by

(
m
r

)
/
(2m
r

)
. We can bound this as follows:(

m
r

)(2m
r

) =
r−1∏
i=0

m− i
2m− i ≤

1
2r .

1Actually S1 can be multiset, e.g. if D has point masses.
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Note that the above bound is still valid for r > m as the probability of Bh⊕c|S
is 0 in that case. Thus, we have We can then bound the probability of the
event B as follows:

PS∼D2m [B] = PS∼D2m

PS1,S2

 ⋃
h⊕c∈Πε

H⊕c

Bh⊕c | S




≤ PS∼D2m

 ∑
h⊕c∈Πε

H⊕c

PS1,S2

[
Bh⊕c | S

]
≤ |Πε

H⊕c| · 2−εm/2 ≤
(

2em
d

)d
2−εm/2.

Since we have P [A] ≤ 2P [B], we have that,

P [A] ≤ 2 ·
(

2em
d

)d
2−εm/2.

It remains to be shown that P [A] ≤ δ for the value of m in statement of
the theorem. Although it is a standard calculation, it is worth spelling out in
full at least once. We first observe that it suffices to show that,

m ≥ 2d
ε · log 2 log 2em

d
+ 2
ε · log 2 log 2

δ
.

Thence it suffices for m
2 ≥

2d
ε·log 2 log 2em

d and m
2 ≥

2
ε·log 2 log 2

δ to both hold.
The first is equivalent to showing m

d ≥
4

ε·log 2 log 2em
d , which holds for m ≥

32d
ε·log 2 log 4

ε·log 2 by appealing to Lemma B.1 (noting that 4/(ε log 2) ≥ e for all
ε ≤ 1 and that 2+2 log(2e) ≤ 8). The second clearly holds for m ≥ 4

ε·log 2 log 2
δ .

Hence, picking

m ≥ 4
ε · log 2 max

{
8d log

(
4

ε · log 2

)
+ log 2

δ

}
,

is sufficient as stated in the statement of the theorem.

Theorem 3.8 could of course be applied with H = C in the context of
proper PAC learning. However, the more general result will allow us to consider
scenarios where efficient consistent learners could be designed by allowing the
learning algorithm to output a hypothesis from a class that is larger than C.
As we shall see next, the VC dimension essentially completely captures the
statistical complexity of learning.

3.4 Sample Complexity Lower Bounds

In this section, we will show sample complexity lower bounds for any learning
algorithm in terms of the VC dimension. This is a purely information-theoretic
result; no assumption is made about the running time of the algorithm. There
is also no requirement that the algorithm output a hypothesis from the concept
class C.
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Theorem 3.9. Let C be a concept class with VCD(C) ≥ d, where d ≥ 25.2
Then any PAC-learning algorithm (not necessarily efficient) for learning C
using H ⊇ C requires at least max{d−1

32ε ,
1
4ε log 1

4δ} examples.

Proof. In order to show that such an algorithm doesn’t exist, we need to show
that for every learning algorithm L, there exists a target distribution D and a
target concept c, such that with probability strictly greater than δ, the output
hypothesis has error strictly greater than ε.

Suppose for contradiction such a learning algorithm does exist. Note that
the learning algorithm L may itself be randomized, however, we know that
there is an upper bound m = max{d−1

32 ,
1
4ε log 1

δ } on the number of examples
it uses. Thus, if the learning alogrithm outoput a hypothesis from H ⊇ C, we
can view any fixed sample S of size m as defining a distribution over H. We
will use the probabilistic method to derive a contradiction (see e.g. [2]).

We will first show that m must be at least d−1
32ε . Let T be a set of size d that

is shattered by C. Suppose T = {x1, x2, . . . , xd}, and let D be a distribution
defined as follows: D(x1) = 1 − 8ε, and D(xj) = 8ε/(d − 1) for j = 2, . . . , d.
Since the distribution is only supported on the finite set T , we only need to be
concerned with concepts in ΠC(T ). Suppose the learning algorithm receives
a sample S of size m = (d − 1)/(32ε) examples drawn according to D and
labelled according to some target c ∈ ΠC(T ). We may assume without loss of
generality that if x1 ∈ S, then L outputs some h such that h(x1) = c(x1). (If
not, we can design an algorithm L′ that runs L to obtain h and chooses h′ ∈ H
which satisfies h′(x1) = c(x1) and h′(xi) = h(xi) for i ≥ 2.)

We first note that the probability that (x1, c(x1)) 6∈ S is small, in particular
at most (1 − 8ε)(d−1)/(32ε) ≤ e−(d−1)/4 ≤ e−6. We also show that with a
reasonable probability S contains fewer than half the examples from the set
T \ {x1} = {x2, . . . , xd}. Let Zi be the random variable that is 1 if the ith
example drawn from D is in the set T \ {x1} and 0 otherwise. Then Zi = 1
with probability 8ε and 0 with probability 1 − 8ε. Let Z =

∑m
i=1 Zi be the

number of examples seen from the set T \ {x1} (possibly with repetitions).
Then E [Z] = d−1

4 and using a Chernoff bound from Eq. (A.4),

P
[
Z ≥ d− 1

2

]
≤ P

[
Z ≥ 2 · E [Z]

]
≤ exp

(
−d− 1

12

)
≤ e−2.

Let us denote the event that (x1, c(x1)) ∈ S and Z < d−1
2 as E . It can be

easily checked that P [E ] > 1
2 . Now suppose the target concept c was chosen

uniformly at random from ΠC(T ). As T is shattered, |ΠC(T )| = 2d. We can
compute the conditional expectation (on the event E) of the error of h output
by the learning algorithm. Conditioned on E , we know that |S| = Z+1 < d+1

2 .
Thus the conditional (on E) distribution over the target distributions is uniform
over a set of size 2d−|S| > 2(d−1)/2. (In words, the assignment to the examples
observed by the learning algorithm is fixed, but any assignment on the unseen
examples is equally likely.) Then observe that for any fixed hypothesis, h, a
random c conditioned on E results in

err(h; c,D) = 8ε
2(d− 1)(|T | − |S|) > 2ε.

2The condition d ≥ 25 is not really necessary, with a slightly improved argument this
can be shown for any d ≥ 2.
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Putting everything together we have that,

E
c∼ΠC(T )

 E
S∼EX(c,D)m

h∼L

[
err(h; c,D)|E

] > ε.

Thus, conditioned on the event E , there must exist a target concept c ∈ C for
which E

[
err(h; c,D)

]
> 2ε. Now because h(x1) = c(x1) conditioned on the

event E , we also have that err(h; c,D) ≤ 8ε whenever E occurs. As a result, it
is easy to see that conditioned on event E , the probability that err(h; c,D) ≤ ε
is at most 6/7. Otherwise, we would have,

E
h∼L

[
err(h; c,D)|E

]
<

8ε
7 + 6

7 · ε < 2ε.

This completes the proof of d−1
32ε as a lower bound.

In order to show that m = 1
4ε log 1

4δ as a lower bound, we can use a very
similar (but simpler) argument. In fact, we only need a set T = {x1, x2}, and
two concepts c1, c2 ∈ C, such that c1(x1) = c2(x1) = 0 and c1(x2) 6= c2(x2);
such a set T and concepts c1, c2 exist as VCD(C) ≥ 2. Now define a distribution
D over T such that D(x1) = 1− 4ε and D(x2) = 4ε. It is easy to see that with
probability at least 4δ, a sample of size m = 1

4ε log 1
4δ from D will not have the

point x2. Conditioned on that event, the same argument as above shows that
with probability > 1/4 the error of h output by L will be > ε. That completes
the proof.

3.5 Consistent Learner for Linear Threshold Functions

To end this chapter, we will look at an application to learning linear threshold
functions. Recall that the class of linear threshold functions over Rn is defined
as

LTFn = {x 7→ 1≥0(w · x + w0) | w ∈ Rn, ‖w‖2 = 1, w0 ∈ R}, (3.8)

where 1≥0(z) = 1 if z ≥ 0 and 0 otherwise.
Exercise 3.1 asks you to show that the VC dimentions of this class is n +

1. Thus in order to apply Theorem 3.8, we would like to design an efficient
consistent learner for the class LTFn. The problem is the following: Given
(x1, y1), . . . , (xm, ym), where xi ∈ Rn and yi ∈ {0, 1}, such that there exists
w∗ ∈ Rn, ‖w∗‖2 = 1 and w∗0 ∈ R such that yi = 1≥0(w∗ · xi + w∗0), find some
w, w0, such that yi = 1≥0(w · xi + w0). This problem can be formulated as a
linear program and hence solved in polynomial time.

We consider the following linear program with variables, w0, w1, . . . , wn.
The objective function is constant, so we are in fact only looking for a feasible
point. The constraints are given by:

w0 + w1xi1 + w2xi2 + · · ·wnxin ≥ 0 For all i such that yi = 1 (3.9)
−w0 − w1xi1 − w2xi2 − · · ·wnxin ≥ 1 For all i such that yi = 0 (3.10)

Let us first discuss the second inequality (3.10). An example is classified as
negative if w∗ · x + w∗0 < 0; however, we cannot include strict inequalities as
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part of the linear program as we need the resulting set to be closed. The choice
of 1 is arbitrary, we could have used any strictly positive real number. Let us
show that the above linear program has a feasible solution; given that a feasible
solution exists, there are known polynomial time algorithms to find one.

Let the target linear threshold function be defined by w∗, w∗0 . Let α =
min{−(w∗ ·xi+w∗0) | yi = 0}; we know that α > 0. Consider w∗

α ∈ Rn, w0
α ∈ R;

it can be checked that this is a feasible solution to the constraints defined
by (3.9) and (3.10).

3.6 Exercises

3.1 Show that the concept class of linear halfspaces over Rn defined in Sec-
tion 3.5 has VC-dimension n+ 1 by proving the following.

i) Give a set of n + 1 points in Rn that is shattered by the class of
linear halfspaces.

ii) Show that no set of m = n+ 2 points in Rn can be shattered by the
class of linear halfspaces. For this you can use Radon’s theorem, the
statement of which appears below.

iii) Prove Radon’s theorem.

Radon’s Theorem
Given a set S = {x1, . . . ,xm} ⊂ Rn, the convex hull of S is the set

{z ∈ Rn | ∃λ1, . . . , λm ∈ [0, 1],
m∑
i=1

λi = 1, z =
m∑
i=1

λixi}.

Let m ≥ n + 2, then S must have two disjoint subsets S1 and S2 whose
convex hulls intersect.

3.2 Prove that for any d ∈ N, there is a concept class C such that VCD(C) =
d, and that for any m ∈ N, ΠC(m) = Φd(m).

3.3 In this question we will consider the learnability of convex sets. Let us
consider the domain to be X = [0, 1]2, the unit square in the plane. For
S ⊂ X a convex set, let cS : X → {0, 1}, where cS(x) = 1 if x ∈ S and
0 otherwise. Let C = {cS | S convex subset of X} be the concept class
defined by convex sets of [0, 1]2.

i) Show that the VC dimension of C is ∞. This shows that the con-
cept class of convex sets of [0, 1]2 cannot be learnt by an algorithm
(efficiently or otherwise) that uses a sample whose size is bounded
by a polynomial in 1/ε and 1/δ alone.

ii) We will consider a restriction of PAC-learning where the learning
algorithm is only required to work for a specific distribution D over
X. Show that if D is the uniform distribution over [0, 1]2, then
the concept class of convex sets is efficiently PAC-learnable in this
restricted sense, where efficiency means running time (and sample
complexity) bounded by a polynomial in 1

ε and 1
δ .

Hint: Consider the algorithm that simply outputs the convex hull of
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positive points as the output hypothesis. You may use the fact that
the perimeter of any convex set in the unit square can be at most 4.

3.4 Show that VCD(H ⊕ c) = VCD(H).



Chapter 4

Boosting

4.1 Weak Learnability

Let us revisit the definition of PAC-learning. Definition 1.8 places quite strin-
gent requirements on a learning algorithm that (efficient) PAC learns a concept
class. The learning algorithm has to work for all target concepts in the class,
for all input distributions, and for any setting of accuracy (ε) and confidence
(δ) parameters. It is worthwhile considering what happens when we relax some
of these requirements. In Exercise 1.3., we have seen that fixing the confidence
parameter to be a constant, e.g. δ = 1/4, leaves the notion of PAC-learnability
unchanged. On the other hand, if we only require the learning algorithm to
succeed with respect to certain input distributions, then PAC-learning is pos-
sible for concept classes that are not learnable (efficiently or otherwise) using
a sample size that is polynomial in 1

ε and 1
δ in the distribution-free sense, i.e.

algorithms that have to work with respect to all distributions.1 Exercise 3.3
explores such a concept class. In this chapter, we focus on the accuracy param-
eter, ε. The problem of learning is trivial if ε ≥ 1/2 as we can make a random
prediction on an input x ∈ X and achieve an error of 1/2.2 The question we
are interested in is what happens when ε = 1/2 − γ, for some γ > 0? For
example, one may wonder if it is possible to learn some concept classe up to
error 1/4, but not to an arbitrarily small ε?

Surprisingly, the answer to the question above is no, i.e. if we can learn
a concept class up to error at most 1/2 − γ, then we can learn this class up
to error bounded by any ε > 0. This method is known as boosting, as we
take a “weak learning” algorithm and boost it to produce a “strong learning”
algorithm.

1What is most important here is the order of quantifiers. The notion of PAC-learning
requires a single learning algorithm to work regardless of the input distribution. Of course,
the learning algorithm may be adaptive in the sense that depending on what examples it has
received it can change its behaviour.

2If the output hypothesis is allowed to be randomised, that is it takes as input x ∈ X,
and also has access to random coin tosses when making a prediction, then it is immediately
clear that the outlined approach works. Otherwise, we would need that ε > 1

2 + γ; then
we know that one of the two constant hypotheses, always predicting 1, or always predicting
0, gives error at most 1/2, and we can with high confidence determine which one can be

guaranteed to have error at most ε by using a sample of size O
(

1
γ2

)
.

39
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γ-Weak Learner

Let us define the notion of weak learning formally. We will let the parameter
γ for weak learning be a function of the instance size n, and the representation
size of the target concept, size(c).

Definition 4.1 – γ-Weak Learning. For γ(·, ·) with γ > 0, we say that L is
a γ-weak PAC learning algorithm for concept class C using hypothesis class H,
if for any n ≥ 0, any c ∈ Cn, any D over Xn, and 0 < δ < 1/2, L given access
to EX(c,D) and inputs size(c), δ and γ, outputs h ∈ Hn that with probability
at least 1− δ, satisfies, err(h) ≤ 1

2 − γ(n, size(c)).
We say that L is an efficient γ-weak PAC learner if H is polynomially

evaluatable, 1/γ(n, size(c)) is bounded by some polynomial in n and size(c),
and the running time of L is polynomial in n, 1/δ, and size(c).

Boosting: A Short History

Boosting has an interesting history and is a prominent example of how a suit-
able theoretical question has led to some very practical algorithms. The notion
of weak learning first appeared in the work of Kearns and Valiant [18], who
showed that certain concept classes were hard to learn even when the require-
ment was only to output a hypothesis that was slightly better than random
guessing. Shortly thereafter, Freund [12] and Schapire [22] showed that in
the distribution-free setting weak and strong learning are in fact equivalent.
The early boosting algorithms were not easy to implement in practice; Freund
and Schapire [13] designed an improved boosting algorithm, called Adaboost,
which while retaining strong theoretical guarantees was very easy to imple-
ment in practice. Adaboost has enjoyed a remarkable practical success and
implementations of Adaboost and its variants appear in most machine learning
libraries.

4.2 The AdaBoost Algorithm

The central idea of the boosting approach is the following. Initially, we can use a
weak learning algorithm that gives us a hypothesis that performs slightly better
than random guessing. We could repeatedly run this weak learning algorithm,
though it may return the same hypothesis. However, if we modify the distribu-
tion so that the hypothesis already returned is no longer valid, i.e. under the
new distribution it has error exactly 1/2, then the weak learning algorithm is
required to provide us with a different hypothesis.3 By doing this repeatedly,
we can combine several hypotheses to produce one that has low error. All
boosting algorithms make use of this high-level approach. The AdaBoost (for
adaptive boosting) algorithm exploits the fact that some hypotheses may be
much better than others and aggressively modifies the distribution to account
for this. Initially, we will concentrate on proving that AdaBoost succeeds in
finding a hypothesis that has training error 0 on a given sample.

3If the error of h is much larger than 1/2 under the modified distribution, then the weak
learning algorithm may simply return 1−h, which is not of much use, since we already have
h.
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Algorithm 4.1: AdaBoost
1 Inputs:
2 Training data (x1, y1), . . . , (xm, ym) drawn from EX(c,D),
3 T (#iterations), δ (confidence parameter)
4 Weak learning algorithm WeakLearn(D, δ)
5 // uniform initial distribution over training data
6 Set D1(i) = 1/m
7 for t = 1, . . . , T do
8 // examples drawn from Dt are passed to WeakLearn
9 Obtain ht ←WeakLearn(Dt, δ/T )

10 Set εt = P(x,y)∼Dt
[
ht(x) 6= y

]
// εt ≤ 1/2− γ, w.p. ≥ 1− δ

T

11 Set αt = 1
2 log

(
1−εt
εt

)
12 // Zt+1 is the normalizing constant
13 Update Dt+1(i) = Dt(i) · exp(−αtyiht(xi))/Zt+1

14 Set h̃ =
∑T
i=t αtht

15 Output: hypothesis ĥ : X → {−1, 1}, where ĥ(x) = sign(h̃(x))

The AdaBoost algorithm is described in Alg. 4.1. We assume that AdaBoost
has access to the weak learning algorithm, WeakLearn. WeakLearn gets
labelled (according to some concept c ∈ C) data from some distribution D and
takes a confidence parameter δ. It guarantees that with probability at least
1 − δ, the error of the returned hypothesis, h, is at most 1/2 − γ. AdaBoost
receives a training sample of m examples drawn from EX(c,D). It defines a
distribution Dt over this sample at each iteration and hence can simulate the
example oracle for the weak learning algorithm. To make the mathematical
analysis simpler, we will assume that the labels yi are in {−1, 1} rather than
{0, 1}. This is a transformation that is frequently used in machine learning and
readers should convince themselves that this does not make any difference. We
assume that sign : R→ {−1, 1}, with sign(z) = −1 if z < 0 and sign(z) = 1 if
z ≥ 0.

Theorem 4.2. Assuming that WeakLearn is a γ-weak learner for the con-
cept class C, after T iterations, with probability at least 1−δ, the training error
of the hypothesis output by AdaBoost (Alg. 4.1) is 0, provided T ≥ log 2m

2γ2 .

Proof. As further notation, let 1(·) be the indicator of the predicate inside the
parantheses, which takes the value 1 if the predicate is true and 0 otherwise.
Observe that 1(sign(h̃(x)) 6= y) ≤ e−yh̃(x) for y ∈ {−1, 1}.

P(x,y)∼D1

[
sign(h̃(x)) 6= y

]
=

m∑
i=1

D(i) · 1(sign(h̃(xi) 6= yi) (4.1)

≤
m∑
i=1

D1(i) · e−yih̃(xi) (4.2)

We introduce some additional notation. Let h̃t =
∑T
s=t αshs be the weighted

sum of the hypotheses returned in iterations t through T ; and thus, h̃t =
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αtht + h̃t+1. We will allow the overall algorithm to fail if any of the calls to
WeakLearn on Line 9 fail. By a simple union bound, all of these calls succeed
with probability at most 1 − δ. We will assume this is the case in the rest of
the proof allowing the algorithm a failure probability δ. Then consider the
following:

m∑
i=1

D1(i) · e−yih̃(xi) =
m∑
i=1

D1(i) · e−yih̃1(xi) (4.3)

=
m∑
i=1

D1(i) · e−α1yih1(xi) · e−yih̃2(xi) (4.4)

= Z2 ·
m∑
i=1

D2(i) · e−yih̃2(xi) (4.5)

= Z2 ·
m∑
i=1

D2(i) · e−α2y2h2(xi) · e−yih̃3(xi) (4.6)

= Z2 · Z3 ·
m∑
i=1

D3(i) · e−yih̃3(xi) (4.7)

We use: in (4.3) h̃ = h̃1, in (4.4) h̃1 = α1h1 + h̃2, in (4.5) D2(i) = D1(i) ·
e−α1yih1(xi)/Z2, in (4.6) h̃2 = α2h2+h̃3, in (4.7)D3(i) = D2(i)·e−α2yih2(xi)/Z3.
Continuing this way, we obtain,

m∑
i=1

D1(i) · e−yih̃(xi) = Z2 · Z3 · · ·ZT ·
m∑
i=1

DT (i) · e−yih̃T (xi)

And thus,

m∑
i=1

D1(i) · e−yih̃(xi) =
T+1∏
t=2

Zt (4.8)

Let us now obtain a bound on Zt+1, for t = 1, . . . , T . We have,

Zt+1 =
∑

i:ht(xi)=yi

Dt(i) · e−αt +
∑

i:ht(xi) 6=yi

Dt(i) · eαt

= (1− εt)e−αt + εte
αt = 2

√
εt(1− εt)

Above we substituted αt = 1
2 log 1−εt

εt
. Letting γt = 1

2 − εt and using the fact
that

√
1− x ≤ e−x/2, we get,

Zt+1 =
√

1− 4γ2
t ≤ e−2γ2

t (4.9)

Now, by the guarantee on the weak learning algorithm, γt ≥ γ for t = 1, . . . , T .
Thus,

∏T+1
t=2 Zt ≤ e−2Tγ2 . Provided T ≥ log(2m)/(2γ2), the training error is

at most 1/(2m) and hence must in fact be 0 (as error on any point causes the
error to be at least 1/m).
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It is worth understanding what the algorithm is doing in each iteration. In
Line 13 the algorithm assigns higher weight to examples that were misclassified
by the hypothesis ht in the tth iteration and lower weight to examples that were
correctly classified. Equation 4.8 shows that the product of the normalizing
constants Zt is an upper bound on the training error of the classifier after
T iterations. Each Zt is guaranteed to be strictly less than 1 because of the
assumption that the weak learner outputs a hypothesis with error at most
1/2 − γ. The choice of αt in Line 10 is chosen to minimize the value of Zt at
that iteration. It is in this sense that the algorithm is adaptive and hence its
name. It is worth observing that αt is also the weight that the hypothesis ht
gets in the final threshold classifier; the more accurate ht is, the greater the
value of αt. Exercise 4.1. asks you to further explore some of the behaviour of
this algorithm.

4.2.1 Bounding the Generalization Error
One way to bound the generalization error of AdaBoost is by ensuring that
the VC-dimension of the hypothesis class used by the weak learning algorithm
is finite.4 Suppose the weak learning algorithm, WeakLearn, outputs hy-
potheses from H and VCD(H) = d. Denote by THRESHOLDSk(H) the class
of functions given by

THRESHOLDSk(H) =

x 7→ sign

 k∑
i=1

αkhk(x)

 | hi ∈ H,αi ∈ R

 .

Lemma 4.3. If VCD(H) = d, then VCD(THRESHOLDSk(H)) = O(kd log k).

The proof of Lemma 4.3 is left as Exercise 4.2.. Together with Theorem 3.8
we can obtain a generalization bound on the error of the hypothesis output by
Adaboost.

4.3 Exercises

4.1. Consider the AdaBoost algorithm described in Alorithm 4.1.

a) Show that the error of ht with respect to the distribution Dt+1 is
exactly 1/2.

b) What is the maximum possible value of Dt(i) for some 1 ≤ t ≤ T
and 1 ≤ i ≤ m?

c) Fix some example, say i, let ti be the first iteration such that
hti(xi) = yi. How large can ti be?

4.2. Prove Lemma 4.3.

4.3. Consider the instance space Xn = {0, 1}n and the following hypothesis
class

Hn = {0, 1, x1, x1, x2, x2, . . . , xn, xn}.
4This is not a stringent requirement on a weak learning algorithm. However, this con-

dition is not necessary and in fact it can be shown that AdaBoost generalizes even without
such a condition on the weak learning algorithm.



44 CHAPTER 4. BOOSTING

The hypothesis class contains 2n + 2 functions. The functions “0” and
“1” are constant and predict 0 and 1 on all instances in Xn. The function
“xi” evaluates to 1 on any a ∈ {0, 1}n satisfying ai = 1 and 0 otherwise.
Likewise, the function “xi” evaluates to 1 on any a ∈ {0, 1}n satisfying
ai = 0 and 0 otherwise. Thus a single bit of the input determines the
value of these functions; for this reason these functions are sometimes
referred to as dictator functions.

a) Show that the class CONJUNCTIONS is 1
10n -weak learnable using

H.
Hint: The factor 10 is not particularly important, just a sufficiently
large constant.

b) Let CONJUNCTIONSk denote the class of conjunctions on at most k
literals. Give an algorithm that PAC-learns CONJUNCTIONSk and
has sample complexity polynomial in k, logn, 1

ε and
1
δ . What would

be the sample complexity if you had used the algorithm for learning
CONJUNCTIONS discussed in the lectures?
Hint: First show that the weak learning algorithm in the previous
part can be modified to be a 1

10k -weak learner in this case.
c) Show that there is no weak learning algorithm for PARITIES using

H.



Chapter 5

Cryptographic Hardness of
Learning

We have seen a few algorithms in the PAC learning framework for concept
classes such as those of conjunctions, decision lists and linear halfspaces. We’ve
also studied the Occam principle that “short consistent hypotheses” generalise
well on unseen data. For finite hypothesis classes the sample complexity scales
polynomially with log |H|, 1/ε and 1/δ. When using infinite hypothesis classes,
the Vapnik Chervonenkis (VC) dimension plays a similar role as log |H|. We’ve
seen upper and lower bounds on sample complexity in terms of VC-dimension
that almost match. In particular, provided one can identify a hypothesis that
is consistent with the observed data (as long as the sample size is large enough
as a function of the VC dimension, ε and δ), we obtain a hypothesis that has
error bounded by ε with respect to the target concept and distribution.

Thus, in a sense the VC-dimension captures learnability exactly, if sample
complexity is the only thing we care about. However, when we consider compu-
tational complexity the picture is considerably different. We’ve already shown
that there are concept classes for which finding proper consistent learners is
NP-hard. In the case of 3-term DNF formulae, we can avoid this NP-hardness
by identifying the output hypothesis from a larger concept class, that of 3-CNF
formulae. One may wonder, whether this is always the case, i.e. can we al-
ways identify a larger hypothesis class from which we can identify a consistent
learner in polynomial time?

In this lecture, we’ll answer this question in the negative, provided a certain
widely believed assumption in cryptography holds. We will show that there
are concept classes that cannot be efficiently PAC-learnt, even in the case of
improper learning, where the output hypothesis is allowed to come from any
polynomially evaluatable hypothesis class.

5.1 The Discrete Cube Root Problem

Let p and q be two large primes that require roughly the same number of bits to
represent. Furthermore, we’ll assume that these primes are of the form 3k+ 2.
Let N = pq be the product of these primes. It is widely believed that factoring
such an N , when p and q are chosen to be random n bit primes, cannot be
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performed in time polynomial in n.1 Let ϕ denote Euler’s totient function,
then we have ϕ(N) = (p− 1)(q − 1). As p and q are chosen to be of the form
3k + 2, 3 does not divide ϕ(N).

Let Z∗N = {i | 0 < i < N, gcd(i,N) = 1}. It is well-known that Z∗N forms a
group under the operation of multiplication modulo N . We consider a function
fN : Z∗N → Z∗N defined as fN (y) ≡ y3 mod N . As 3 does not divide ϕ(N),
it is straightforward to observe that fN is a bijection. As gcd(3, ϕ(N)) = 1,
there exist d, d′ ≥ 1 such that 3d = ϕ(N)d′ + 1 (the existence of d, d′ can be
shown by a constructive proof of Euclid’s algorithm to obtain the gcd). Then,
we have,

(fN (y))d ≡ y3d ≡ yϕ(N)d′+1 ≡ y mod N.

The last equality follows as yϕ(N) ≡ 1 mod N for all y ∈ Z∗N .

Definition 5.1 – Discrete Cube Root Problem. Let two n-bit primes p
and q of the form 3k+ 2, and let N = pq. Let ϕ(N) = (p− 1)(q − 1) and note
that 3 does not divide ϕ(N). Given N and x ∈ Z∗N as input, output y ∈ Z∗N ,
such that y3 ≡ x mod N .

Observe that if we can factorise N , the discrete cuberoot problem is easy to
solve. We can simply obtain ϕ(N) and then find d such that 3d ≡ 1 mod ϕ(N)
using Euclid’s algorithm. However, factoringN is believed to be hard in general
and in fact, no polynomial-time algorithm that finds the discrete cube root is
known. Note that in this case, polynomial-time means polynomial in n, not N .
The discrete cube root problem is also widely believed to be computationally
intractable. We define the formal hardness assumption and use this to show
that there are concept classes that are computationally hard to learn.

Definition 5.2 – Discrete Cube Root Assumption (DCRA). For any
polynomial P (·), there does not exist any (possibly randomized) algorithm, A,
that runs in time P (n) and on input N and x, where N is the product of
two random n bit primes of the form 3k + 2 and x is chosen randomly from
Z∗N , outputs y ∈ Z∗N that with probability at least 1/P (n) satisfies y3 ≡ x
mod N . The probability is over the random draws of p, q, x and any internal
randomisation of A.

Although this is not the main objective here, let us quickly observe how
this assumption may be used in cryptography. The integer N is the public key,
and any message that can be encoded as an element of Z∗N can be encrypted
simply by taking its cube modulo N . Under the discrete cuberoot assumption,
this cannot be decrypted, except if one has access to d, such that 3d ≡ 1
mod ϕ(N). The integer d is the private key.

5.2 A learning problem based on DCRA

Let us try to phrase the question of finding the cuberoot of x ∈ Z∗N as a learning
question. Let us suppose that we have access to a training sample,

S =
{

(x1, y1), (x2, y2), . . . , (xm, ym)
}
,

1Note that factoring can easily be done in time polynomial in N . However, the input
size is O(n) = O(logN) if the number N is provided in binary.
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where y3
i ≡ xi mod N for i = 1, . . . ,m, and xi are drawn uniformly at random

from Z∗N . The learning question is: Given such examples, can we obtain h :
Z∗N → Z∗N , such that for x drawn uniformly at random from Z∗N , it holds with
probability at least 1− δ, that P

[
(h(x))3 6≡ x mod N

]
≤ ε?

How can these pairs (xi, yi) help? It is easy to see that they cannot help,
as it is easy to generate these pairs ourselves. This is because, although finding
the cuberoot is hard, finding the cube is easy. As fN is a bijection, we can
choose yi ∈ Z∗N uniformly at random, and then pick xi ≡ y3

i mod N from
Z∗N . Note that this implies that the distribution of xi is uniform over Z∗N .
Thus, clearly access to random examples of the form (xi, yi) where xi is drawn
from the uniform distribution over Z∗N and y3

i ≡ xi mod N , can’t help to find
h : Z∗N → Z∗N , that satisfies P

[
(h(x))3 6= x mod N

]
6≡ ε, under the DCRA.

This almost fits into our notion of PAC learning, except that the output of
the target function is not in {0, 1}. This can be fixed rather easily. We know
that the output of f−1

N is some 2n bit string. Thus, we can consider 2n different
target functions, (f−1

N,i)2n
i=1, where f−1

N,i is a function which outputs the ith bit
of the function f−1

N . If we could learn all the function, f−1
N,i to accuracy ε

2n ,
then we can reconstruct f−1

N to accuracy ε. Thus, if learning f−1
N is hard, then

at least one of the boolean functions (f−1
N,i)2n

i=1 must also be hard to learn.

5.2.1 A hard-to-learn concept class

So far, we’ve established that if we choose random n bit primes p and q of the
form 3k + 2, there exists a boolean function, f−1

N,i, such that if we get labelled
examples from a specific distribution D over 2n bit strings, viz. the uniform
distribution over bit representatations of elements in Z∗N , we cannot output a
(polynomially evaluatable) hypothesis h, such that Px∼D

[
f−1
N,i(x) 6= h(x)

]
≤

ε
2n . If we can identify a class, C, such that f−1

N,i ∈ C2n, then this also implies
that the class C is not PAC-learnable.

Let us try and understand what such a concept class could be. First, we
note that if d is known, there is a rather simple polynomial time algorithm
to output f−1

N (x). All we need to do is perform the operation xd mod N .
Naïvely computing xd is not efficient as d may be as large as ϕ(N), i.e. d may
itself be 2n bit long. The first thing we need to ensure is that all operations
are repeatedly performed modulo N ; this way none of the representations get
too large. The second is that we start by computing, x mod N, x2 mod N, x4

mod N, x8 mod N, . . . , x2blogϕ(N)c mod N , i.e. we compute x2i mod N for
i = 0, 1 . . . , blogϕ(N)c. To obtain xd mod N , we simply take the product of
the terms x2i mod N such that the ith bit of d is 1. This shows that there
exists a circuit of polynomial size that computes f−1

N where d is hard-wired into
the circuit itself. In particular, this also implies that there exist polynomial-size
circuits for f−1

N,i for all i = 1, . . . , 2n. This gives us the following result.

Theorem 5.3. There exists a polynomial P (·), such that class of concepts, C,
where Cn consists of circuits of size at most P (n), is not PAC-learnable under
the discrete cube root assumption.



48 CHAPTER 5. CRYPTOGRAPHIC HARDNESS OF LEARNING

5.2.2 Reducing the depth

We’ve established that under DCRA, PAC-learning polynomial-sized circuits
is hard. However, in a way, this is the weakest such result one could hope
for. Polynomial-sized circuits are in some sense the most expressive class that
we could ever hope to learn. The question is whether there exist significantly
weaker concept classes that are also hard to learn. We will outline a proof that
one such class, that of concepts representable by circuits whose depth is only
logarithmic in the number of inputs, is also hard to PAC-learn under DCRA.
The complete proof requires showing how low-depth circuits for repeated mul-
tiplication and division can be designed; we will not see these constructions
here as they are quite involved. We will highlight the basic idea and point to
the appropriate references for complete details.

One of the reasons why the circuit described above is deep (it has depth
Θ(n)) is that it requires computing the powers x2i mod N for each value of i =
0, 1, . . . , blogϕ(N)c; the reason being that x2i+1 mod N can only be computed
after x2i mod N has been computed. However, notice that this computation
does not require the knowledge of d, the secret key, at all! So, if instead of being
given the input x, we were given a longer string of length (2n)2 as input, the
concatenation of (x mod N, x2 mod N, x4 mod N, . . . , x2blogϕ(N)c mod N),
the question of learning f−1

N,i would still remain intractable under the DCRA,
as the additional input just represents something we could have computed our-
selves in polynomial time. Note that a hard to learn target function and dis-
tribution now would involve having a distribution over strings of length (2n)2,
where the first 2n bit represent x ∈ Z∗N chosen at the uniformly at random
and the remaining bits are the powers, x2i mod N , i = 1, 2, . . . , blogϕ(N)c.
It is relatively straightforward to show that there exists a circuit of depth
O((logn)2) that when given as input (x mod N, x2 mod N, . . . , x2blogϕ(N)c

mod N) outputs f−1
N (x). To show that there is a circuit of depth O(logn)

requires more work using the techniques of Beame et al. [5]. To summarise, we
have the following theorem.

Theorem 5.4. There exists a constant κ0 > 0, such that the class of circuits,
C, where Cn consists of circuits on n inputs with depth bounded by κ0 logn is
not PAC-learnable under DCRA.

5.3 Chapter Notes

The material covered in this chapter is presented in greater detail in the text-
book by Kearns and Vazirani [20, Chap. 6]. Further details, including complete
proofs and reductions showing cryptographic hardness of learning other con-
cept classes such as finite automata appear in the original paper by Kearns
and Valiant [19]. The proof that the class of polynomial-size circuits cannot be
PAC-learnt if one-way functions exist, even when membership queries are al-
lowed , first appeared in the work of Goldreich et al. [14]. The assumption that
one-way functions exist is much weaker than the discrete cube root assump-
tion; indeed, it is hardly conceivable to have any cryptography at all if one-way
functions don’t exist. On the other hand, if the discrete cube root assumption
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were to be untrue, it would simply call into question the security of the RSA
cryptosystem, but not rule out the existence of other kinds of cryptosystems.

In general, making stronger assumptions leads to stronger hardness of PAC-
learning results. Recently, there has been work using different kinds of as-
sumptions, not directly related to cryptography, to establish hardness of PAC-
learning of much smaller classes such as DNF [9, 8, 7]. However, it is worth
bearing in mind that not all of these assumptions have been as thoroughly
tested; for example, recently Allen et al. [1] showed that one of the assump-
tions made by Daniely et al. [9] was in fact not true.





Chapter 6

Exact Learning using
Membership and Equivalence
Queries

In the PAC learning framework, we receive labelled examples (x, c(x)), where x
is drawn from some distribution over the instance space X, and c(x) ∈ {0, 1} is
the target label. Thus far, we have focused on two different questions—the first
regarding sample complexity asks how much data is necessary and sufficient
for learning, the second regarding computational complexity asks how much
computational power is necessary to run a learning algorithm. For questions
concerning sample complexity, we have seen that capacity measures such as the
VC dimension give an answer that is essentially tight, in that the lower and
upper bounds on sample complexity in terms of the VC dimention match each
other up to constant and some logarithmic factors. On the question of compu-
tational complexity, we can make a distinction between proper learning, where
the learning algorithm is required to output a hypothesis from the concept
class that is being learnt, and improper learning, where the learning algorithm
may output any polynomially evaluatable hypothesis. For proper learning,
we have already established that even relatively simple concept classes such
as 3-TERM-DNF are hard to PAC-learn unless RP = NP. However, as we
have seen it may be possible to learn these classes if the learning algorithm
is allowed to output hypotheses from larger classes. In the case of improper
learning, we established in Chapter 5 that the class of log-depth circuits is not
PAC-learnable under the discrete cube root assumption.

In this chapter, we will consider a richer model of learning that allows
the learning algorithm to be more “active”. In addition to requesting random
labelled examples from the target distribution and concept, we’ll allow the
learning algorithm to pick an instance x ∈ X and request the label c(x). We’ll
investigate this model in greater detail and show that there are concept classes
that can be efficiently learnt under this more powerful model of learning, that
are not efficiently PAC-learnable under the discrete cube root assumption.1 For
stylistic reasons, it will be easier to define a new model of exact learning that
does not require the existence of a distribution over the instance space, and also

1All hardness results of this kind that we can establish are conditional; they rely on
assumptions such as the discrete cube root assumption or something else.
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CHAPTER 6. EXACT LEARNING USING MEMBERSHIP AND

EQUIVALENCE QUERIES

allows us to drop the accuracy parameter, ε and the confidence parameter, δ,
from consideration. Exercise 6.2 relates this model of exact learning defined in
Section 6.1 to an enriched model of PAC learning. We will see two algorithmic
results in this new model in this chapter.

6.1 Exact Learning with Membership and Equivalence
Queries

We will consider learning algorithms that are allowed to make two different
types of queries: membership queries or value queries,2 and equivalence queries.
As we did in the case of PAC learning in Chapter 1, it is convenient to define
the model in terms of oracles which may be queried by a learning algorithm.

Definition 6.1 – Membership (Value) Query Oracle, MQ(c). A mem-
bership (or value) query oracle for a concept c : X → {0, 1}, MQ(c), when
queried with an instance x ∈ X returns the value c(x).

Next we define the equivalence oracle which takes as input (a representation
of) h : X → {0, 1} and either agrees that h is equivalent to the target concept
c, or returns a “counterexample” x such that h(x) 6= c(x), a proof that c and
h are not equivalent. Formally, we define:

Definition 6.2 – Equivalence Oracle, EQ(c). An equivalence oracle for
a concept c : X → {0, 1}, EQ(c), when queried with a representation of a
hypothesis, h : X → {0, 1}, either returns equivalent indicating that h and
c are equivalent as boolean functions, or a counterexample x ∈ X, such that
c(x) 6= h(x).

We can now define a model of exact learning using membership and equiva-
lence query oracles. The goal of the learning algorithm is to obtain a hypothesis
h, such that h(x) = c(x) for every x ∈ X. Thus the distribution over the in-
stance space does not play a role, and indeed in the model we consider we will
not have access to any random examples at all. The goal of exact learning
and the lack of a target distribution over X renders the accuracy parameter,
ε, irrelevant. As there is no inherent randomness, we will also not include the
confidence parameter, δ. However, one could make the distinction between
deterministic learning algorithms and randomised learning algorithms, and in
that case one would have to reintroduce the confidence parameter, δ, to ac-
count for the failure of the algorithm due to its internal random choices rather
than the external randomness in the data. For simplicity, we will only define
efficient exact learning, however, in principle one could individually account
for the number of queries made by the learning algorithm and the amount of
computational time spent. This would allow us to investigate tradeoffs between
“information complexity” and “computational complexity” of learning in the
exact learning framework, as we have done in the PAC learning framework.

2The name membership query originated from the fact that boolean functions may be
viewed as subsets of the instance space; the instances that evaluate to 1 are members of the
set and those that evaluate to 0 are not. Querying the value of a boolean function at a point
can be thought of as querying the membership of this point in this set. The name value
query may be more suitable as it can be applied to non-boolean functions as well.
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Definition 6.3 – Exact Learning with MQ + EQ. We say that a con-
cept class C is efficiently exactly learnable from membership and equivalence
queries, if there exists a polynomially evaluatable hypothesis class H, a polyno-
mial p(·, ·) and a learning algorithm L, such that for all n ≥ 1, for all c ∈ Cn,
L when given access to the oracles MQ(c) and EQ(c), and input size(c), halts in
time p(n, size(c)) and outputs a hypothesis h ∈ Hn, such that for each x ∈ Xn,
h(x) = c(x), i.e. h is equivalent to c. Furthermore, we required that every
query made by L to EQ(c) is with some h ∈ Hn.

The model of exact learning may seem quite far removed from the practice
of machine learning, and in some ways it is. However, it is designed to allow us
to isolate interesting results and design learning algorithms. The key addition
is the ability to make membership queries. From a point of view of practical
machine learning, one may imagine that we can identify expert human labellers
to provide responses that would simulate an MQ(c) oracle;3 it is harder to
expect humans to be able to simulate an EQ(c) oracle. The latter however is
primarily defined for mathematical convenience. Exercise 6.2 shows how any
algorithm designed in the exact learning with MQ + EQ framework allows one
to design a PAC learning algorithm provided the algorithm has access to the
membership oracle MQ(c). Thus, in short if one is willing to settle for a PAC-
guarantee, i.e. err(h) ≤ ε with probability at least 1 − δ, then access to the
equivalence oracle EQ(c) is not necessary.

We will now focus on learning algorithms for two concept classes. In Sec-
tion 6.2, we show that the class of monotone DNF formulae is efficiently exactly
learnable using membership and equivalence queries. In Section ??, we show
how to learn languages that are recognizable by deterministic finite automata
(DFA), which is also the class of regular languages. In that section, it will
be convenient to move somewhat away from the specific learning framework
introduced above, but we will limit those changes and that discussion to that
section.

6.2 Exact Learning MONOTONE-DNF using MQ + EQ

In this section, we show that the concept class MONOTONE-DNF that is not
known to be PAC-learnable is in fact exact learnable using membership and
equivalence queries. Exercise 6.1 asks you to show that the problem of learning
DNF formulae and MONOTONE-DNF formulae are equivalent (up to polyno-
mial time reductions) in the PAC Learning framework discussed in Chapter 1.
However, while the results in this section together with Exercise 6.2 show that
MONOTONE-DNF formulae are learnable in the PAC learning framework with
access to an MQ oracle, the same is not known for learning DNF formulae. In
fact, a result of Angluin and Kharitonov [3] suggests that for learning DNF
formulae, access to a membership query oracle, MQ(c), does not help for learn-
ing DNF formulae under certain plausible assumptions used in cryptography.

3Recently this has become easier using various online labelling services that allow inter-
action with humans, a catchall term for which is “crowdsourcing”. There are of course still
practical considerations, such as whether one should expect examples constructed by learning
algorithms to be classifiable by humans. However, this distinction is not unlike many others
when comparing theory and practice. Willingness to ignore such considerations is a price
that we must pay in order to be able to develop the suitable theory.
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Taken together this suggests a separation with regards to polynomial time
learnability between the PAC learning framework, or the PAC learning frame-
work with access to an MQ oracle. However, the main evidence we have for
the hardness of learing DNF formulae is our inability to have come up with a
polynomial time learning algorithm.4

Let us formally define the class of concepts that are represented by mono-
tone DNF formulae. A term is a conjunction over the literals; we say that a
term is monotone if the conjunction only contains positive literals, i.e. literals
that are variables (but not their negations). A monotone DNF formula is a dis-
junction of monotone terms. The class MONOTONE-DNF consists of concepts
that can be expressed as monotone DNF formulae. Let c be a monotone DNF
formula that contains s terms. Any term Ti that is part of c can be associated
with a subset Si ⊆ [n], i.e. Ti ≡

∧
j∈Si

xj . We assume that c is of the form that if

Ti and Tj are both terms of c, with Si and Sj being the corresponding subsets
of variables appearing in them, then it is not the case that Si ⊆ Sj . If it were
the case, dropping Tj from c would yield a formula that represents the same
boolean function. We will refer to this as the minimal representation of c; it
is not hard to show the uniqueness of minimal representations for monotone
DNF formulae, justifying the use of the definite article “the”.

Algorithm 6.1: Learning MONOTONE-DNF using MQ + EQ oracles
1 Let ϕ ≡ 0 // Always predict false
2 Let s← false // Determine whether we have succeeded
3 while s = false do
4 Let ans be the response of EQ(c) to query ϕ
5 if ans = equivalent then
6 s← true
7 break
8 else
9 Let a = ans be the counterexample

10 // It must be that ϕ(a) = 0 and c(a) = 1
11 Let S = {i | ai = 1}
12 for j ∈ S do
13 a′ ← a
14 a′j ← 0
15 Let y be response to MQ(c) with query a′
16 if y = 1 then
17 a← a′

18 T ← {i | ai = 1}

19 ϕ← ϕ ∨

∧
j∈T

xi


20 Output: Hypothesis ϕ

4There have been recent attempts to establish the hardness of learning DNF formulae
based on assumptions from average case complexity theory. See the discussion in Section 5.3
for some discussion about this.
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Alg. 6.1 presents an algorithm for learning MONOTONE-DNF using mem-
bership and equivalence queries. We will prove the following theorem.

Theorem 6.4. The class MONOTONE-DNF is exactly learnable using MQ +
EQ.

Proof. Let c be the target monotone DNF formula. Let n denote the number
of variables and let s be the number of terms in the minimal representation of
c, i.e. there isn’t any term in c that implies another. The learning algorithm
is allowed running time that is polynomial in n and s.

We argue that every iteration of the while loop on Line 3 of Alg. 6.1 finds
a term T that is present in the target monotone DNF formula c, that we have
not yet included in ϕ. First, we establish that if ϕ(x) = 1 at any stage in
the algorithm, then c(x) = 1. Clearly, it is the case at the beginning of the
algorithm; we’ll show that if it holds at the beginning of the while loop (Line 3
of Alg. 6.1), then it continues to hold at the next iteration of the while loop.

Since, ϕ(x) = 1 implies c(x) = 1, any counterexample a that establishes
that ϕ 6≡ c must be such that c(a) = 1 and ϕ(a) = 0. Let P = {j | Tj(a) = 1}
denote the indices of terms in the minimal representation of c that are satisfied
by a. As c(a) = 1, we know that P is non-empty. We claim that when the for
loop on Line 11 of Alg. 6.1 ends, it is the case that there is exactly one index
j in P is such that Tj(a) = 1, where a is now the assignment updated in the
for loop. Clearly, that there is at least one such index j is ensured by the if
statement on Line 15, as a will never be modified to be such that c(a) = 0. On
the other hand, if there were two such indices, say j and j′, then let i ∈ [n] be
the smallest index such that xi is a literal in Tj , but not in Tj′ . Setting ai = 0
would have continued to have satisfied Tj′ , and hence this is what would have
happened in the if clause of Line 15. A similar argument also shows that all
bits of a that could have been set to 0 and still have allowed a be a satisfying
assignment of some term Tj for j ∈ P , would have been set to 0. Thus, Line 18
finds a new term that appears in the minimal representation of c, but is not
(yet) in ϕ and adds it to ϕ. This also shows that at the end of the while loop,
it continues to be the case that ϕ(x) = 1 implies c(x) = 1. Since each new term
added is a term that is actually a term in the minimal monotone DNF formula
representing c, this can happen at most s times, after which the algorithm has
exactly identified c.o

Thus, the algorithm makes at most s queries to EQ(c), and at most n · s
queries to MQ(c). Clearly, the running time of the algorithm is polynomial in
n and s.

6.3 Exercises

6.1 The class MONOTONE-DNFn,s over {0, 1}n contains boolean functions
that can be represented as DNF formulae with at most s terms over
n variables, and where each term only contains positive literals. Then
define,

MONOTONE-DNF =
⋃
n≥1

⋃
s≥1

MONOTONE-DNFn,s.
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The class DNF is defined analogously, except that the literals in the terms
may also be negative. An efficient learning algorithm is allowed time
polynomial in n, s, 1

ε and 1
δ . Show that if the class MONOTONE-DNF is

efficiently PAC-learnable, then so is DNF.

6.2 Let C be a concept class that is exactly efficiently learnable using mem-
bership and equivalence queries. We will consider the learnability of C
in the standard PAC framework. Prove that if in addition to access to
the example oracle, EX(c,D), the learning algorithm is allowed to make
membership queries, then C is efficiently PAC-learnable. Formally, show
that there exists a learning algorithm that for all n ≥ 1, c ∈ Cn, D over
Xn, 0 < ε < 1/2 and 0 < δ < 1/2, that with access to the oracle EX(c,D)
and the membership oracle for c and with inputs ε, δ and size(c), outputs
h that with probability at least 1 − δ satisfies err(h) ≤ ε. The running
time of L should be polynomial in n, size(c), 1

ε and 1
δ and the h should

be from a hypothesis class H that is polynomially evaluatable.



Appendix A

Inequalities from Probability
Theory

It is assumed that the reader has sufficient familiarity with the basics of the
theory of probability.

A.1 The Union Bound

This is an elementary inequality, though surprisingly powerful in several appli-
cations in learning theory and the analysis of algorithms. If A1, A2, . . . is a (at
most countable) collection of events, then

P

⋃
i

Ai

 ≤∑
i

P(Ai). (A.1)

This inequality is known as the union bound (or Boole’s inequality) as it shows
that the probability of the union of a collection of events can be upper-bounded
by the sum of the probabilities of the individual events in the union.

A.2 Hoeffding’s Inequality

Let X1, . . . , Xm be m independent random variables taking values in the inter-
val [0, 1]. Let X = 1

m

∑m
i=1Xi and let µ = E[X]. Then for every t ≥ 0,

P
[∣∣∣X − µ∣∣∣ ≥ t] ≤ 2 exp

(
−2mt2

)
. (A.2)

This inequality is known as the Hoeffding’s inequality [16].

A.3 Chernoff Bound

Let X1, . . . , Xm be m independent random variables taking values in the inter-
val {0, 1}. Let X =

∑m
i=1Xi and let µ = E[X]. Then for every 0 ≤ δ ≤ 1,

P
[
X ≤ (1− δ)µ

]
≤ exp

(
−δ2µ/2

)
, (A.3)

P
[
X ≥ (1 + δ)µ

]
≤ exp

(
−δ2µ/3

)
. (A.4)
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The above pair of inequalities are known as the Chernoff bound. These are
not the tightest possible bounds that can be obtained, but will be sufficient
for our purposes. The interested reader may refer to more complete works on
concentration inqualities, e.g. [11, 6].



Appendix B

Elementary Inequalities

B.1 Convexity of exp

For any x ∈ R, the following inequality holds,

1 + x ≤ ex. (B.1)

The proof is immediate using the convexity of the exponential function.

B.2 Auxilliary Lemmas

Lemma B.1. For any a ≥ e, b > 0, for every x ≥ max{8, 2 + 2 log b}a log a,
x ≥ a log(bx).

Proof. Let f(x) = x − a log(bx). It is easy to check that f ′(x) ≥ 0 for x ≥ a.
Note that if C = max{8, 2 + 2 log b} and as a ≥ e, we have Ca log a ≥ a. As a
result, f(x) ≥ f(Ca log a). Thus it suffices to show that f(Ca log a) ≥ 0.

This can be verified as follows:

f(Ca log a) = Ca log a− a log(Cab log a)
= Ca log a− a logC − a log a− a log b− a log log a
= (2a log a− a log a− a log log a) + a((C − 2)/2− logC)

+ a((C − 2)/2− log b)
≥ 0.

Above we have used that log log a ≤ log a, log a ≥ 1, C ≥ 2 + 2 log b and
that for C ≥ 8, C ≥ 2 + 2 logC.
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Appendix C

Notation

C.1 Basic Mathematical Notation
N The set of natural numbers (not including 0)
Z The set of integers
Q The set of rational numbers
R The set of real numbers

C.2 The PAC Learning Framework

x A datum or the input part of an example
xi The ith co-ordinate (attribute) of example x
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