
Computational Learning Theory - Hilary Term 2018

4 : Boosting

Lecturer: Varun Kanade

1 Weak Learnability

Let us revisit the definition of PAC-learning. The requirements for a concept class to be PAC-
learnable are quite stringent. The learning algorithm has to work for all target concepts in the
class, for all input distributions, and for any setting of accuracy (ε) and confidence (δ) param-
eters. It is worthwhile considering what happens when we relax some of these requirements.
We have already seen that fixing the confidence paramter to be a constant, e.g., δ = 1/4,
leaves the notion of PAC-learnability unchanged. On the other hand, if we only require the
learning algorithm to succeed with respect to certain input distributions, then PAC-learning is
possible for concept classes that are provably not PAC-learnable in the distribution-free sense,
i.e., algorithms that have to work with respect to all distributions.1 For example, the concept
class of convex subsets of [0, 1]2 is not (distribution-free) PAC-learnable, but when restricted to
the uniform distribution over [0, 1]2, it is learnable. In this lecture, we focus on the accuracy
parameter, ε. The problem of learning is trivial if ε ≥ 1/2 as we can make a random prediction
on an input x ∈ X and achieve an error of 1/2.2 The question we are interested in is what
happens when ε = 1/2 − γ, for some γ > 0? For example, is it possible to learn some concept
classe up to error 1/4, but not to an arbitrarily small ε?

Surprisingly, the answer to this question is no, i.e., if we can learn a concept class up to
error at most 1/2 − γ, then we can learn this class up to error bounded by any ε > 0. This
method is known as boosting, as we take a “weak learning” algorithm and boost it to produce
a “strong learning” algorithm.

γ-Weak Learner

Let us define the notion of weak learning formally. We will let the parameter γ for weak learning
be a function of the instance size n, and the representation size of the target concept, size(c).

Definition 1 (γ-Weak Learning). For γ(·, ·) with γ > 0, we say that L is a γ-weak PAC learning
algorithm for concept class C using hypothesis class H, if for any n ≥ 0, any c ∈ Cn, any D
over Xn, and 0 < δ < 1/2, L given access to EX(c,D) and inputs size(c), δ and γ, outputs
h ∈ Hn that with probability at least 1− δ, satisfies, err(h) ≤ 1

2 − γ(n, size(c)).
We say that L is an efficient γ-weak PAC learner if H is polynomially evaluatable, 1/γ(n, size(c))

is bounded by some polynomial in n and size(c), and the running time of L is polynomial in n,
1/δ, and size(c).

1What is most important here is the order of quantifiers. The notion of PAC-learning requires a single learning
algorithm to work regardless of the input distribution. Of course, the learning algorithm may be adaptive in the
sense that depending on what examples it has received it can change its behaviour.

2If the output hypothesis is allowed to be randomised, that is it takes as input x ∈ X, and also has access
to random coin tosses, when making a prediction, then it is immediately clear that the outlined approach works.
Otherwise, this approach relies on being able to construct “pseudo-random” functions, and as such relies on an
unproven, but widely believed conjecture in complexity theory. If ε > 1/2, then we know that one of the two
constant hypotheses, always predicting 1, or always predicting 0, gives error at most 1/2, and we can with high
confidence determine which one.

1

Boosting: A Short History

Boosting has had an interesting history and is a prominent example of how a suitable theoretical
question has led to some very practical algorithms. The notion of weak learning first appeared
in the work of Kearns and Valiant (1989), who showed that certain concept classes were hard
to learn even when the requirement was only to output a hypothesis that was slightly better
than random guessing. Shortly thereafter, Freund (1990) and Schapire (1990) showed that in
the distribution-free setting weak and strong learning are in fact equivalent. The early boosting
algorithms were not easy to implement in practice; Freund and Schapire (1995) designed an im-
proved boosting algorithm, called Adaboost, which while retaining strong theoretical guarantees
was very easy to implement in practice. Adaboost has enjoyed remarkable practical success and
implementation of Adaboost and its variants appear in most machine learning libraries.

2 The AdaBoost Algorithm

The central idea of the boosting approach is the following. Initially, we can use a weak learning
algorithm that gives us a hypothesis that performs slightly better than random guessing. We
could repeatedly run this weak learning algorithm, though it may return the same hypothesis.
However, if we modify the distribution so that the hypothesis already returned is no longer
valid, i.e., under the new distribution it has error exactly 1/2, then the weak learning algorithm
is required to provide us with a different hypothesis.3 By doing this repeatedly, we can combine
several hypotheses to produce one that has low error. All boosting algorithms make use of this
high-level approach. The AdaBoost (for adaptive boosting) algorithm exploits the fact that
some hypotheses may be much better than others and aggressively modifies the distribution to
account for this. Initially, we will concentrate on proving that AdaBoost succeeds in finding a
hypothesis that has training error 0 on a given sample.

The AdaBoost algorithm is described in Alg. 1. We assume that AdaBoost has access to the
weak learning algorithm, WeakLearn. AdaBoost receives a training sample of m examples
drawn from EX(c,D). It defines a distribution Dt over this sample at each iteration and hence
can simulate the example oracle for the weak learning algorithm. To make the mathematical
analysis simpler, we will assume that the labels yi are in {−1, 1} rather than {0, 1}. This
is a transformation that is frequently used in machine learning and students should convince
themselves that this does not make any difference.

Remark 2. We will also make the simplifying assumption that the weak learning algorithm
has failure probability 0. This is not entirely unrealistic as the weak learning algorithm is given
a distribution with finite (and small) support. Thus, in principle the entire distribution could
be provided to the weak learning algorithm and hence there is no reason for failure, unless the
algorithm itself is randomised. In any case, a slightly more cumbersome analysis of the AdaBoost
algorithm can easily be carried out, taking into account the possible failures at each stage and
using the union bound to bound the combined probability of all the bad events.

Theorem 3. Assuming that WeakLearn is a γ-weak learner for the concept class C, after
T iterations the training error of the hypothesis output by AdaBoost (Alg. 1) is 0, provided
T ≥ log 2m

2γ2
.

Proof. We will use the convention that sign(z) = 1 if z ≥ 0 and sign(z) = −1 otherwise. Let
1(·) be the indicator of the predicate inside the parantheses, which takes the value 1 if the

3If the error of h is much larger than 1/2 under the modified distribution, then the weak learning algorithm
may simply return 1− h, which is not of much use, since we already have h.

2

Algorithm 1 AdaBoost

1: Input: Training data (x1, y1), . . . , (xm, ym) drawn from EX(c,D)
2: D1(i) = 1/m . Uniform initial distribution over the training data
3: for t← 1, . . . , T do
4: Obtain ht ←WeakLearn(Dt) . Examples drawn from Dt are passed to WeakLearn
5: Set εt = P(x,y)∼Dt

[
ht(x) 6= y

]
. εt ≤ 1/2− γ

6: Set αt = 1
2 log

(
1−εt
εt

)
7: Update Dt+1(i) = Dt(i) · exp(−αtyiht(xi))/Zt+1 . Zt+1 is the normalizing constant
8: end for
9: Set H =

∑T
i=t αtht

10: Output: Hypothesis sign(H(·))

predicate is true and 0 otherwise. Observe that 1(sign(H(x)) 6= y) ≤ e−yH(x) for y ∈ {−1, 1}.

P(x,y)∼D1

[
sign(H(x)) 6= y

]
=

m∑
i=1

D(i) · 1(sign(H(xi) 6= yi) ≤
m∑
i=1

D1(i) · e−yiH(xi) (1)

We introduce some additional notation. Let Ht =
∑T

s=t αshs be the weighted sum of the
hypotheses returned in iterations t through T ; and thus, Ht = αtht +Ht+1. Then consider the
following:

m∑
i=1

D1(i) · e−yiH(xi) =

m∑
i=1

D1(i) · e−yiH1(xi) As H = H1

=
m∑
i=1

D1(i) · e−α1yih1(xi) · e−yiH2(xi) As H1 = α1h1 +H2

= Z2 ·
m∑
i=1

D2(i) · e−yiH2(xi) As D2(i) = D1(i) · e−α1yih(xi)/Z2

= Z2 ·
m∑
i=1

D2(i) · e−α2y2h2(xi) · e−yiH3(xi) As H2 = α2h2 +H3

= Z2 · Z3 ·
m∑
i=1

D3(i) · e−yiH3(xi) As D3(i) = D2(i) · e−α2yih(xi)/Z3

Continuing this way, we obtain,

m∑
i=1

D1(i) · e−yiH(xi) = Z2 · Z3 · · ·ZT ·
m∑
i=1

DT (i) · e−yiHT (xi)

And thus,

m∑
i=1

D1(i) · e−yiH(xi) =
T+1∏
t=2

Zt (2)

Let us now obtain a bound on Zt+1, for t = 1, . . . , T . We have,

Zt+1 =
∑

i:ht(xi)=yi

Dt(i) · e−αt +
∑

i:ht(xi) 6=yi

Dt(i) · eαt

= (1− εt)e−αt + εte
αt = 2

√
εt(1− εt) Substituting αt =

1

2
log

1− εt
εt

3

Letting γt = 1
2 − εt and using the fact that

√
1− x ≤ e−x/2, we get,

Zt+1 =
√

1− 4γ2t ≤ e−2γ
2
t (3)

Now, by the guarantee on the weak learning algorithm, γt ≥ γ for t = 1, . . . , T . Thus,
∏T+1
t=2 Zt ≤

e−2Tγ
2
. Provided T ≥ log(2m)/(2γ2), the training error is at most 1/(2m) and hence must in

fact be 0 (as error on any point causes the error to be at least 1/m).

2.1 Bounding the Generalization Error

In order to bound the generalization error, we need to ensure that the VC-dimension of the
hypothesis class used by the weak learning algorithm is small. Suppose the weak learning
algorithm, WeakLearn, outputs hypotheses from H and VCD(H) = d. Denote by THk(H)
the class of functions given by:

THk(H) = {x 7→ sign

 k∑
i=1

αkhk(x)

 | hi ∈ H,αi ∈ R}.

Lemma 1. If VCD(H) = d, then VCD(THk(H)) = O(kd).

The proof of the lemma is left as an exercise. Let us see how to use this lemma to give
a bound on the generalisation error of the hypothesis output by AdaBoost. To do this, we’ll
modify the result of Theorem 3 slightly. We consider T to be the number of iterations required
to ensure that the training error is at most ε/2, that is at most εm/2 examples in the training
data are classified incorrectly. It is an easy exercise to show that this can be achieved provided
T ≥ 1

2γ2
log 2

ε . We have already see that if a hypothesis from a class that has bounded VC
dimension is consistent with a sample drawn from a distribution, it has low error with respect
to the underlying distribution. We will use a slightly stronger result that holds even when a
hypothesis makes mistakes on a sample. The following theorem asserts that provided the sample
is large enough, the empirical error, i.e., the error observed on a sample is not that different
from the error under the actual distribution. Note that this theorem does not even require the
data to be labelled correctly according to any target concept from a concept class.

Theorem 4. Let H be a class of boolean functions over some domain X with VCD(H) = d.
Let D be any distribution over the pairs X × {0, 1}. For any h ∈ H, define err(h;D) =
P(x,y)∼D

[
h(x) 6= y

]
. Let S = {(x1, y1), . . . , (xm, ym)} be a sample of size m drawn independently

from D. Define, êrr(h;S) = 1
m |{i | (xi, yi) ∈ S, yi 6= h(xi)}| to be the empirical error of h on

the sample S. Then for any δ > 0,

P

∃h ∈ H : |êrr(h;S)− err(h;D)| >

√
8d ln 2em

d + 8 ln 4
δ

m

 ≤ δ
where the probability is computed with respect to the random choice of the sample S.

The above theorem together with Lemma 1 implies that provided we start with a sample of
size m that is large enough, yet polynomial in 1

ε ,
1
δ and 1

γ , the hypothesis output by AdaBoost
has error at most ε with probability at least 1− δ.

References

Yoav Freund. Boosting a weak learning algorithm by majority. In COLT, volume 90, pages
202–216, 1990.

4

Yoav Freund and Robert E Schapire. A desicion-theoretic generalization of on-line learning and
an application to boosting. In European conference on computational learning theory, pages
23–37. Springer, 1995.

Michael Kearns and Leslie Valiant. Cryptographic limitations on learning boolean formulae and
finite automata. In Proceedings of the Twenty-first Annual ACM Symposium on Theory of
Computing, 1989.

Robert E Schapire. The strength of weak learnability. Machine learning, 5(2):197–227, 1990.

5

