
Computational Learning Theory
Hilary Term 2018

Week 3

Problem Sheet 1

Instructions: The problem sheets are designed to increase your understanding of the material
taught in the lectures, as well as to prepare you for the final exam. You should attempt to
solve the problems on your own after reading the lecture notes and other posted material,
where applicable. Once you have given sufficient thought to a problem, if you are stuck, you
are encouraged to discuss with others in the course and with the lecturer during office hours.
Please avoid posting on Piazza until the Wednesday before the submission deadline. You are
not permitted to search for solutions online.

1 Learning Hyper-rectangles

The concept class of hyper-rectangles over Rn is defined as follows:

Cn = {[a1, b1]× · · · × [an, bn] | ai, bi ∈ R, ai < bi}

Generalise the algorithm discussed in class (for rectangles in R2) and show that it efficiently
PAC learns the class of hyper-rectangles. Give bounds on the number of samples required to
guarantee that the error is at most ε with probability at least 1− δ.

Note: You may assume that the distribution D over Rn is defined using a density function that
is “smooth” (absolutely continuous) over all of Rn. (Optional : As an extra challenge, argue
why the algorithm still works even when such an assumption regarding the distribution does
not hold.)

2 PAC Learning : Confidence Parameter

An algorithm A “perhaps learns” a concept class C, if for all n, all c ∈ Cn, for every D over Xn

and for every 0 < ε < 1/2, A given access to EX(c,D) and inputs ε and size(c), runs in time
polynomial in n, size(c), 1/ε and outputs a polynomially evaluatable hypothesis h such that
with probability at least 3/4, err(h) ≤ ε. In other words, we’ve set δ = 1/4 in the standard
definition of PAC-learning. Show that if C is “perhaps learnable” then C is also efficiently
PAC-learnable.

Hint : You will have to use the Chernoff-Hoeffding bound.
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3 Hardness of Learning Boolean Threshold Functions

We will consider the question of learning boolean threshold functions. Let Xn = {0, 1}n and for
w ∈ {0, 1}n and k ∈ N, fw,k : Xn → {0, 1} is a boolean threshold function defined as follows:

fw,k(x) =


1 if

n∑
i=1

wi · xi ≥ k

0 otherwise

Let THn = {fw,k | w ∈ {0, 1}n, 0 ≤ k ≤ n} and TH =
⋃

n≥1 THn. Show that unless RP = NP,
there is no efficient PAC-learning algorithm for learning TH, if the output hypothesis is also
required to be in TH, i.e., a proper PAC-learning algorithm.

Hint : You should reduce from Zero-One Integer Programming (ZIP) which is known to be
NP-complete. An instance of ZIP consists of an s× n matrix A with entries in {0, 1}, a vector
b ∈ {0, 1}s and a pair (c, B) (the objective). The decision problem is to determine wither there
exists an assignment for the n variables z1, . . . , zn, each variable taking a value in the set {0, 1},

such that for each 1 ≤ i ≤ s,
n∑

j=1

Aijzj ≤ bi and
n∑

j=1

cjzj ≥ B.
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