
Computational Learning Theory
Hilary Term 2018

Week 4

Problem Sheet 2

Instructions: The problem sheets are designed to increase your understanding of the material
taught in the lectures, as well as to prepare you for the final exam. You should attempt to
solve the problems on your own after reading the lecture notes and other posted material,
where applicable. Once you have given sufficient thought to a problem, if you are stuck, you
are encouraged to discuss with others in the course and with the lecturer during office hours.
Please avoid posting on Piazza until the Wednesday before the submission deadline. You are
not permitted to search for solutions online.

1 Learning Parity Functions

Let Xn = {0, 1}n be the instance space. A parity function over Xn is defined by some subset
S ⊆ {1, . . . , n}, and takes the value 1 if and odd number of the input literals in the set {xi | i ∈ S}
are 1 and 0 otherwise. For example, if S = {1, 3, 4}, then the function f = x1⊕x3⊕x4 computes
the parity on the subset {x1, x3, x4}. Note that any such parity function can be represented
by a bit string of length n, by indicating which indices are part of S. Let PARITIES denote
the class of all parity functions. Show that the class PARITIES is efficiently PAC-learnable by
describing an algorithm, analysing its running time and proving its correctness.

Hint : The parity operation can be viewed as addition modulo 2.

2 Output Hypothesis as a Turing Machine

Recall that in the definition of PAC-learning, we require that the hypothesis output by the
learning algorithm be evaluatable in polynomial time. Suppose we relax this restriction, and
let H be the class of all Turing machines (not necessarily polynomial time)—so the output of
the learning algorithm can be any program. Let Cn be the class of all boolean circuits of size at
most p(n) for some fixed polynomial p and having n boolean inputs. Show that C =

⋃
n≥1Cn

is PAC-learnable using H (under this modified definition). Argue that this solution shows that
the relaxed definition trivialises the model of learning.

3 Learning Decision Lists

A k-decision list over n boolean variables x1, . . . , xn, is defined by an ordered list

L = (c1, b1), (c2, b2), . . . , (cl, bl),

and a bit b, where each ci is a clause (disjunction) of at most k literals (positive or negative)
and each bi ∈ {0, 1}. For a ∈ {0, 1}n the value L(a) is defined to be bj , where j is the smallest
index satisfying cj(a) = 1 and L(a) = b if no such index exists. Pictorially, a decision list

Page 1



Computational Learning Theory
Hilary Term 2018

Week 4

can be depicted as shown below. As we move from left to right, the first time a clause is satis-
fied, the corresponding bj is output, if none of the clauses is satisfied the default bit b is output.

x1 ∨ x3

b1

x4

b2

x2 ∨ x3

b3

x1 ∨ x5

b4

x4 ∨ x6

b5

x1 ∨ x6

b6

b

Give a consistent learner for the class of decision lists. As a first step, argue that it is enough
to just consider the case where all the clauses have length 1, i.e., in fact they are just literals.

Page 2


