
Computational Learning Theory
Hilary Term 2018

Week 8

Problem Sheet 6

Instructions: The problem sheets are designed to increase your understanding of the material
taught in the lectures, as well as to prepare you for the final exam. You should attempt to
solve the problems on your own after reading the lecture notes and other posted material,
where applicable. Once you have given sufficient thought to a problem, if you are stuck, you
are encouraged to discuss with others in the course and with the lecturer during office hours.
Please avoid posting on Piazza until the Wednesday before the submission deadline. You are
not permitted to search for solutions online. Questions marked with an asterisk (*) are optional.

1 Proper Learning with Classification Noise

Let C be a concept class that is efficiently proper PAC-learnable, i.e., there exists a learning
algorithm that outputs h ∈ C, such that err(h) ≤ ε, in addition to the usual PAC-guarantees.
Suppose that this same class C is PAC-learnable, but not necessarily proper PAC-learnable, in
the presence of random classification noise. Show that, in fact, C is also proper PAC-learnable
in the presence of random classification noise.

2 Learning Parities in the Presence of Noise

For this problem the distribution is fixed to be the uniform distribution, U , over {0, 1}n. Thus,
any learning algorithm that you design only has to succeed assuming that the data is generated
from the uniform distribution; the error will also be measured with respect to the uniform
distribution.

2.1 Persistent Random Classification Noise

We will allow the algorithm (membership) query access to the target function. However, the
answers received by the algorithm may be noisy. Furthermore, if the learning algorithm queries
the same point x ∈ {0, 1}n several times, it receives the same answer each time. (Otherwise, it
could simply query each point several times and use the majority label as the noise-free label.)
This model of noise is called the persistent random classification noise model.

Formally, let c ∈ C be the target concept. For noise rate η, define a (randomly chosen)
function c′ : {0, 1}n → {0, 1} as follows:

c′(x) =

{
c(x) with probabilty 1− η
1− c(x) with probabilty η

The random choice is independent for each x ∈ {0, 1}n. The algorithm can query a point
x ∈ {0, 1}n, and it receives c′(x). Since the algorithm knows that the distribution is uniform
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over {0, 1}n, it does not require random (noisy) labelled examples from the distribution; it can
generate uniform random points in {0, 1}n itself and query their labels.

For simplicity, we will only require that the learning algorithm succeed with probability 1
2 ,

instead of the usual 1−δ. The probability is over the random choice of c′ as well as any internal
randomisation used by the algorithm (if required). Give a (possibly randomised) algorithm
that learns the class PARITIES using membership queries in the presence of persistent random
classification noise for any η < 1

2 . (You may assume that the algorithm knows η.)

2.2 Adversarial Noise

We will now consider a stronger form of noise. An adversary may corrupt the data that the
algorithm receives; however the adversary is somewhat constrained. Recall that when c′ was
chosen randomly, it is the case that Px∼U ,c′ [c(x) 6= c′(x)] ≤ η. We will now allow c′ to be chosen
by an adversary, with the only constraint being that Px∼U [c(x) 6= c′(x)] ≤ η, i.e., it must be the
case that c(x) = c′(x) on all but at most η fraction of {0, 1}n. However, the points where the
label is corrupted may be chosen by the adversary to inflict maximum damage on any learning
algorithm.

1. When η = 1
5 , show that the class PARITIES can be learnt with membership queries under

adversarial noise. Recall that your goal is still to output some h, such that err(h; c,U) ≤ ε,
i.e., your error has to be low with respect to the true target c, not the corrupted c′.

2. Show that PARITIES is not PAC-learnable with membership queries under adversarial
label noise, when η ≥ 1

4 .

3 Agnostic Learning MONOTONE-CONJUNCTIONS

In this problem, we will consider the agnostic setting. In the agnostic setting, we make no
assumptions whatsoever about how the data is labelled. In particular, we let D be an arbitrary
distribution over X × {0, 1}, where X is the instance space. (For example, it is not ruled out
that you sometimes observe x ∈ X with label 1, and at other times with label 0.) For agnostic
learning, the example oracle EX(c,D) in the case of PAC-learning is replaced by EX(D), where
D is now a joint distribution over instances and labels.

As there is no promise of data being labelled according to any concept in a class, we will
relax the requirement that the learning algorithm output a highly accurate hypothesis. We will
say that a concept class C is agnostically learnable if the output hypothesis of the learning
algorithm, h, satisfies with probability at least 1− δ,

err(h;D) ≤ min
c∈C

err(c;D) + ε,

where for a distribution D over X × {0, 1} and a boolean function f : X → {0, 1}, err(f ;D) is
defined to be Pr(x,y)∼D[f(x) 6= y]. In other words, we are saying that C is agnostically learnable
if it is possible to predict as well as the best concept from C, not matter what the observed
data distribution.
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1. Show that the class MONOTONE-CONJUNCTIONS is not efficiently proper agnostically
learnable, i.e., if the output hypothesis h is required to be in MONOTONE-CONJUNCTIONS,
unless RP = NP.

Hint: Consider reducing from Vertex-Cover. Create exactly the same labelled sample
as in the proof to show proper learning 3-TERM-DNF is hard unless RP = NP.

*2. Show that this remains the case even when the algorithm is allowed to output a hypothesis
that is a conjunction (not necessarily monotone).

Hint: Consider adding the positive example, ((1, 1, 1, . . . , 1), 1) to your previous sample.
You may need to spread the probability mass around in a non-uniform manner.
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