
Computational Learning Theory

10 : Mistake-Bounded Learning

Lecturer: Varun Kanade

So far we’ve mainly looked at settings where there is an underlying distribution over the data
and we are given access to an oracle that provides random examples from this distribution.
While this framework provides a useful way to analyse the behaviour of learning algorithms, it
is not always the case that one may get independent training examples in practice. In reality,
the distribution from which the data is generated may change over time. In this lecture, we
will look at a specific learning framework that removes the requirement that data comes from
a fixed distribution as (stochastically) independent examples.

1 Online Prediction Framework

We consider the setting where the learning algorithm is interacting with an environment and
has to make predictions at discrete time-steps. Let X be an instance space and C a class of
concepts.1 The setup is as follows:

(a) At time t, the learning algorithm is presented an instance xt ∈ X.

(b) The learning algorithm makes a prediction ŷt ∈ {0, 1}.

(c) The true label yt is revealed and the learning algorithm is said to have made a mistake if
ŷt 6= yt.

The process defined above repeats indefinitely for t = 1, 2, How might one measure the
performance of such a learning algorithm? For a learning algorithm L and infinite sequence
((xi, yi))

∞
i=1, for time t ∈ N, define,

MISTAKES
(
t;L, ((xi, yi))

∞
i=1

)
=

t∑
s=1

1(ŷs 6= ys).

In the process defined above, the access L gets to the data ((xi, yi))
∞
i=1 is sequential, where

it has to make a prediction ŷt before seeing yt. We will only consider sequences ((xi, yi))
∞
i=1

for which there exists c ∈ C, such that yi = c(xi) for all i. We will say that C is learnable
with a finite mistake bound B, if there exists an online learning algorithm L, that for every
sequence ((xi, yi))

∞
i=1 that satisfies for some c ∈ C that for all i, yi = c(xi), satisfies for all t ∈ N,

MISTAKES(t;L, ((xi, yi))
∞
i=1) ≤ B.

It is worth making a couple of observations at this point. If X is finite and there is no restriction
on the computational resources available to L, one can always trivially get a mistake bound of
|X|. We will typically be interested in algorithms that are efficient in their use of space and
time. We will define the notion of efficiency later, but first let us consider an example. We will
design an algorithm for online learning CONJUNCTIONS in the mistake-bounded setting. The
Algorithm is shown given in Alg. 1.

Theorem 1. CONJUNCTIONS can be learnt online with mistake-bound n + 1. Furthermore,
the running time of the algorithm is polynomial in n at each time t.

1We will forgo the slightly cumbersome notational overhead of writing X =
⋃

n≥1 Xn and C =
⋃

n≥1 Cn and
implicitly assume that there is a parameter n that captures the size of instances. Likewise, we assume that there
is a function size(c) that gives the representation size of concepts.

1

Algorithm 1 Mistake-bounded algorithm for learning conjunctions

1: Input: Sequence ((xi, yi))
∞
i=1 provided online.

2: Let h1 = z1 ∧ z1 ∧ z2 ∧ z2 ∧ · · · ∧ zn ∧ zn . Start with conjunction of all literals
3: for t← 1, 2, . . . , do
4: Receive xt
5: ŷt = ht(xt)
6: Receive yt
7: if ŷt 6= yt then
8: Remove all zi from ht such that xt,i = 0
9: Remove all zi from ht such that xt,i = 1

10: Let ht+1 be the resulting conjunction
11: end if
12: end for

Proof. First observe that because we start with all literals in the hypothesis conjunction and
only drop literals where we are sure that the literal can’t be part of the target conjunction, the
only mistakes we make are of the form yt = 1 and ŷt = 0.

To begin, h1 has 2n literals. When the first mistake occurs, exactly n literals are removed: for
each i, exactly one of zi or zi is dropped. At every subsequent mistake at least one literal is
dropped. Thus, the number of mistakes cannot exceed n+ 1.

Finally, note that the algorithm is only maintaining a hypothesis conjunction and using it to
make the prediction ŷt. So the running time of the algorithm at each time-step is O(n).

Exercise: Show that the above bound is tight for this particular algorithm. What can you say
about a general mistake bound for any algorithm for online learning CONJUNCTIONS?

1.1 Resource Constraints on Online Algorithms

In the most generous setting, we can allow the algorithm L to predict ŷt using any computable
function of (x1, y1,x2, y2, . . . ,xt−1, yt−1,xt). For computationally efficient algorithms, we may
require that this function be computable in time polynomial in n, size(c) and t. However, as we
observed in the algorithm for learning CONJUNCTIONS, the algorithm did not need to store
the entire history of observations, but the current hypothesis ht was sufficient as a sketch of the
history up to that point.

We consider space-bounded algorithms, where at time t, the algorithm maintains a state St,
such that for each t, |St| ≤ poly(n, size(c)). For an efficient algorithm, we will require that
there are two polynomial time computable functions f and g, such that ŷt = f(St,xt) and
St+1 = g(St,xt, yt). Thus, the function f is used to make a prediction ŷt at time t, and g is
used to update the state.

Note that the we can define ht : X → {0, 1} as ht(x) = f(St,x), thus essentially this is
equivalent to the algorithm maintaining a hypothesis at each time t. Furthermore, because
of the requirement that |St| ≤ poly(n, size(c)), the total number of possible hypothesis is at
most 2poly(n,size(c)), thus the algorithm in this case is making predictions using a hypothesis that
comes from a fairly restricted class of hypotheses. We will refer to such algorithms as efficient
online algorithms.

2

1.2 Conservative Online Learning

Definition 2 (Conservative Online Learner). We say that an online learning algorithm is
conservative, if it only changes its prediction rule after making a mistake. Equivalently it only
updates its state if it makes a mistake.

Proposition 3. If C is learnable with a mistake bound B using an online learning algorithm
A, then C is learnable with mistake bound B using a conservative online learning algorithm.
The conservative online learning algorithm is efficient if A is efficient.

Proof. The proof of this result is relatively straightforward. We design an algorithm A′ as
follows. A′ initialises itself exactly the same way as A does. Let S′t be the state of the A′ at
time t and let m(t) denote the number of mistakes made by A′ up to (but no including) time
t. We will simulate A on a subsequence of examples on which A′ makes mistakes. We will
maintain the invariant that S′t = Sm(t)+1. Note that by definition S′1 = S1.

A′ behaves as follows. If there is no mistake at time t, then S′t+1 = S′t. If on the other hand a
mistake is made, then we pass the example xt to the simulation of A and set S′t+1 = Sm(t+1)+1.
Clearly A′ is conservative by definition. However, the prediction rule used by A′ at time t is
the same as the one used by A at time m(t) + 1; as a result every time A′ makes a mistake so
does A. Since A has a mistake bound of B, so does A′.

The requirement that an online learning algorithm be conservative is a natural one and the
above result shows that it is not a restrictive one. This result will be useful to establish that
efficient mistake-bounded online learning implies PAC learning.

2 Relationships to Other Models of Learning

In the PAC learning framework, we have access to an example oracle EX(c,D) that when queried
returns an example (x, c(x)) where x ∼ D. Earlier in the course, we also considered two other
oracles, a membership query oracle, MQ(c), which when queried with x, returns c(x), and an
equivalence query oracle, EQ(c), which when queried with a hypothesis h, either returns that
c ≡ h or returns a counterexample x, such that h(x) 6= c(x). We will now relate mistake-
bounded learning to learning using some of these other oracles.

2.1 Relationship to PAC Learning

Theorem 4. If C is efficiently learnable with a mistake bound B using an online learning
algorithm A, where B ≤ poly(n, size(c)), then C is efficiently PAC learnable.

Proof. Without loss of generality, let A be a conservative online learning algorithm. We generate
each example (xt, yt) at time t by querying the example oracle EX(c,D). Let ht denote the
hypothesis used by A at time t. Since A is conservative and has a mistake-bound of B, we need
to consider no more than B + 1 distinct hypotheses.

We either stop the simulation of A after B mistakes have been made and output the hypotheses
that is then guaranteed to be equal to the target c, or we stop the simulation if we simulate s =
1
ε log B

δ steps without making a mistake. The probability that a hypothesis, h, with err(h) ≥ ε
will go for s steps with examples drawn i.i.d from EX(c,D), without making a mistake is at
most (1− ε)s ≤ e−εs ≤ δ/B. Thus, a simple union bound suffices to show the correctness.

We remark that the condition that B ≤ (n, size(c)) together with the efficiency of A suffices to
conclude that the resulting PAC learning algorithm is efficient. Note that the sample complexity

of the resulting algorithm is O
(
B
ε log B

δ

)
.

3

Remark 5. If we wanted to allow non-efficient algorithms, but insist on polynomial sample
complexity and polynomial-time evaluatability of the hypothesis class, we would still require
B ≤ poly(n, size(c)) and would require that the online learning algorithm A had a polynomial
time prediction rule, even if the state update could potentially require more than polynomial
time.

2.2 Relationship to Learning Using Equivalence Queries

Proposition 6. If C is learnable with a mistake bound B using an online algorithm A, then
C can be learnt using EQ(c) only with at most B + 1 equivalence queries. Furthermore, if A is
efficient so is the algorithm that learns using EQ(c).

Proof. Let ht be the hypothesis used by A at time t for t ≥ 1. We will query EQ(c) with ht:
if we get that c ≡ ht, then we are done, otherwise we get a counterexample xt which forces A
to make a mistake at time t. In fact, this forces A to make mistakes at every single time-step
in the simulation. Thus, after B mistakes hB+1 will be identical to c. We can verify this by an
additional query to EQ(c).

Proposition 7. If C is learnable using only EQ(c) and makes at most Q queries to EQ(c),
then C is learnable with a mistake bound of Q using an online algorithm. Furthermore, if the
algorithm that learns using EQ(c) is efficient, then so is the online algorithm.

Proof. Let L be the learning algorithm that only uses EQ(c). At any point in its simulation
when it is about to make an equivalence query, it has a hypothesis h, we will use h to make
predictions in the online setting. If we make a mistake, we have successfully simulated the oracle
EQ(c) to get a counterexample. After Q such misakes L has a hypothesis h that is equivalent
to c and will make no further mistakes. Thus, the mistake bound is Q.

Theorem 4 also follows using Proposition 6 and an exercise previously seen that simulates an
equivalence oracle using EX(c,D). The results in these sections show that online learning with
a finite mistake bound is at least as hard as PAC learning. In fact it can be shown that it is
strictly harder in that for the class of linear threshold functions in general we cannot get a finite
mistake bound. We will discuss this point further in Section 4. We will study the Perceptron
algorithm in Section 4 that gives a finite mistake bound for learning linear threshold functions
with a margin. In Section 5, we will study an algorithm that learns sparse disjunctions with
a significantly improved mistake-bound than can be achieved directly using the Perceptron
algorithm.

3 The Halving Algorithm and Some Examples

In this section, we will see some information-theoretic bounds for mistake-bounded online learn-
ing algorithms. We will not be concerned with computational efficiency but see how these
compare to other notions such as the VC dimension.

Theorem 8. For any finite concept class C over an instance space X, the Halving algorithm
(Alg. 2) has a mistake bound of log |C|.

Proof. The proof is immediate. If there is a mistake at time t, then |Ct+1| ≤ |Ct|/2. Thus, after
log2 |C| mistakes, we can have at most one concept left, which must be the target concept.

It is also straightforward to see that VCD(C) is a lower bound for any achievable mistake bound
for deterministic algorithms, as we can give any learning algorithm points from a shattered

4

Algorithm 2 Halving algorithm for online learning C

Input: Sequence ((xi, yi))
∞
i=1 provided online.

Let C1 = C
for t← 1, 2, . . . , do

Receive xt
ŷt = majority{c(xt)|c ∈ Ct}
Receive yt
if ŷt 6= yt then

Ct+1 = {c ∈ Ct | c(xt) = yt}
end if

end for

set and force it to make a mistake on every one of them. We do know that for finite C,
VCD(C) ≤ log |C|. We will now see some examples where the gap between VCD(C) and log |C|
is large and show that it is possible for the mistake bound to lie at either end of this interval.

Dictators

Let X = {e1, . . . , en} be the instance space where ei is the ith basis vector which has 1 in the
ith co-ordinate and 0 everywhere else. Let C be the class of dictator functions C = {c1, . . . , cn},
where ci(x) = xi, i.e. the output of ci is simply the ith bit of x regardless of the remaining bits.2

In this case, the mistake bound of the Halving Algorithm is 1, as is the VCD(C); obviously in
this case log |C| = log n. As an exercise, you can show that if X = {0, 1}n, then the mistake
bound is indeed log n rather than 1.

Binary Search

Let X = {1, 2, . . . , 2n} ⊆ N. Let C be the class of half intervals defined as C = {ci|1 ≤ i ≤ 2n},
where,

ci(x) =

{
1 if x ≥ i
0 otherwise

In this case it is easy to see that VCD(C) = 1, however the mistake-bound for any algorithm
must be Θ(log n) = Θ(log |C|).

4 Perceptron

The Perceptron algorithm is perhaps the most famous online learning algorithm. It was designed
by Rosenblatt (1958) and the first proofs of its convergence were given by Block (1962) and
Novikoff (1963).

For the purpose of this section it will be convenient to treat Boolean functions as taking values
in {−1, 1} and also letting sign(0) = 1. We consider homogenous halfspaces, or linear threshold
functions passing through the origin, characterized by w ∈ Rn. This defines a threshold function
fw : Rn → {−1, 1} as,

fw(x) =

{
1 if w · x ≥ 0

−1 otherwise

2This terminology comes from social choice theory. The bits 0 and 1 can represent binary preferences of a

group of n individuals and a dicator rule essentially uses the preference of the ith individual, ignoring the rest.
Obviously, the majority rule also lies in this framework of social choice theory.

5

The Perceptron algorithm is given as Alg. 3.

Algorithm 3 The Perceptron Algorithm

Input: Sequence ((xi, yi))
∞
i=1 provided online.

Set w1 = 0 ∈ Rn
for t← 1, 2, . . . , do

Receive xt
ŷt = sign(xt ·wt)
Receive yt
if ŷt 6= yt then

wt+1 = wt + ytxt
end if

end for

Before we formally analyse the algorithm, it is worth understanding geometrically what the
algorithm is doing. Let w? be the true vector that defines the labels yt. If the algorithm makes
a mistake at time t it must be the case that w? · xt and wt · xt have opposite signs. Thus
adding ytxt to wt has the effect of rotating wt in the direction of w?. This is reasonably correct
intuition, but it is not perfectly accurate, it only does this on average as will be established by
Lemmas 10 and 11. Rather than analyse the angles between wt and w?, it will be easier to
show that the inner product between wt and w? increases every time a mistake is made and
that the length of wt doesn’t increase too much. This means that the increase in inner product
is at least in part caused by the decrease in the angle and not merely by the increase in the
length. We state and prove the following theorem.

Theorem 9. Suppose ((xi, yi))
∞
i=1 is a sequence such that for every t, ‖xt‖2 ≤ D and there

exists w? ∈ Rn with ‖w?‖2 = 1 and γ > 0, such that for every t, yt(w
? ·xt) ≥ γ. Then the total

number of mistakes made by the Perceptron Algorithm (Alg. 3) with input sequence ((xi, yi))
∞
i=1

is bounded by D2/γ2.

Proof. Let mt denote the number of mistakes made by the Perceptron algorithm up to but not
including time t. Using Lemmas 10 and 11, we have the following,

mtγ ≤ w? ·wt Lemma 10

≤
∥∥w?

∥∥
2
‖wt‖2 By the Cauchy-Schwarz Inequality

≤
√
mtD. Lemma 11

This gives that mt ≤ D2/γ2 for every t.

Lemma 10. Let mt denote the number of mistakes made by the Perceptron algorithm (Alg. 3)
up to, but not including, time t on a sequence ((xi, yi))

∞
i=1 satisfying the conditions of Theorem 9.

Then,
wt ·w? ≥ γmt.

Proof. We prove this by induction. When t = 1, wt = 0 and mt = 0, so this is clearly true.

Now suppose this is true for time t. If no mistake occurs at time t, then mt+1 = mt and
wt+1 = wt, so the inequality continues to hold. On the other hand, if there is a mistake, then

6

mt+1 = mt + 1, and we have,

wt+1 ·w? = (wt + ytxt) ·w?

≥ mtγ + yt(xt ·w?)

≥ (mt + 1)γ = mt+1γ.

This completes the proof.

Lemma 11. Let mt denote the number of mistakes made by the Perceptron algorithm (Alg. 3)
up to, but not including, time t on a sequence ((xi, yi))

∞
i=1 satisfying the conditions of Theorem 9.

Then,
‖wt‖22 ≤ D

2mt.

Proof. We prove this by induction. When t = 1, wt = 0 and mt = 0, so this is clearly true.

Now suppose this is true for time t. If no mistake occurs at time t, then mt+1 = mt and
wt+1 = wt, so the inequality continues to hold. On the other hand, if there is a mistake, then
mt+1 = mt + 1, and we have,

‖wt+1‖22 = ‖wt + ytxt‖22
≤ ‖wt‖22 + ‖xt‖22 + 2ytwt · xt
≤ mtD

2 +D2

≤ (mt + 1)D2 = mt+1D
2.

Above, in the second last step, we used the fact that ‖xt‖2 ≤ D and that yt(wt · xt) < 0 as the
Perceptron algorithm made a mistake at time t. This completes the proof.

Some Comments

Notice that for convergence, we require a margin condition: y(w? · x) ≥ γ > 0 for all points
(x, y) seen by the algorithm. Clearly, the condition implies that y has the same sign as w? · x,
but it further says that the projection of x in the direction of w? must have length at least γ
(as w? is a unit vector). This means that there is a region of width 2γ around the hyperplane
{x | w? · x = 0} in which we do not observe any data. This is what it means to say that
the linear threshold function has a margin γ under the distribution. On Problem 3 of Sheet
6, you will essentially show a matching lower bound on the mistakes made by the Perceptron
algorithm. It is in fact possible to show that no online algorithm can achieve a finite mistake
bound without a margin condition for learning threshold functions. This can already be seen in
the one-dimensional case by generalizing the binary search example from Section 3. It is worth
recalling that in the PAC setting we do have efficient algorithms for learning linear threshold
functions. Thus, this also yields a separation between PAC learning and mistake-bounded online
learning.

It is also worth comparing the updates of the Perceptron algorithm to the algorithm we de-
veloped for learning GLMs. Note that we can consider sign : R → R as a function that is
monotone; it is however not Lipschitz. If we used the same surrogate loss approach we would
get update rules that are the same as the one used by Perceptron (up to constant factors);
this corresponds to an online gradient descent approach. The margin condition allows us to
use a Lipschitz approximation of the sign function as there is no data in the region around the
boundary.

7

5 The Winnow Algorithm

We will now look at an online learning problem where the target function depends on a relatively
small number of features, but the total number of available features is very large. The particular
example we shall look at is the class of monotone disjunctions. Let X = {0, 1}n be the instance
space, for any subset S ⊆ [n], then define the monotone disjunction,

fS(x) =
∨
i∈S

xi.

The class of monotone disjunctions is the set of all such fS , S ⊆ [n]. For any monotone
disjunction, fS , it can be expressed as a linear threshold function,

fS(x) = sign

∑
i∈S

xi −
1

2

 ,

where we map {0, 1} to {−1, 1} in order to ensure the equivalence. This suggests that one can
use the Perceptron algorithm for online learning monotone disjunctions. There are a couple of
tweaks required to make this work. First, the way we have defined the Perceptron algorithm it
only works for homogeneous halfspaces. This is relatively easy to handle. We instead consider
the instance space to be Xn+1 and let the last bit of all examples always be 1. Then, any
threshold function of the form sign(w · x + b) where w ∈ Rn, x ∈ Xn and b ∈ R can be written
as sign((w, b) · (x, 1)), where (w, b) ∈ Rn+1 and (x, 1) ∈ Xn+1.

Second, we need to look at target vectors having norm 1 in order to apply Theorem 9. For
S ⊆ [n], let w?

S ∈ Rn+1 be such that w?
i = c if i ∈ S and w?

i = 0 for i 6∈ S and i ≤ n, and
let w?

n+1 = −c/2. By setting c2 = 1/(|S| + 1
4) we can ensure that ‖w?‖2 = 1. Note that

fS(x) = sign(w?
S · (x, 1)) for every x ∈ Xn. Clearly, we have that

∥∥(x, 1)
∥∥2
2
≤ n + 1. And

y(w?
S · (x, 1)) ≥ c/2. Thus, we can use γ = c/2 and D =

√
n+ 1, to get a mistake bound of

4(n+1)(|S|+ 1
4). If we knew that |S| ≤ k, applying Theorem 4 this would give us a PAC learning

algorithm with a sample complexity O((nk/ε) log(nk/ε)). However, using Occam’s Razor, we
would expect a sample complexity of O((k log n)/ε+ log(1/δ)/ε).

We will study an online algorithm called Winnow which achieves a mistake bound of O(k log n)
for this problem. This will essentially give us a near optimal sample complexity after applying
Theorem 4. The online algorithm itself is of independent interest as it uses multiplicative weight
updates which we shall study in greater detail later. This algorithm and its analysis appeared
in the work of Littlestone (1988). The algorithm in the paper can be generalized to certain
types of linear threshold functions which we won’t consider here.

Winnow starts by assigning a weight of 1 for every input feature. It adjusts these weights every
time it makes a mistake by either doubling the weight for some feature or setting it to 0. Once
a weight is set to 0 it can never become non-zero again. The predictions are made using a
weighted majority rule. The main result we will prove is that for online learning monotone
disjunctions, the mistake bound of Winnow is O(k log n), where k is the number of variables in
the target disjunction.

Theorem 12. Let ((xi, yi))
∞
i=1 be an infinite sequence with yi = fS(xi) for every i where |S| = k.

Then if Winnow (Alg. 4) is given this input in an online fashion, the number of mistakes made
by Winnow is at most 2k log2 n+ 2.

Proof. We will prove this theorem through a sequence of claims which are proved separately.
Let P be the number of times the algorithm makes mistakes of the form where yt = 1 and
ŷt = 0. These are promotion steps, as the weights increase for some of the features. Let E be

8

Algorithm 4 The Winnow Algorithm

Input: Sequence ((xi, yi))
∞
i=1 provided online.

Set w1 = (1, 1, . . . , 1) ∈ Rn
for t← 1, 2, . . . , do

Receive xt
ŷt = 1

(
xt ·wt ≥ n

2

)
∈ {0, 1}

Receive yt
if ŷt = 1 and yt = 0 then

wt+1,i = 0 for all i such that xt,i = 1.
else if ŷt = 0 and yt = 1 then

wt+1,i = 2wt,i for all i such that xt,i = 1.
end if

end for

the number of times the algorithm makes mistakes of the form of yt = 0 and ŷt = 1. These are
elimination steps, as some weights are set to 0.

The total number of mistakes is P +N . Claim 15 shows that P ≤ k log2 n and Claim 14 shows
that E ≤ P + 2. Together these yield the required result.

Claim 13. Under the conditions of Theorem 12, if wt,i is the weight of the ith feature at time
t for the Winnow Algorithm (Alg. 4), we have wi,t ≤ n.

Proof. Suppose there is a mistake at time t. Clearly the weights only increase when yt = 1 and
ŷt = 0. Only those indices i for which xt,i = 1 can have their weights changed. The fact that
ŷt = 0 means that wt,i < n/2 for each i such that xt,i = 1. Then, it follows that wt+1,i ≤ n.

Claim 14. Under the conditions of Theorem 12, if P is the number of mistakes when ŷt = 0
and E is the number of mistakes when ŷt = 1, we have E ≤ P + 2.

Proof. We consider how the quantity
∑

iwt,i varies with time. Note that this quantity is always
non-negative and when t = 1,

∑
iw1,i = n. Every mistake where yt = 1 and ŷt = 0 increases

the sum of weights by at most n/2. This is because the weights are doubled for all i such that
xt,i = 1; however, the reason ŷt = 0 was that

∑
iwt,ixt,i < n/2. So doubling these weights can’t

increase the total weight by more than n/2.

On the other hand, by essentialy the same logic, every mistake where yt = 0 and ŷt = 1 decreases
the total weight by at least n/2.

Thus, we have for all t,

0 ≤
∑
i

wt,i ≤ n+ P · n
2
− E · n

2
.

The conclusion then follows.

Claim 15. Under the conditions of Theorem 12, if P is the number of mistakes when ŷt = 0,
we have P ≤ k log2 n.

Proof. We look at each time a mistake of the type where yt = 1 and ŷt = 0 occurs. There must
be some i ∈ S, where S is the set of literals in the target disjunction, such that xt,i = 1. Thus
wt,i will be doubled. Note that for any i ∈ S, wt,i can never be set to 0 and every mistake
that is counted in P doubles the weight of at least one of the relevant variables. The fact that
|S| ≤ k and Claim 13 finishes the proof.

9

References

Hans-Dieter Block. The perceptron: A model for brain functioning. i. Reviews of Modern
Physics, 34(1):123, 1962.

Nick Littlestone. Learning quickly when irrelevant attributes abound: A new linear-threshold
algorithm. Machine learning, 2(4):285–318, 1988.

Albert B Novikoff. On convergence proofs for perceptrons. Technical report, Stanford Research
Institute, Menlo Park, CA, 1963.

Frank Rosenblatt. The perceptron: a probabilistic model for information storage and organiza-
tion in the brain. Psychological review, 65(6):386, 1958.

10

