
Computational Learning Theory
Michaelmas Term 2022

Problem Sheet 5

Instructions: The problem sheets are designed to increase your understanding of the material
taught in the lectures, as well as to prepare you for the final exam. You should attempt to solve
the problems on your own after reading the lecture notes and other posted material, where
applicable. Problems marked with an asterisk are optional. Once you have given sufficient
thought to a problem, if you are stuck, you are encouraged to discuss with others in the course
and with the lecturer during office hours. You are not permitted to search for solutions online.

1 Learning Rectangles using Statistical Queries

We will consider an extension of the statistical query model, where in addition to making queries
of the form (χ, τ) to the oracle STAT(c,D), the learning algorithm is allowed access to unlabelled
examples from D, i.e., it may get points x ∈ X drawn according to D, but not the labels c(x).

1. Briefly argue why any concept that is (efficiently) learnable with access to STAT(c,D)
and unlabelled examples, is also (efficiently) learnable with access to the noisy example
oracle, EXη(c,D).

2. Give an efficient algorithm for learning axis-aligned rectangles in the plane using STAT(c,D)
and unlabelled examples.

2 Proper Learning with Classification Noise

Let C be a concept class that is efficiently proper PAC-learnable, i.e., there exists a learning
algorithm that outputs h ∈ C, such that err(h) ≤ ϵ, in addition to the usual PAC-guarantees.
Suppose that this same class C is efficiently PAC-learnable, but not necessarily efficiently proper
PAC-learnable, in the presence of random classification noise. Show that, in fact, C is also
efficiently proper PAC-learnable in the presence of random classification noise.

3 Learning Parities in the Presence of Noise

For this problem the distribution is fixed to be the uniform distribution, U , over {0, 1}n. Thus,
any learning algorithm that you design only has to succeed assuming that the data is generated
from the uniform distribution; the error will also be measured with respect to the uniform
distribution.

3.1 Persistent Random Classification Noise

We will allow the algorithm (membership) query access to the target function. However, the
answers received by the algorithm may be noisy. Furthermore, if the learning algorithm queries
the same point x ∈ {0, 1}n several times, it receives the same answer each time. (Otherwise, it
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could simply query each point several times and use the majority label as the noise-free label.)
This model of noise is called the persistent random classification noise model.

Formally, let c ∈ C be the target concept. For noise rate η, define a (randomly chosen) function
c′ : {0, 1}n → {0, 1} as follows:

c′(x) =

{
c(x) with probabilty 1− η

1− c(x) with probabilty η

The random choice is independent for each x ∈ {0, 1}n. The algorithm can query a point
x ∈ {0, 1}n, and it receives c′(x). Since the algorithm knows that the distribution is uniform
over {0, 1}n, it does not require random (noisy) labelled examples from the distribution; it can
generate uniform random points in {0, 1}n itself and query their labels.

For simplicity, we will only require that the learning algorithm succeed with probability 1
2 ,

instead of the usual 1−δ. The probability is over the random choice of c′ as well as any internal
randomisation used by the algorithm (if required). Give an efficient (possibly randomised)
algorithm that learns the class PARITIES using membership queries in the presence of persistent
random classification noise for any η < 1

2 . (You may assume that the algorithm knows η.)

3.2 Adversarial Noise

We will now consider a stronger form of noise. An adversary may corrupt the data that the
algorithm receives; however the adversary is somewhat constrained. Recall that when c′ was
chosen randomly, it is the case that Px∼U ,c′ [c(x) ̸= c′(x)] ≤ η. We will now allow c′ to be chosen
by an adversary, with the only constraint being that Px∼U [c(x) ̸= c′(x)] ≤ η, i.e., it must be the
case that c(x) = c′(x) on all but at most η fraction of {0, 1}n. However, the points where the
label is corrupted may be chosen by the adversary to inflict maximum damage on any learning
algorithm. The only constraints on the adversary are that the total error cannot be more then
η and it has to introduce the noise before the learning algorithm asks queries.

1. When η = 1
5 , show that the class PARITIES can be learnt with membership queries under

adversarial noise. Recall that your goal is still to output some h, such that err(h; c,U) ≤ ϵ,
i.e., your error has to be low with respect to the true target c, not the corrupted c′.

2. Show that PARITIES is not PAC-learnable with membership queries under adversarial
label noise, when η ≥ 1

4 .
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