
Computational Learning Theory
Michaelmas Term 2023

Problem Sheet 3

Instructions: The problem sheets are designed to increase your understanding of the material
taught in the lectures, as well as to prepare you for the final exam. You should attempt to solve
the problems on your own after reading the lecture notes and other posted material, where
applicable. Problems marked with an asterisk are optional. Once you have given sufficient
thought to a problem, if you are stuck, you are encouraged to discuss with others in the course
and with the lecturer during office hours. You are not permitted to search for solutions online.

1 VC Dimension of Linear Halfspaces in Rn

We will show that the concept class of linear halfspaces in Rn has VC-dimension n+ 1.

1. Give a set of n+ 1 points in Rn that is shattered by the class of linear halfspaces.

2. We want to show that no set of m = n + 2 points in Rn can be shattered by the class
of linear halfspaces. For this you can use what is called as Radon’s theorem, described
below.

3.* Prove Radon’s theorem.

Given a set S = {x1, . . . , xm} ⊂ Rn, the convex hull of S is the set,

{z ∈ Rn | ∃λ1, . . . , λm ∈ [0, 1],
m∑
i=1

λi = 1, z =
m∑
i=1

λixi}

Radon’s Theorem: Let m ≥ n + 2, then S must have two disjoint subsets S1 and S2 whose
convex hulls intersect.

2 Properties of AdaBoost

Consider the AdaBoost algorithm as described in the lecture notes and assume that the weak
learning algorithm succeeds with probability 1 at each iteration.

1. Show that the error of ht with respect to the distribution Dt+1 is exactly 1/2.

2. What is the maximum possible value of Dt(i) for some 1 ≤ t ≤ T and 1 ≤ i ≤ m?

3. Fix some example, say i, let ti be the first iteration such that hti(xi) = yi. How large can
ti be?

3 Weak Learning CONJUNCTIONS and PARITIES

Consider the instance space Xn = {0, 1}n. Consider the following hypothesis class:

Hn = {0, 1, x1, x1, x2, x2, . . . , xn, xn}.
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The hypothesis class contains 2n + 2 functions. The functions “0” and “1” are constant and
predict 0 and 1 on all instances in Xn. The function “xi” evaluates to 1 on any a ∈ {0, 1}n
satisfying ai = 1 and 0 otherwise. Likewise, the function “xi” evaluates to 1 on any a ∈ {0, 1}n
satisfying ai = 0 and 0 otherwise. Thus a single bit of the input determines the value of these
functions; for this reason these functions are sometimes referred to as dictator functions.

1. Show that the class CONJUNCTIONS is 1
10n -weak learnable using H.

Hint: The factor 10 is not particularly important, just a sufficiently large constant.

2. Let CONJUNCTIONSk denote the class of conjunctions on at most k literals. Give an
algorithm that PAC-learns CONJUNCTIONSk and has sample complexity polynomial in
k, log n, 1

ϵ and 1
δ . What would be the sample complexity if you had used the algorithm

for learning CONJUNCTIONS discussed in the lectures?

Hint: First show that the weak learning algorithm in the previous part can be modified to
be a 1

10k -weak learner in this case.

3. Show that there does not exist a weak learning algorithm for PARITIES using H.
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