
CS 174: Combinatorics and Discrete Probability Fall 2012

Homework 10

Due: Thursday, November 29, 2012 by 9:30am

Instructions: You should upload your homework solutions on bspace. You are strongly encour-
aged to type out your solutions using LATEX. You may also want to consider using mathematical
mode typing in some office suite if you are not familiar with LATEX. If you must handwrite your
homeworks, please write clearly and legibly. We will not grade homeworks that are unreadable. You
are encouraged to work in groups of 2-4, but you must write solutions on your own. Please review
the homework policy carefully on the class homepage.

Note: You must justify all your answers. In particular, you will get no credit if you simply write
the final answer without any explanation.

Problem 1. (Exercise 10.6 from MU – 8 points) The problem of counting the number of solutions
to a knapsack instance can be defined as follows: Given items with sizes a1, . . . , an > 0 and an
integer b > 0, find the number of vectors (x1, x2, . . . , xn) ∈ {0, 1}n, such that

∑n
i=1 aixi ≤ b. The

number b can be thought of as the size of a knapsack, and the xi denote whether or not each item
is put into the knapsack. Counting solutions corresponds to counting the number of different sets
of items that can be placed in the knapsack without exceeding its capacity.

(a) A näıve way of counting the number of solutions to this problem is to repeatedly choose
(x1, . . . , xn) ∈ {0, 1}n uniformly at random. If f is the fraction of valid solutions, then return
f · 2n. Argue why this is not a good strategy in general; in particular, argue that it will work
poorly when each ai is 1 and b =

√
n.

(b) Consider a Markov chain, X0, X1, . . . , on vectors (x1, . . . , xn) ∈ {0, 1}n. Suppose that Xj

is (x1, . . . , xn). At each time step, the Markov chain chooses i ∈ {1, . . . , n} uniformly at
random. If xi = 1, then Xj+1 is obtained from Xj by setting xi to 0. If xi = 0, then Xj+1

is obtained from Xj by setting xi to 1 if doing so maintains the restriction
∑n

i=1 aixi ≤ b.
Otherwise, Xj+1 = Xj .

Argue that this Markov chain has a uniform stationary distribution whenever
∑n

i=1 ai > b.
Be sure to argue that the chain is irreducible and aperiodic.

(c) Argue that, if we have an FPAUS for the knapsack problem, then we can derive an FPRAS for
the problem. To set up the problem properly, assume without loss of generality that a1 ≤ a2 ≤
· · · ≤ an. Let b0 = 0 and bi =

∑i
j=1 ai. Let Ω(bi) be the set of vectors (x1, . . . , xn) ∈ {0, 1}n

that satisfy
∑n

i=1 aixi ≤ bi. Let k be the smallest integer such that bk ≥ b. Consider the
equation

|Ω(b)| = |Ω(b)|
|Ω(bk−1)|

× |Ω(bk−1|
|Ω(bk−2)|

× · · · × |Ω(b1)|
|Ω(b0)|

× |Ω(b0)|

You will need to argue that |Ω(bi−1)|/|Ω(bi)| is not too small. Specifically, argue that |Ω(bi)| ≤
(n+ 1)|Ω(bi−1)|.
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Problem 2. (Exercise 10.7 from MU – 6 points) An alternative definition of an ε-uniform sample
of Ω is as follows: A sampling algorithm generates an ε-uniform sample w if, for all x ∈ Ω,

|Pr(w = x)− 1/|Ω||
1/|Ω|

≤ ε.

Show that an ε-uniform sample under this definition yields an ε-uniform sample as given in Defini-
tion 10.3.

Problem 3. (Exercise 10.12 from MU – 6 points) The following generalization of the Metropolis
algorithm is due to Hastings. Suppose that we have a Markov chain on a state space Ω given by
the transition matrix Q and that we want to construct a Markov chain on this state space with
a stationary distribution πx = b(x)/B, where for all x ∈ Ω, b(x) > 0, and B =

∑
x∈Ω b(x) is

finite. Define a new Markov chain as follows: When Xn = x, generate a random variable Y with
Pr(Y = y) = Qx,y. Notice that Y can be generated by simulating one step of the original Markov
chain. Set Xn+1 to Y with probability

min

(
πyQy,x

πxQx,y
, 1

)
,

and otherwise set Xn+1 to Xn. Argue that, if this chain is aperiodic and irreducible, then it is also
time reversible and has a stationary distribution given by the πx.

Problem 4. (10 points) In this problem we will use a different fingerprinting technique to solve
the pattern matching problem. The idea is to map any bit string s into a 2 × 2 matrix M(s) as
follows:

• For the empty string ε, M(ε) =

[
1 0
0 1

]
.

• M(0) =

[
1 0
1 1

]
.

• M(1) =

[
1 1
0 1

]
.

• For non-empty strings x and y, M(xy) = M(x)×M(y).

Show that this fingerprint function has the following properties.

1. M(x) is well-defined for all x ∈ {0, 1}∗.

2. M(x) = M(y)⇒ x = y.

3. For x ∈ {0, 1}n, the entries in M(x) are bounded by Fibonacci number, Fn. (Where the
Fibonacci numbers are defined by the recurrence, F0 = F1 = 1, and Fn = Fn−1 + Fn−2. You
may have to use a slightly clever induction to prove this.)

By considering the matrices M(x) modulo a suitable prime p, show how you would perform
efficient randomized pattern matching.
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