
CS 174: Combinatorics and Discrete Probability Fall 2012

Homework 11

This homework is not for submissiom

In this homework, we will see a few of the numerous applications of the weighted majority algo-
rithm. It is remarkable how powerful a simple algorithm, such as the multiplicative update rule,
can be. The problem statements here may appear long, but that is mainly because this homework
is combining some aspects of lecture notes and practice problems. It is suggested that you attempt
these problems in preparation for the final exam. The solutions to these problems will be posted in
the middle of next week.

Problem 1. (von Neumann’s Minmax Theorem). The first problem is one in game theory. We
consider a game between two players, where player 1 can choose from among n options and player
2 can choose from among m options. The payoff to player 1 is given by a payoff matrix, An×m,
where Aij is the payoff received by player 1 if she plays i and player 2 plays j. We will consider
zero-sum games, thus, the payoff matrix from the second player will simply be −A. We will assume
that each entry of the matrix A is bounded in the range [−M,M ].

The players may play according to mixed strategies, i.e. instead of choosing a single option, they
choose a distribution over the available options. Suppose, player 1 chooses a distribution, x ∈ ∆n,
and player 2 chooses a distribution, y ∈ ∆n, then the expected payoff received by player 1 is xTAy.

In order to consider the value of the game, it is useful to think of one player going first and
announcing her strategy, and the second player using best response. Suppose player 1 plays first,
then she guarantee that her expected payoff is v1 = maxx∈∆n miny∈∆m xTAy. This is the max-min
value, denoted by v1. Here, the second player tries to minimize the expected payoff of player 1
(since it is a zero-sum game). One way to think of this as follows, suppose player 1 is going to use
x as her strategy and she announces it. In that case, player 2 will choose y that minimizes, xTAy.
Player 1 should choose the vector x that maximizes this minimum value.

Similarly, if player 2 goes first, and announces y. Then the maximum expected value that player
1 can obtain is miny∈∆m maxx∈∆n x

TAy. This is the min-max value, denoted by v̄1. The min-max
theorem, states that v1 = v̄1, or that the max-min and min-max values are the same. Thus, who
plays first is irrelevant.

We will prove the min-max theorem using the repeated n-decision problem. Suppose, the two
players play the same game for time steps t = 1, . . . , T . Player 1 goes first and plays using the
weighted majority algorithm. Player 2 plays best response, i.e. if player 1 plays xt ∈ ∆n at time
step t, player 2 chooses yt, that minimizes (xt)TAyt.

1. First show that the max-min value is smaller than the min-max value, i.e. v1 ≤ v̄1. (This
should obviously be the case, since going second is an advantage.)
Solution: maxx∈∆n x

TAy ≥ xTAy for every x and y. Now taking the min with respect
to y, we have v̄1 = miny∈∆m maxx∈∆n x

TAy ≥ miny∈∆m xTAy for every x. Therefore the
inequality remains even when taking max over x of the RHS. Thus, v̄1 ≥ v1.

2. Show that the average payoff of player 1, 1
T

∑T
t=1(xt)TAyt is at most v1.

Solution: We consider the repeated n-decision problem described above. Since player 1 goes
first on each round, she can never achieve more than v1 = maxx∈∆n miny∈∆m xTAy, on any
given round. Thus, the average payoff of player 1 is at most v1.
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3. Show that the average payoff that player 1 could have obtained in hindsight is at least v̄1.
Solution: Suppose y1, . . . ,yT are the actual vectors played by player 2 in the game. Let
ȳ = 1

T

∑T
t=1 y

t. The best average payoff in hindsight is maxx∈∆n xTAȳ. Clearly this quantity
is at least v̄1.

4. Use the weighted majority theorem in the limit as T →∞ to conclude the fact that v1 = v̄1.
Solution: The Weighted Majority Theorem guarantees that the average regret is at most

O(M

√
log(n)
T ). Let M be a bound on the absolute value of the all entries in A (this can always

be done since A is finite). Then, this implies v̄1 − v1 ≤ O(M

√
log(n)
T ) for every value of T .

Taking limit as T →∞ implies that v1 = v̄1.

Problem 2. (Linear Programming) A typical linear program has the following form:

min cT · x
subject to:

Ax ≤ b

x ≥ 0

where x ∈ Rm, xi ≥ 0 for i = 1, . . . , n. A is an n×m matrix, b ∈ Rn. Thus, there are n constraints;
and c ∈ Rm. Let ai denote the ith row of A and bi denote the ith entry of the vector b. Thus,
aTi x ≤ bi is simply the ith constraint of a linear program. One way to solve a linear program is to
guess the value of the objective function, say z∗ (by binary search) and try to find a vector in the
set P = {x | x ≥ 0, cTx = z∗}. The superscript, T , here means the transpose.

1. Let a ∈ Rm and b ∈ R. Show that if there is only one constraint, aTx ≤ b, then it is easy to
determine if there exists x ∈ P for which the constraint is satisfied.
Solution: The observation here is that this is a linear program with only one constraint.
While still simple, it is not trivial. So you may ignore this part of the problem. We may
assume without loss of generality that z∗ > 0. Then the program is feasible if and only if
mini∈[m],ci>0

aiz
∗

ci
≤ b.

2. Now, let ρ = max{maxi,x∈P |aTi x − bi|, 1}. We will set up a repeated n-decisions problem.
Each constraint is thought of as one of n choices. Suppose wt is the distribution over the n
constraints obtained by playing weighted majority at time step t. Let at = (wt)TA and let
bt = (wt)Tb. We consider the constraint (at)Tx ≤ bt. Show that if there is no x ∈ P that
satisfies (at)Tx ≤ bi, then the original program is infeasible, i.e. there is no x ∈ P, such that
Ax ≤ b.
Solution: Suppose the original program was feasible, i.e. ∃x ∈ P, such that Ax ≤ b. Then
for such an x, for any w ∈ ∆n, wTAx ≤ wTb. Thus, if the constraint (at)Tx ≤ bt is
infeasible, then the original program must be infeasible.

3. Otherwise, let xt be any vector in the set P that satisfies the constraint, (at)Txt ≤ bi. The
payoff for action (constraint) i is (ai)

T · xt − bi. Show, that the payoff of the algorithm is
negative at each round, unless the program was declared infeasible.
Solution: Note that the payoff of the algorithm is simply

∑n
i=1 w

t
i((ai)

Txt−bi) = (wt)TAxt−
wtb which is negative, since xt was chosen to be a feasible point.

4. Let x∗ = 1
T

∑T
t=1 x

t and suppose T = 16ρ2 ln(n)/ε2. Then show that, atix
∗ ≤ bi + ε for each

i.
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Solution: Let payoffWM be the total payoff obtained by playing the weighted majority algo-
rithm. Note that this payoff is negative. The weighted majority algorithm guaratees that for
each i,

((ai)
Tx∗ − bi)− payoffWM ≤ 4ρ

√
ln(n)

T

Since, payoffWM < 0 and substituting the value of T , we get (ai)
Tx∗ ≤ bi + ε for every i.

Remark: What we have shown is that we have almost solved the linear program. Note that each
constraint may be violated slightly (by ε), and a tighter guarantee may be obtained using a larger
T . This is not the most optimal method to solve linear programs. More involved algorithms, such
as the ellipsoid algorithm, do give truly polynomial time algorithms for linear programming. None
the less, the above approach can be used to obtain interesting polynomial time approximation al-
gorithms, when it is sufficient to find an approximately feasible solution to a linear program.

Problem 3. (Sleeping Experts). A variation of the standard n-decision problem, is the sleeping
experts problem. Here, each of the n decisions is just some expert advice. However, at any given
time step t, the decision-maker (your algorithm) may only have access to a subset, St ⊆ [n] of
experts. The remaining experts may be sleeping.

The notion of regret in hindsight is more involved in this case. Note that the payoff of the best
expert makes little sense, because some experts may not be available (awake) on every round. We
consider the following to be the best strategy in hind-sight: we consider a ranking over the experts.
A ranking, σ is simply a permutation of n elements. At time-step t, the ranking strategy according
to σ, is implemented as follows: let σ(St) denote the highest-ranked expert that is in St according
to ranking σ. For example, if n = 5, σ = (3, 2, 4, 1, 5) and St = {1, 4}, then the strategy would be
to follow the advice of expert 4, since the 4th expert is awake and ranked higher than other awake
experts (in this case just expert 1). Thus the regret is measured with respect to the best ranking in
hindsight (when the payoffs for all experts are known). We assume that the payoffs for each expert
lie in the range [−M,M ]. Then,

regret = max
σ∈perm(n)

1

T

T∑
t=1

ptσ(St) −
1

T

T∑
t=1

ptdt ,

where dt is the expert (from the set St), chosen by the decision-maker, and σ(St) is the expert that
would have been chosen by the ranking σ.

Show that it is possible to obtain an algorithm that after T time-steps has regret O(M

√
n log(n)

T ).
Show that in fact you can assume that each of the n! possible rankings is a new meta-expert. Now
implement weighted-majority algorithm as if you were playing a repeated n!-decision game with
n! experts. You may assume that at the end of the round, the entire payoff vector is revealed,
including the payoffs that experts who were sleeping (and were not available to the decision-maker)
would have received. What can you say about the running time of your algorithm?

Solution: As indicated in the problem statement, let each permutation over the experts be a
meta-expert. We use the weighted majority algorithm with n! possible choices at each round. Note
that whenever we receive the payoff information at the end of each round, it is possible to deduce
what payoff each of the n! meta-experts would have received. Thus, we can make the appropriate
updates to weighted majority.
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We use the fact that log(n!) = O(n log(n)) to get the required result. The running time at each
time-step is n! which is prohibitively expensive. However, it is unlikely that there is any polynomial
time strategy that gives a non-trivial regret guarantee!
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