
CS 174: Combinatorics and Discrete Probability Fall 2012

Homework 2

Problem 1. (Exercise 1.23 from MU) There may be several different min-cut sets in a graph.
Using the analysis of the randomized min-cut algorithm, argue that there can be at most n(n−1)/2
distinct min-cut sets.

Solution: Suppose there are c distinct min-cut sets. Let Ei be the event that the algorithm
described in thm 1.8 outputs the ith min-cut. Thm 1.8 says this happens with probability ≥ 2

n(n−1) .
The Ei are disjoint, since the algorithm outputs at most one min-cut, so

c∑
i=1

P[Ei] ≤ 1

⇒ 2c

n(n− 1)
≤ 1

⇒ c ≤ n(n− 1)

2

Problem 2. The goal of this exercise is to compute uniformly random sequences of length k of
the integers {1, . . . , n} without replacement. If k = n, the sample is a permutation of 1, . . . , n.

(a) Assuming the existence of a constant-time generator that generates uniformly random real
numbers in the interval [0, 1], derive a O(n log(n))-time algorithm for computing a random
permutation of 1, . . . , n. (Hint: Think sorting.)

Solution: augment the integers 1, . . . , n with random keys, forming the pairs (r1, 1), . . . , (rn, n)
where each ri is a uniform random number from [0, 1]. Sort by these keys using an O(n log(n))
algorithm (for example, heapsort or mergesort). The result will be some ordering of the pairs
(r1, i1), . . . , (rn, in) – discard the keys (first coordinate of each pair) to get the desired per-
mutation.

Since the ris are independent and identically distributed from a continuous distribution (0
probability of collisions), by symmetry any ordering is equally likely. So the resulting permu-
tation is distributed uniformly over all permutations with probability 1/n!.

(b) Assuming the existence of a constant-time generator that generates uniformly random integers
in the range {1, . . . ,m} for any m, derive an O(n)-time algorithm that generates a random
permutation of 1, . . . , n. (Hint: Start with a sorting algorithm that makes O(n) data moves.)

Solution: use selection sort, but instead of scanning for the largest remaining element, pick
one randomly. So starting with an array x containing 1, . . . , n in order:

for i in {1, ..., n-1}

pick j uniformly from {1, ..., n-i+1}

1



j = j + i - 1 // now uniform from {i, ..., n}

swap x[i] with x[j]

output x

It is easy to see that the above algorithm can produce any permutation. To produce the
permutation 1 → i1, 2 → i2, . . . , n → in simply select element ij at step j. Also, the above

algorithm has at most n(̇n1) · . . . · 2 · 1 = n! different outputs that each occur with equal
probability because in the ith iteration we chose from n i + 1 numbers uniformly at random.
Therefore, the above algorithm must output each permutation uniformly at random.

Also, the algorithm runs in time O(n) because to produce the initial state takes time O(n),
and there are n1 iterations, and reading off the answer takes time O(n). Finally, each iteration
can be run in constant time because an array permits random access in constant time and
with random access swapping can easily be done with 3 operations.

(c) (Optional, not graded) Assuming the same random number generator as in (b) above, derive
an O(k) expected-time algorithm that generates a random sequence of length k from 1, . . . , n
without replacement.

Solution: if k > n/2, then O(k) = O(n) and we can use the solution above, but stop running
after k elements have been selected.

If k ≤ n/2, then create an empty hashtable set S and an empty output list L.

for i in {1, ..., k}

while true

pick j randomly from {1, ..., n}

if j not in S

add j to S

append j to L

break

output L

Since each random j is already in the hashtable with probability at most 1/2, so the expected
number of tries to find an unused j is ≤ 2, so with k steps the expected running time is O(k).

Problem 3. (Exercise 2.2 from MU) A monkey types on a 26-letter keyboard that has lowercase
letters only. Each letter is chosen independently and uniformly at random from the alphabet. If the
monkey types 1,000,000 letters, what is the expected number of times the sequence “proof” appears?

Solution: Let Xi be 1 if the ith – (i+ 4)th letters spell out “proof” and 0 otherwise. Xi = 1 occurs
with probability 1/265. So the total expected occurences of “proof” are

2



E

106−4∑
i=1

Xi

 =
106−4∑
i=1

E [Xi]

=
106−4∑
i=1

P [Xi = 1]

=
106 − 4

265

=
999996

11881376
≈ 0.084165

Problem 4. (Exercise 2.18 from MU) The following approach is often called reservoir sampling.
Suppose we have a sequence of items passing by one at a time. We want to maintain a sample of
one item with the property that it is uniformly distributed over all the items that we have seen
at each step. Moreover, we want to accomplish this without knowing the total number of items in
advance or storing all of the items that we see.

Consider the following algorithm, which stores just one item in memory at all times. When the
first item appears, it is stored in the memory. When the kth item appears, it replaces the item in
memory with probability 1/k. Explain why this algorithm solves the problem.

Solution: we will prove this by induction. Let b1, b2, ...bn be the first n items observed. Let Mn be
a random variable that takes the value of the item in memory after the nth observation. We need
to show that Pr[Mn = bi] = 1/n for all 1 ≤ i ≤ n.

The base case is when n = 1, which is trivially true since Mn = b1 with probability 1. Assume
that at after n observations, Pr[Mn = bi] = 1/n for all 1 ≤ i ≤ n. Now we prove that this property
holds for time n + 1. After n + 1 observations, we set Mn+1 = bn+1 with probability 1/(n + 1).
Therefore, Pr[Mn+1 = bn+1] = 1/(n + 1). For 1 ≤ i ≤ n,

Pr[Mn+1 = bi] = Pr[no swap after n observations and Mn = bi]

= Pr[no swap after n observations] Pr[Mn = bi]

=
n

n + 1

1

n

=
1

n + 1

Problem 5. (Exercise 2.22 from MU) Let a1, a2, . . . , an be a list of n distinct numbers. We say
that ai and aj are inverted if i < j but ai > aj . The Bubblesort sorting algorithms swaps pairwise
adjacent inverted numbers in the list until there are no more inversions, so the list is in sorted
order. Suppose that the input to Bubblesort is a random permutation, equally likely to be any of
the n! permutations of n distinct numbers. Determine the expected number of inversions that need
to be corrected by Bubblesort.

Solution: let Xij = I(ai > aj) and consider the number

S =
∑
i<j

Xij

3



since any correctional inversion decreases S by exactly 1, we know that S inversions are required
in total and their order doesn’t matter. So we need only find the expected value of S.

E[S] = E

∑
i<j

Xij


=

∑
i<j

E[Xij ]

=
∑
i<j

P[ai > aj ]

=
∑
i<j

1

2
by symmetry of random permutations

=
1

2

n∑
i=1

(n− i)

=
1

2

n−1∑
i=0

i

=
(n− 1)n

4

Problem 6. (Exercise 2.32 from MU) You need a new staff assistant, and you have n people to
interview. You want to hire the best candidate for the position. When you interview a candidate,
you can give them a score, with the highest score being the best and no ties being possible. You
interview the candidates one by one. Because of your company’s hiring practices, after you interview
the kth candidate, you either offer the candidate the job before the next interview or you forever
lose the chance to hire that candidate. We suppose the candidates are interviewed in a random
order, chosen uniformly at random from all n! possible orderings.

We consider the following strategy. First, interview m candidates but reject them all; these
candidates give you an idea of how strong the field is. After the mth candidate, hire the first
candidate you interview who is better than all of the previous candidates you have interviewed.

(a) Let E be the event that we hire the best assistant, and let Ei be the event that ith candidate
is the best and we hire him. Determine Pr(Ei), and show that

Pr(E) =
m

n

n∑
j=m+1

1

j − 1
.

Solution: Notice that the Ei are disjoint events, therefore Pr[E] =
∑n

i=1 Pr[Ei]. For i ≤ m,
Pr[Ei] = 0, since none of the first m candidates are selected. Now, we see that for i > m two
independents events make up Ei.

Pr[Ei] = Pr[ith candidate is the best] · Pr[the ith candidate is chosen]

=
1

n
· Pr[best of the (i− 1) candidates is in the first m candidates]

=
1

n
· m

i− 1

4



Now, putting this all together, we get

Pr[E] =
n∑

j=m+1

Pr[Ei] =
m

n

n∑
j=m+1

1

j − 1

(b) Bound
∑n

j=m+1(1/(j − 1)) to obtain

m

n
(lnn− lnm) ≤ Pr(E) ≤ m

n
(ln(n− 1)− ln(m− 1)).

Solution: Using Lemma 2.10 from the book, we get the solution

Pr[E] ≥ m

n

∫ n+1

m+1

1

x− 1
dx = ln(x− 1)|n+1

m+1 =
m

n
(ln(n)− ln(m))

and

Pr[E] ≤ m

n

∫ n

m

1

x− 1
dx = ln(x− 1)|nm =

m

n
(ln(n− 1)− ln(m− 1))

(c) Show that m(lnn − lnm)/n is maximized when m = n/e, and explain why this means that
Pr(E) ≥ 1/e for this choice of m.

Solution: How should we find the best m? Since the bound from above is concave, we can
take the derivative, set it equal to zero, and solve for m. This yields the m that maximizes
Pr[E]. We have

d

dm

m

n
(ln(n)− ln(m)) =

ln(n)

n
− ln(m)

n
+

1

n
= 0.

Then we get ln(m) = ln(n)− 1, which is

m = eln(n)−1 = eln(n)e−1 = ne−1 =
n

e
.

5


