CS 174: Combinatorics and Discrete Probability Fall 2012

Homework 2

Problem 1. (Ezercise 1.23 from MU) There may be several different min-cut sets in a graph.
Using the analysis of the randomized min-cut algorithm, argue that there can be at most n(n—1)/2
distinct min-cut sets.

Solution: Suppose there are ¢ distinct min-cut sets. Let E; be the event that the algorithm
described in thm 1.8 outputs the i** min-cut. Thm 1.8 says this happens with probability > ﬁ
The FE; are disjoint, since the algorithm outputs at most one min-cut, so

ZC:P[E,} <1

2
- <1

nn—1) —
écgn(n;l)

Problem 2. The goal of this exercise is to compute uniformly random sequences of length & of
the integers {1,...,n} without replacement. If k = n, the sample is a permutation of 1,...,n.

(a) Assuming the existence of a constant-time generator that generates uniformly random real
numbers in the interval [0, 1], derive a O(nlog(n))-time algorithm for computing a random
permutation of 1,...,n. (Hint: Think sorting.)

Solution: augment the integers 1, . .., n with random keys, forming the pairs (r1,1),..., (r,,n)
where each r; is a uniform random number from [0, 1]. Sort by these keys using an O(n log(n))

algorithm (for example, heapsort or mergesort). The result will be some ordering of the pairs

(ri,41), ..., (rn,in) — discard the keys (first coordinate of each pair) to get the desired per-

mutation.

Since the 7;s are independent and identically distributed from a continuous distribution (0
probability of collisions), by symmetry any ordering is equally likely. So the resulting permu-
tation is distributed uniformly over all permutations with probability 1/n!.

ssuming the existence of a constant-time generator that generates uniformly random integers
b) A ing th ist f tant-ti tor that t if 1 d int
in the range {1,...,m} for any m, derive an O(n)-time algorithm that generates a random
permutation of 1,...,n. (Hint: Start with a sorting algorithm that makes O(n) data moves.)

Solution: use selection sort, but instead of scanning for the largest remaining element, pick
one randomly. So starting with an array x containing 1,...,n in order:

for i in {1, ..., n-1}
pick j uniformly from {1, ..., n-i+1}

j=3j+i-1// now uniform from {i, ..., n}
swap x[i] with x[j]
output x

It is easy to see that the above algorithm can produce any permutation. To produce the
permutation 1 — i1,2 — 42,...,n — i, simply select element i; at step j. Also, the above
algorithm has at most n(nl) -...-2-1 = n! different outputs that each occur with equal
probability because in the i?* iteration we chose from n i + 1 numbers uniformly at random.
Therefore, the above algorithm must output each permutation uniformly at random.

Also, the algorithm runs in time O(n) because to produce the initial state takes time O(n),
and there are n1 iterations, and reading off the answer takes time O(n). Finally, each iteration
can be run in constant time because an array permits random access in constant time and
with random access swapping can easily be done with 3 operations.

(c) (Optional, not graded) Assuming the same random number generator as in (b) above, derive
an O(k) expected-time algorithm that generates a random sequence of length k£ from 1,...,n
without replacement.

Solution: if £ > n/2, then O(k) = O(n) and we can use the solution above, but stop running
after k£ elements have been selected.

If K < n/2, then create an empty hashtable set S and an empty output list L.

for i in {1, ..., k}
while true
pick j randomly from {1, ..., n}
if j not in S
add j to S
append j to L
break
output L

Since each random j is already in the hashtable with probability at most 1/2, so the expected
number of tries to find an unused j is < 2, so with & steps the expected running time is O(k).

Problem 3. (Ezercise 2.2 from MU) A monkey types on a 26-letter keyboard that has lowercase
letters only. Each letter is chosen independently and uniformly at random from the alphabet. If the
monkey types 1,000,000 letters, what is the expected number of times the sequence “proof” appears?

Solution: Let X; be 1 if the i — (i 44)™ letters spell out “proof” and 0 otherwise. X; = 1 occurs
with probability 1/265. So the total expected occurences of “proof” are

26°
999996
= 11331376 0.084165

Problem 4. (Exercise 2.18 from MU) The following approach is often called reservoir sampling.
Suppose we have a sequence of items passing by one at a time. We want to maintain a sample of
one item with the property that it is uniformly distributed over all the items that we have seen
at each step. Moreover, we want to accomplish this without knowing the total number of items in
advance or storing all of the items that we see.

Consider the following algorithm, which stores just one item in memory at all times. When the
first item appears, it is stored in the memory. When the k*" item appears, it replaces the item in
memory with probability 1/k. Explain why this algorithm solves the problem.

Solution: we will prove this by induction. Let by, bo, ...b,, be the first n items observed. Let M,, be
a random variable that takes the value of the item in memory after the n* observation. We need
to show that Pr[M,, =b;] =1/nfor all 1 <i <n.

The base case is when n = 1, which is trivially true since M,, = b; with probability 1. Assume
that at after n observations, Pr[M,, = b;] = 1/n for all 1 <1i < n. Now we prove that this property
holds for time n + 1. After n + 1 observations, we set M, 11 = b,41 with probability 1/(n + 1).
Therefore, Pr[M, 11 = byy1] =1/(n+1). For 1 <i <mn,

Pr[M,+1 = b;] = Pr[no swap after n observations and M,, = b;]
= Pr[no swap after n observations| Pr[M,, = b;]
n 1
n+1n
1
n+1

Problem 5. (Exercise 2.22 from MU) Let aqy,aq,...,a, be a list of n distinct numbers. We say
that a; and a; are inverted if ¢ < j but a; > a;. The Bubblesort sorting algorithms swaps pairwise
adjacent inverted numbers in the list until there are no more inversions, so the list is in sorted
order. Suppose that the input to Bubblesort is a random permutation, equally likely to be any of
the n! permutations of n distinct numbers. Determine the expected number of inversions that need
to be corrected by Bubblesort.

Solution: let X;; = I(a; > a;) and consider the number

S=> Xy

1<j

since any correctional inversion decreases S by exactly 1, we know that S inversions are required
in total and their order doesn’t matter. So we need only find the expected value of S.

E[S]=E |> X

i<j

= E[Xy]

1<J

= Zp[ai > aj]

1<j

1 .
= Z 3 by symmetry of random permutations

1 n
=3 Z(” — 1)
=1
1n71-
SN
=0

(n—1)n
4

Problem 6. (Ezercise 2.32 from MU) You need a new staff assistant, and you have n people to
interview. You want to hire the best candidate for the position. When you interview a candidate,
you can give them a score, with the highest score being the best and no ties being possible. You
interview the candidates one by one. Because of your company’s hiring practices, after you interview
the k™ candidate, you either offer the candidate the job before the next interview or you forever
lose the chance to hire that candidate. We suppose the candidates are interviewed in a random
order, chosen uniformly at random from all n! possible orderings.

We consider the following strategy. First, interview m candidates but reject them all; these
candidates give you an idea of how strong the field is. After the m™ candidate, hire the first
candidate you interview who is better than all of the previous candidates you have interviewed.

(a) Let E be the event that we hire the best assistant, and let E; be the event that i** candidate
is the best and we hire him. Determine Pr(E;), and show that

n
m 1
j=m+1 J

Solution: Notice that the E; are disjoint events, therefore Pr[E] = "7 | Pr[E;]. For i <m,
Pr[E;] = 0, since none of the first m candidates are selected. Now, we see that for i > m two
independents events make up F;.

Pr[E;] = Pr[ith candidate is the best] - Pr[the ith candidate is chosen]

= — - Pr[best of the (i — 1) candidates is in the first m candidates]

m
1—1

SI=3r

Now, putting this all together, we get

n n
m 1
j=m+1 j=m+1 J

Bound >7%_ ,(1/(j — 1)) to obtain

(In(n — 1) — In(m — 1)).

m m
—(Inn —1 <Pr(F) < —
n(nn nm) < Pr()_n

Solution: Using Lemma 2.10 from the book, we get the solution

n+1
Pr[E] > % = In(z — DY = % (In(n) — In(m))
and "1
Pr[E] < ’:/ —de =In(x —)|}, = % (In(n — 1) — In(m — 1))

Show that m(Inn — Inm)/n is maximized when m = n/e, and explain why this means that
Pr(E) > 1/e for this choice of m.

Solution: How should we find the best m? Since the bound from above is concave, we can

take the derivative, set it equal to zero, and solve for m. This yields the m that maximizes
Pr[E]. We have

d m 1
%E(ln(n)—ln(m)): e, +EZO'

Then we get In(m) = In(n) — 1, which is

