
CS 174: Combinatorics and Discrete Probability Fall 2012

Homework 3

Problem 1. (Exercise 3.5 from MU) Given any two random variables X and Y , by the linearity
of expectation we have E[X − Y ] = E[X] − E[Y ]. Prove that, when X and Y are independent,
Var[X − Y ] = Var[X] + Var[Y ].

Solution: From the definition of variance, we write

Var[X − Y ] = E[(X − Y )2]− E[X − Y ]2

= E[X2 − 2XY + Y 2]− (E[X]− E[Y ])2

= E[X2]− 2E[XY ] + E[Y 2]− (E[X]2 − 2E[X]E[Y ] + E[Y ]2)

= E[X2]− E[X]2 + E[Y 2]− E[Y ]2,

since by independence E[XY ] = E[X]E[Y ]. Finally, we see that

Var[X − Y ] = Var[X] + Var[Y ]

Problem 2. (Exercise 3.15 from MU) Let the random variable X be representable as a sum of
random variables X =

∑n
i=1Xi. Show that, if E[XiXj ] = E[Xi]E[Xj ] for every pair of i and j with

1 ≤ i < j ≤ n, then Var[X] =
∑n

i=1Var[Xi].

Solution: From the definition of variance, we write

Var[X] = E

( n∑
i=1

Xi − E

[
n∑

i=1

Xi

])2


= E

 n∑
i=1

n∑
j=1

(Xi − E[Xi])(Xj − E[Xj ])


= E

 n∑
i=1

(Xi − E[Xi])
2 + 2

∑
i<j

(Xi − E[Xi])(Xj − E[Xj ])


=

n∑
i=1

Var(Xi) + 2
∑
i<j

E[XiXj − E[Xi]Xj −XiE[Xj ] + E[Xi]E[Xj ]]

=

n∑
i=1

Var(Xi)

Since

E[XiXj − E[Xi]Xj −XiE[Xj ] + E[Xi]E[Xj ]] = 2E[Xi]E[Xj ]− 2E[Xi]E[Xj ] = 0
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Problem 3. (Exercise 3.19) Let Y be a non-negative integer-valued random variable with positive
expectation. Prove

E[Y ]2

E[Y 2]
≤ Pr[Y 6= 0] ≤ E[Y ]

Solution: First, we consider the upper bound. By Markov’s inequality, we have

Pr[Y 6= 0] = Pr[Y ≥ 1] ≤ E[Y ]

Consider the conditional X = Y |Y > 0. Recall that Jensen’s inequality tells us that for any
random variable X,

E[X]2 ≤ E[X2]

Then, we have that

E[Y |Y 6= 0]2 ≤ E[Y 2|Y 6= 0]

Now we compute each side of the above inequality. For the left-hand, side we have

E[Y |Y 6= 0]2 =

( ∞∑
i=0

iPr[Y = i|Y 6= 0]

)2

=

( ∞∑
i=0

i
Pr[Y = i, Y 6= 0]

Pr[Y 6= 0]

)2

=

( ∞∑
i=1

i
Pr[Y = i]

Pr[Y 6= 0]

)2

=
E[Y ]2

Pr[Y 6= 0]2
.

For the right-hand side, we have

E[Y 2|Y 6= 0] =

∞∑
i=0

i2 Pr[Y = i|Y 6= 0]

=

∞∑
i=1

i2
Pr[Y = i]

Pr[Y 6= 0]

=
E[Y 2]

Pr[Y 6= 0]
.

Putting everything together, we have

E[Y ]2

Pr[Y 6= 0]2
≤ E[Y 2]

Pr[Y 6= 0]

E[Y ]2

E[Y 2]
≤ Pr[Y 6= 0],
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which concludes the proof.
Alternatively, we can use the Cauchy-Schwartz inequality:

E[Y I[Y > 0]]2 ≤ E[Y 2]E[I[Y > 0]2]

= E[Y 2] Pr[Y > 0]

Problem 4. (Exercise 3.20 from MU)

(a) Chebyshev’s inequality uses the variance of a random variable to bound its deviation from
its expectation. We can also use higher moments. Suppose that we have a random variable
X and an even integer k for which E[(X − E[X])k] is finite. Show that

Pr

(
|X − E[X]| ≥ t k

√
E[(X − E[X])k]

)
≤ 1

tk

Solution: Let Y = (X−E[X])k. By Markov’s inequality we have Pr[Y ≥ tkE[Y ]] ≤ E[Y ]
tkE[Y ]

=
1
tk

. Now, we have

Pr
[
Y ≥ tkE[Y ]

]
= Pr

[
k
√
Y ≥ t k

√
E[Y ]

]
= Pr

[
|X − E[X]| ≥ t k

√
E[(X − E[X])k]

]
where the first step is true since we take the kth root of both sides of the inequality, and the
second step is true since the kth root of a number, where k is even, is the absolute value.
Putting this together with the Markov’s inequality, we have

Pr

[
|X − E[X]| ≥ t k

√
E[(X − E[X])k]

]
≤ 1

tk

(b) Why is it difficult to derive a similar inequality when k is odd?

Solution: Since X is any random variable, the value (X − E[X])k may be negative for odd
values k. (In fact it can’t be non-negative unless X is almost surely constant). Therefore
Markov’s inequality would not apply.

Problem 5. (Exercise 3.21 from MU) A fixed point of a permutation π : [1, n]→ [1, n] is a value for
which π(x) = x. Find the variance in the number of fixed points of a permutation chosen uniformly
at random from all permutations. (Hint: Let Xi be 1 if π(i) = i, so that

∑n
i=1Xi is the num-

ber of fixed points. You cannot use linearity to find Var[
∑n

i=1Xi], but you can calculate it directly.)

Solution: Let Xi be an indicator random variable for the event that π(i) = i, making i a fixed
point, i.e. Xi = 1 when i is a fixed point, and Xi = 0 otherwise. We can easily compute the E[X].
Let X =

∑n
i=1 be the number of fixed points.

First, we notice that Var[X] = E[X2]−E[X]2. Next, we compute the expectation of the number
of fixed points. Since the E[Xi] = Pr[Xi = 1] = 1/n, we have

E[X] = E

[
n∑

i=1

Xi

]
=

n∑
i=1

E[Xi] =

n∑
i=1

(1/n) = 1
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Now, we compute the first term in the variance,

E[X2] = E

( n∑
i=1

Xi

)2


=

(
n∑

i=1

E[X2
i ]

)
+

 n∑
i=1

∑
j 6=i

E[XiXj ]


=

(
n∑

i=1

E[Xi]

)
+

 n∑
i=1

∑
j 6=i

E[XiXj ]


= 1 +

 n∑
i=1

∑
j 6=i

Pr[Xi = 1]E[XiXj |Xi = 1]


= 1 +

 n∑
i=1

∑
j 6=i

1

n

1

(n− 1)


= 1 + 1

= 2

The third line follows since for indicator variables X2
i = Xi. The forth line is obtained by using

conditional expectation, conditioning on the event Xi = 1. The fifth line comes from knowing that
Pr[Xi = 1] = 1/n, and conditioning on Xi = 1, there are n − 1 choices for mapping element j,
yielding 1/(n− 1) as the conditional probability of j being a fixed point.

Putting everything together we have

Var[X] = 2− 1 = 1

Problem 6. (Exercise 3.25 from MU) The weak law of large numbers states that, if X1, X2, X3, . . .
are independent and identically distributed random variables with mean µ and standard deviation
σ, then for any constant ε > 0 we have

lim
n→∞

Pr

(∣∣∣∣X1 +X2 + · · ·+Xn

n
− µ

∣∣∣∣ > ε

)
= 0.

Use Chebychev’s inequality to prove the weak law of large numbers.
Solution:

Var

(
X1 +X2 + · · ·+Xn

n

)
=
σ2

n

So by Chebychev’s inequality,

Pr

(∣∣∣∣X1 +X2 + · · ·+Xn

n
− µ

∣∣∣∣ > ε

)
≤ σ2

nε2

→ 0 as n→∞

4


