
CS 174: Combinatorics and Discrete Probability Fall 2012

Homework 4

Due: Thursday, September 27, 2012 by 9:30am

Instructions: You should upload your homework solutions on bspace. You are strongly encour-
aged to type out your solutions using LATEX. You may also want to consider using mathematical
mode typing in some office suite if you are not familiar with LATEX. If you must handwrite your
homeworks, please write clearly and legibly. We will not grade homeworks that are unreadable. You
are encouraged to work in groups of 2-4, but you must write solutions on your own. Please review
the homework policy carefully on the class homepage.

Note: You must justify all your answers. In particular, you will get no credit if you simply write
the final answer without any explanation.

Problem 1. (Exercise 3.24 from MU – 5 points) Recall the randomized algorithm discussed in class
for finding the median of a set S of n elements (see MU, Section 3.4). Explain how to generalize
this algorithm so that it takes an additional parameter k as input and finds the element of rank k
in S (i.e. the kth smallest element of S). For convenience, you may assume that all elements of S
are distinct, and that 4n3/4 ≤ k ≤ n−4n3/4.You may also ignore rounding issues in your algorithm.

Your answer should be fairly short and you should not repeat unnecessary material from the
text. The only things you need to include are the following:

(i) a specification of the algorithm (in similar style to that in class and in the textbook); follow
the same first step (namely, pick R of size n3/4); highlight those points where your algorithm
differs from the median case;

(ii) a very brief outline of the analysis of the algorithm, following the same path as in class and
in the textbook; specifically, state the analogs of the events E1, E2, E3,1 and E3,2, and express
Pr[E1] and Pr[E3,1] as probability expressions involving the tail of a suitable binomial random
variable. Do not repeat the explanation of the algorithm of the details of the calculations
(which are essentially the same as in the median case); the above points are enough.

Problem 2. (Exercise 4.10 from MU – 5 points) A casino is testing a new class of simple slot
machines. Each game, the player puts in $1, and the slot machine is supposed to return either $3
to the player with probability 4/25, $100 with probability 1/200, or nothing with all the remaining
probability. Each game is supposed to be independent of other games.

The casino has been surprised to find in testing that the machines have lost $10,000 over the
first million games. Your task is to come up with an upper bound on the probability of this event,
assuming that their machines are working as specified.

(i) Let the random variable X denote the net loss to the casino over the first million games. By
writing X = X1 + · · · + X106 , derive an expression for E[etX], where t is an arbitrary real
number.

1

(ii) Derive from first principles a Chernoff bound for the probability Pr[X ≥ 10, 000]. (You
should follow the proof of the Chernoff bound in class, by applying Markov’s inequality to
the random variable etX . You should use the value t = 0.0006 in your bound.)

Problem 3 (Exercise 5.4 from MU – 5 points) In a lecture hall containing 100 people, you consider
whether or not there are three people in the room who share the same birthday. Explain how to
calculate this probability exactly. (You should make the following assumptions: None of the people
is born in a leap year, a person is equally likely to be born on any day of the year, and that the
birthdays of different people are independent of each other. No twins!)

Problem 4. (15 points) A fundamental problem that arises in many applications is to compute the
size of the union of a collection of sets. The setting is the following. We are given m sets S1, . . . , Sm
over a very large universe U . The operations we can perform on the sets are the following:

(a) size(Si): returns the number of elements in Si;

(b) select(Si): returns an element of Si chosen uniformly at random;

(c) lowest(x): for some x ∈ U , returns the smallest index i for which x ∈ Si.

Let S = ∪mi=1Si be the union of the sets Si. In this problem we will develop a very efficient
(polynomial in m) algorithm for estimating the size of |S|. (We output a number in the range
[(1− ε)|S|, (1 + ε)|S|].)

1. Let’s first see a natural example where such a set system arises. Suppose φ is a boolean
formula over n variables in disjunctive normal form (DNF), i.e. it is the OR of ANDs of
literals. (φ = C1 ∨ C2 ∨ · · · ∨ Cm, where each Ci is a conjunction (AND) of possibly negated
literals.) Let U be the set of all possible assignments to the variables of φ (i.e. |U | = 2n),
and for each clause 1 ≤ i ≤ m, let Si denote the set of assignments that satisfy the clause Ci.
Then the union S = ∪mi=1Si is exactly the set of satisfying assignments of φ, and our problem
is to count them.1 Argue that all of the above operations can be efficiently implemented for
this set system.

2. Now let’s consider a näıve random sampling algorithm. Assume that we are able to pick an
element of the universe, U , uniformly at random, and that we know the size of U . Consider
an algorithm that picks t elements of U independently and u.a.r. (with replacement), and
outputs the value q|U |, where q is the proportion of the t sampled elements that belong to S.
For the DNF example above, explain as precisely as you can why this is not a good algorithm.

3. Consider now the following algorithm, which is again based on random sampling but in a
more sophisticated way:

• choose a random set Si with probability size(Si)∑m
j=1 size(Sj)

.

• x = select(Si)

• if lowest(x) = i, then output 1, else output 0

1Deciding if φ is satisfiable (i.e. has at least one satisfying assignment) is trivial for a DNF formula, unlike for a
CNF formula where it is NP-complete. However, when it comes to counting satisfying assignments, it turns out that
the problem is NP-hard even for DNF formulas! Thus, we cannot hope to find a polynomial time algorithm that
solves this problem exactly. Thus, the approximation algorithm that we develop in this question is essentially the
best one can hope for.

2

Show that this algorithm outputs 1 with probability exactly p = |S|∑m
j=1 |Sj | . (Hint: Show that

the effect of the first two lines of the algorithm is to select a random element from the set of
pairs {(x, Si) | x ∈ Si}.)

4. Show that p ≥ 1/m.

5. Now suppose that we run the above algorithm t times and obtain the sequence of outputs
X1, . . . , Xt. We define X =

∑t
i=1Xi. Use a Chernoff bound to obtain a value t (as a function

of m, δ and ε) that ensures that

Pr[|X − tp| ≥ εtp] ≤ δ

(Hint: You will need to use the fact tht p ≥ 1/m here.)

6. The final output of your algorithm will be Y = (
∑m

j=1 |Sj |)·(X/t), whereX is as defined above.

Show that this final algorithm has the following properties: it runs in time O(mε−2 log(1/δ))
(assuming that each of the set operations can be performed in constant time), and outputs a
value that is in the range [(1− ε)|S|, (1 + ε)|S|] with probability at least 1− δ.

3

