
CS 174: Combinatorics and Discrete Probability Fall 2012

Homework 4 Solutions

Problem 1. (Exercise 3.24 from MU – 5 points) Recall the randomized algorithm discussed in class
for finding the median of a set S of n elements (see MU, Section 3.4). Explain how to generalize
this algorithm so that it takes an additional parameter k as input and finds the element of rank k
in S (i.e. the kth smallest element of S). For convenience, you may assume that all elements of S
are distinct, and that 4n3/4 ≤ k ≤ n−4n3/4.You may also ignore rounding issues in your algorithm.

Your answer should be fairly short and you should not repeat unnecessary material from the
text. The only things you need to include are the following:

(i) a specification of the algorithm (in similar style to that in class and in the textbook); follow
the same first step (namely, pick R of size n3/4); highlight those points where your algorithm
differs from the median case;

(ii) a very brief outline of the analysis of the algorithm, following the same path as in class and
in the textbook; specifically, state the analogs of the events E1, E2, E3,1 and E3,2, and express
Pr[E1] and Pr[E3,1] as probability expressions involving the tail of a suitable binomial random
variable. Do not repeat the explanation of the algorithm of the details of the calculations
(which are essentially the same as in the median case); the above points are enough.

Solution: The algorithm is essentially the same as Algorithm 3.1 in the textbook:

1. same as before: Pick a set R of n3/4 elements independently and u.a.r. from S

2. same as before: Sort R

3. Let d be the ( kn · n
3/4 −

√
n) smallest element in R

4. Let u be the ( kn · n
3/4 +

√
n) smallest element in R

5. same as before: By comparing every element of S to d and u, compute C, ld, lu

6. If ld > k or lu > n− k then FAIL

7. same as before: If |C| ≤ 4n3/4 then sort C else FAIL

8. Output the (k − ld)th element in C

As for the median algorithm in the book, this algorithm always runs in linear time and either
outputs the correct value or FAILs. For the analysis, we just need to bound the failure probability.
To do this, we will make repeated use of the following lemma:

Let Y be a binomial r.v. with parameters n3/4 and p. Then, E[Y ] = pn3/4 and Var[Y ] =
n3/4p(1− p) ≤ 1

4n
3/4. So, by Chebyshev’s inequality, Pr[|Y − E[Y ]| ≥ pn] ≤ 1

4n
−1/4.

Note that this same fact is used repeatedly in the analysis of the median algorithm in the
textbook. We define m to be the element of rank k in S (so m is the desired output). We will
consider the following three events, which are analogous to the events with the same names in the
textbook:

1



E1 : Y1 = |{r ∈ R|r ≤ m}| ≤ k

n
· n3/4 −

√
n;

E2 : Y2 = |{r ∈ R|r ≥ m}| ≤ (1− k

n
) · n3/4 −

√
n;

E3 : |C| > 4n3/4.

Clearly the probability that the algorithm fails is at most Pr[E1] + Pr[E2] + Pr[E3]. We now
bound each of these probabilities in turn:

– To analyze Pr[E1], we define a r.v. Xi indicating whether the ith sample (of R) is ≤ m. Then,
Y1 =

∑
iXi is a binomial r.v. with parameters n3/4 and k

n . Therefore, by the above lemma,

Pr[E1] = Pr

[
Y1 ≤

k

n
· n3/4 −

√
n

]
<

1

4
n−1/4

– To analyze Pr[E2], we define a r.v. Xi indicating whether the ith sample (of R) is ≥ m. Then,
Y2 =

∑
iXi is a binomial r.v. with parameters n3/4 and 1 − k

n . Therefore, again by the above
lemma,

Pr[E2] = Pr

[
Y2 ≤ (1− k

n
) · n3/4 −

√
n

]
<

1

4
n−1/4

– To analyze Pr[E3], as in the book we consider two events: E3,1 : at least 2n3/4 elements of C
are greater than m; E3,2 : at least 2n3/4 elements of C are smaller than m.

Clearly if E3 happens then so must at least one of E3,1 and E3,2, so Pr[E3] ≤ Pr[E3,1] + Pr[E3,2].
Let Γ1 denote the k−2n3/4 smallest elements of S. E3,1 may be rewritten as: R contains k

n ·n
3/4−

√
n

elements of Γ1. We let X be the number of samples (of R) in Γ1. Then, X =
∑

iXi where Xi is a
r.v. indicating whether the ith sample lies in Γ1. Again, X is a binomial r.v. with parameters n3/4

and k
n − 2n−1/4. Thus E[X] = k

n · n
3/4 − 2

√
n. In addition,

Pr[E3,1] = Pr

[
X ≥ k

n
· n3/4 −

√
n

]
<

1

4
n−1/4

The analysis of Pr[E3,2] is symmetrical.
Putting all the above together, we see that the probability of failure is at most

Pr[E1] + Pr[E2] + Pr[E3,1] + Pr[E3,2] ≤ n−1/4

as required.

Problem 2. (Exercise 4.10 from MU – 5 points) A casino is testing a new class of simple slot
machines. Each game, the player puts in $1, and the slot machine is supposed to return either $3
to the player with probability 4/25, $100 with probability 1/200, or nothing with all the remaining
probability. Each game is supposed to be independent of other games.

The casino has been surprised to find in testing that the machines have lost $10,000 over the
first million games. Your task is to come up with an upper bound on the probability of this event,
assuming that their machines are working as specified.

(i) Let the random variable X denote the net loss to the casino over the first million games. By
writing X = X1 + · · · + X106 , derive an expression for E[etX ], where t is an arbitrary real
number.

2



Solution: Let Xi, i = 1, 2, . . . , 106 denote the casino’s net loss in the ith game. We have

Xi =


2 w.p. 4

25
99 w.p. 1

200
−1 w.p. 167

200

⇒ etXi =


e2t w.p. 4

25
e99t w.p. 1

200
e−1t w.p. 167

200

Therefore

E[etXi ] =
4

25
e2t +

1

200
e99t +

167

200
e−1t

Now, X = X1 + X2 + . . . + X106 is the casino’s loss in the first million games, and we can
compute E[etX ] as follows:

E[etX ] = E[et(X1+X2+...+X106 )]

= E[etX1 ] · E[etX2 ] · · ·E[etX106 ] since the Xi are independent

=

(
4

25
e2t +

1

200
e99t +

167

200
e−t
)106

(ii) Derive from first principles a Chernoff bound for the probability Pr[X ≥ 10, 000]. (You
should follow the proof of the Chernoff bound in class, by applying Markov’s inequality to
the random variable etX . You should use the value t = 0.0006 in your bound.)

Solution: We are interested in the quantity

Pr[X ≥ 104] = Pr[etX ≥ e104t]

≤ E[etX ]

e104t
by Markovs inequality

=

(
4

25
e2t +

1

200
e99t +

167

200
e−t
)106

e−104t

This bound is valid for any t > 0, so we are free to choose a value of t that gives the best
bound (i.e., the smallest value for the expression on the right). Plugging in t = 0.0006 as
suggested in the hint, we get the bound 0.0002. This is very small, suggesting that the casino
has a problem with its machines.

Problem 3 (Exercise 5.4 from MU – 5 points) In a lecture hall containing 100 people, you consider
whether or not there are three people in the room who share the same birthday. Explain how to
calculate this probability exactly. (You should make the following assumptions: None of the people
is born in a leap year, a person is equally likely to be born on any day of the year, and that the
birthdays of different people are independent of each other. No twins!)

Solution: One possible solution is given here.
Let A0 be the event that everyone in the room has a distinct birthday. Let Ai be the event that

i pairs of people share a birthday. Then the probability we are interested in is

3



Pr[at least 3 people share a birthday] = 1− Pr[A0]−
n/2∑
i=1

Pr[Ai]

where there are n people in the room.

First, we note that Pr[A0] is in the book and is Pr[A0] =
(365n )n!

365n . Second, we wish to compute
Pr[Ai].

For i = 1, we have

Pr[A1] = 365

(
n
2

)(
365−1
n−2

)
(n− 2)!

365n

For i = 2, we have

Pr[A2] =

(
365
2

)(
n
2

)(
n−2

2

)(
365−2
n−4

)
(n− 4)!

365n

This generalizes for i pairs of people sharing i distinct birthdays

Pr[Ai] =

(
365
i

)∏i
j=1

(
n−2j+2

2

)(
365−i
n−2i

)
(n− 2i)!

365n

Plugging everything into the first equation and putting in n = 100, we can compute a value for
this probability. We get Pr[at least 3 people share a birthday] ≈ 0.6459.

Problem 4. (15 points) A fundamental problem that arises in many applications is to compute the
size of the union of a collection of sets. The setting is the following. We are given m sets S1, . . . , Sm
over a very large universe U . The operations we can perform on the sets are the following:

(a) size(Si): returns the number of elements in Si;

(b) select(Si): returns an element of Si chosen uniformly at random;

(c) lowest(x): for some x ∈ U , returns the smallest index i for which x ∈ Si.

Let S = ∪mi=1Si be the union of the sets Si. In this problem we will develop a very efficient
(polynomial in m) algorithm for estimating the size of |S|. (We output a number in the range
[(1− ε)|S|, (1 + ε)|S|].)

1. Let’s first see a natural example where such a set system arises. Suppose φ is a boolean
formula over n variables in disjunctive normal form (DNF), i.e. it is the OR of ANDs of
literals. (φ = C1 ∨ C2 ∨ · · · ∨ Cm, where each Ci is a conjunction (AND) of possibly negated
literals.) Let U be the set of all possible assignments to the variables of φ (i.e. |U | = 2n),
and for each clause 1 ≤ i ≤ m, let Si denote the set of assignments that satisfy the clause Ci.
Then the union S = ∪mi=1Si is exactly the set of satisfying assignments of φ, and our problem
is to count them.1 Argue that all of the above operations can be efficiently implemented for
this set system.

1Deciding if φ is satisfiable (i.e. has at least one satisfying assignment) is trivial for a DNF formula, unlike for a
CNF formula where it is NP-complete. However, when it comes to counting satisfying assignments, it turns out that
the problem is NP-hard even for DNF formulas! Thus, we cannot hope to find a polynomial time algorithm that
solves this problem exactly. Thus, the approximation algorithm that we develop in this question is essentially the
best one can hope for.

4



Solution: First, we process φ so that every variable appears at most once in each clause
(eliminate repeated occurences of a literal, and delete a clause if both a literal and its negation
occur). Let n denote the number of variables, and ci the number of variables in clause i.

• size(x, Si): return 2n–ci . The variables in clause i must be fixed to values that satisfy
the clause, and the remaining variables may be assigned any value.

• select(Si): fix the variables in clause i to values that satisfy the clause; choose the values
of the remaining variables independently and u.a.r.

• lowest(x): for i = 1, 2, . . ., test if x satisfies clause i (this test is easy); return the index
of the first clause that x satisfies (or undefined if it satisfies no clauses).

2. Now let’s consider a näıve random sampling algorithm. Assume that we are able to pick an
element of the universe, U , uniformly at random, and that we know the size of U . Consider
an algorithm that picks t elements of U independently and u.a.r. (with replacement), and
outputs the value q|U |, where q is the proportion of the t sampled elements that belong to S.
For the DNF example above, explain as precisely as you can why this is not a good algorithm.

Solution: The problem is that S may occupy only a tiny fraction of all possible assignments
U . Thus the number of samples t would need to be huge in order to get a good estimate
of q. We give a concrete example to make this precise. Consider the very simple formula
φ = x1 ∧ x2 ∧ . . .∧ xn. Clearly |S| = 1 (the only satisfying assignment is when all n variables
are TRUE). The given algorithm will output zero unless it happens to choose this assignment
in one of its t samples, i.e., it outputs zero with probability (12n)t ≥ 1t2n ≈ 1 for any t that
is only polynomial in n. Thus the relative error of the algorithm will be arbitrarily large with
probability arbitrarily close to 1.

Note: It is not enough here to quote the bound from class t = O(q/ε2ln(1/δ)), which tells us
how large a sample size is sufficient to estimate the proportion q. The reason is that this is
an upper bound on t, whereas here we need a lower bound. The lower bound can be derived
by the very simple argument given above.

3. Consider now the following algorithm, which is again based on random sampling but in a
more sophisticated way:

• choose a random set Si with probability size(Si)∑m
j=1 size(Sj)

.

• x = select(Si)

• if lowest(x) = i, then output 1, else output 0

Show that this algorithm outputs 1 with probability exactly p = |S|∑m
j=1 |Sj | . (Hint: Show that

the effect of the first two lines of the algorithm is to select a random element from the set of
pairs {(x, Si) | x ∈ Si}.)
Solution: Note that the first two lines of the algorithm select each pair (x, Si), x ∈ Si with

probability |Si|∑m
j=1 |Sj | ·

1
|Si| = 1∑m

j=1 |Sj | . In other words, the first two lines pick an element u.a.r.

from the disjoint union of the sets Si. (Note that the goal is really to pick an element u.a.r.
from the union

⋃
i Si.) Let Γ = {(x, Si)|lowest(x) = i}. Clearly, the algorithm outputs 1 with

probability
∑

(x,Si)∈Γ
1∑m

j=1 |Sj | = |Γ|∑m
j=1 |Sj | . To see that |Γ| = |S|, simply observe that every

element x ∈ S corresponds to exactly one lowest Si, or equivalently Γ = {(x, Slowest(x))|x ∈
S}. It follows that the algorithm outputs 1 with probability p = |S|∑m

j=1 |Sj | .

5



4. Show that p ≥ 1/m.

Solution: Clearly, for i = 1, 2, . . . ,m we have |Si| ≤ |S|. Hence,
∑m

j=1 |Sj | ≤ m|S|, and thus

p = |S|∑m
j=1 |Sj | ≥

1
m .

5. Now suppose that we run the above algorithm t times and obtain the sequence of outputs
X1, . . . , Xt. We define X =

∑t
i=1Xi. Use a Chernoff bound to obtain a value t (as a function

of m, δ and ε) that ensures that

Pr[|X − tp| ≥ εtp] ≤ δ

(Hint: You will need to use the fact tht p ≥ 1/m here.)

Solution: Note that X1, . . . , Xt are independent 0-1 r.v.’s with mean p, so E[X] = pt and
the Chernoff bound yields

Pr[|Xpt| ≥ εpt] ≤ 2eε
2pt/3

The quantity on the right is bounded above by δ provided we take t = d 3
ε2p

ln 2
δ e ≤ d

3m
ε2

ln 2
δ e,

using the fact from part (d) that p ≥ m. Hence it suffices to take t = O(m
ε2

log 1
δ ).

6. The final output of your algorithm will be Y = (
∑m

j=1 |Sj |)·(X/t), whereX is as defined above.

Show that this final algorithm has the following properties: it runs in time O(mε−2 log(1/δ))
(assuming that each of the set operations can be performed in constant time), and outputs a
value that is in the range [(1− ε)|S|, (1 + ε)|S|] with probability at least 1− δ.
Solution: Each iteration of the algorithm in (c) requires O(1) operations, so the final al-

gorithm takes O(t) = O(m
ε2

log 1
δ ) time. By definition, we have |S| =

∑m
j=1 |Sj |
t · tp and

Y =
∑m

j=1 |Sj |
t ·X. This implies

Y ∈ [(1− ε)|S|, (1 + ε)|S|]⇔ X ∈ [(1− ε)tp, (1 + ε)tp]

and thus

Pr [Y ∈ [(1− ε)|S|, (1 + ε)|S|]] = Pr [X ∈ [(1− ε)tp, (1 + ε)tp]]

It follows by part (e) that Pr [Y ∈ [(1− ε)|S|, (1 + ε)|S|]] ≥ 1− δ, as required.

6


