
CS 174: Combinatorics and Discrete Probability Fall 2012

Homework 5

Due: Thursday, October 4, 2012 by 9:30am

Instructions: You should upload your homework solutions on bspace. You are strongly encour-
aged to type out your solutions using LATEX. You may also want to consider using mathematical
mode typing in some office suite if you are not familiar with LATEX. If you must handwrite your
homeworks, please write clearly and legibly. We will not grade homeworks that are unreadable. You
are encouraged to work in groups of 2-4, but you must write solutions on your own. Please review
the homework policy carefully on the class homepage.

Note: You must justify all your answers. In particular, you will get no credit if you simply write
the final answer without any explanation.

Problem 1. (Exercise 5.9 from MU – 5 points) Consider the probability that every bin receives
exactly one ball when n balls are thrown randomly into n bins.

(a) Give an upper bound on this probability using the Poisson approximation.

Solution: Let Yi be a Poisson random variable for bin i, and recall that m = n

Pr[Yi = j] =
e−n/n(nn)j

j!

Pr[Yi = 1] =
1

e

Applying Theorem 5.7, we can bound the probability of X using Y = ∪ni=1{Yi = 1}.

Pr[X] ≤ e
√
nPr[Y]

= e
√
n

(
1

e

)n
(b) Determine the exact probability of this event.

Solution: There are nn ways to throw n balls into n bins. There is only one way, given a
specific ordering of the balls, to put a single ball into each bin. And there are n! possible
orderings of the balls. Thus the exact probability of n balls in n bins is:

Pr[X] =
n!

nn

Problem 2. (Exercise 5.13 from MU – 5 points) Let Z be a Poisson random variable with mean
µ, where µ ≥ 1 is an integer. First, show that Pr[Z = µ+h] ≥ Pr[Z = µ−h− 1] for 0 ≤ h ≤ µ− 1,
and use this to conclude that Pr[Z ≥ µ] ≥ 1/2.

Solution:

1

1. Show that Pr[Z = µ+ h] ≥ Pr[Z = µ− h− 1] for 0 ≤ h ≤ µ− 1.

Pr[Z = µ+ h] =
e−µµµ+h

(µ+ h)!

=
e−µµµ−h−1

(µ− h− 1)!
· µ2h+1

(µ+ h) . . . µ . . . (µ− h)

= Pr[Z = µ− h− 1] ·
h∏
i=1

µ2

(µ+ i)(µ− i)

≥ Pr[Z = µ− h− 1]

2. Using part (1), we can see that Pr[Z ≥ µ] ≥ 1/2.

Pr[Z ≥ µ] =

∞∑
h=µ

Pr[Z = h]

=
∞∑
h=0

Pr[Z = µ+ h]

≥
µ−1∑
h=0

Pr[Z = µ+ h]

≥
µ−1∑
h=0

Pr[Z = µ− h− 1] by part (a)

= Pr[Z < µ]

Since Pr[Z < µ] + Pr[Z ≥ µ] = 1 and Pr[Z ≥ µ] ≥ Pr[Z < µ] from above, we have
Pr[Z ≥ µ] ≥ 1/2.

Problem 3 (Exercise 5.14 from MU – 5 points) Let Y1, . . . , Yn be Poisson random variables with
mean µ(= m/n). Let X1, X2, . . . , Xn be the random variables denoting the number of balls in each
bin when m balls are thrown in n bins. In class, we showed that for any non-negative function, f ,

E[f(Y1, . . . , Yn)] ≥ E[f(X1, . . . , Xn)] Pr[
n∑
i=1

Yi = m]

When f is monotonically increasing, show that

E[f(Y1, . . . , Yn)] ≥ E[f(X1, . . . , Xn)] Pr[

n∑
i=1

Yi ≥ m]

Use this and problem 2 to conclude that E[f(X1, . . . , Xn)] ≤ 2E[f(Y1, . . . , Yn)] (see Theorem 5.10).

Solution: We have

2

E [f(Y1, . . . , Yn)] =
∞∑
k=0

E

[
f(Y1, . . . , Yn)|

n∑
i=1

Yi = k

]
Pr

[
n∑
i=1

Yi = k

]

≥
∞∑
k=m

E

[
f(Y1, . . . , Yn)|

n∑
i=1

Yi = k

]
Pr

[
n∑
i=1

Yi = k

]
(f is non-negative)

=
∞∑
k=m

E
[
f(X

(k)
1 , . . . , X(k)

n)
]

Pr

[
n∑
i=1

Yi = k

]
(Xk

i) – k balls in n bins)

≥
∞∑
k=m

E [f(X1, . . . , Xn)] Pr

[
n∑
i=1

Yi = k

]
(f is monotonically increasing)

= E [f(X1, . . . , Xn)] Pr

[
n∑
i=1

Yi ≥ m

]

Then
∑n

i=1 Yi has the Poisson distribution with parameterm. Since by problem (2), Pr[
∑n

i=1 Yi ≥
m] ≥ 1/2, by substitution into the previous result we get the desired bound.

Problem 4 (Exercise 4.12 – 5 points) Let X1, . . . , Xn be geometric random variables with mean
2. Let X =

∑n
i=1Xi and δ > 0,

(a) Derive a bound on Pr[X ≥ (1+δ)2n] by applying a Chernoff bound to a squence of (1+δ)(2n)
independent coin tosses.

Solution: Note that X − i is distributed according to the number of fair coins flipped before
obtaining a head. Additionally, X is distributed according to the number of fair coins flipped
before getting n heads. Consider the variables Yi that are +1 if the ith flip is tails and −1 if

the ith flip is heads. Let Y =
∑(1+δ)2n

i=1 Yi. Then

Pr[X ≥ (1 + δ)2n] = Pr[Y ≥ (1 + δ)2n− 2n] = Pr[Y ≥ 2δn] ≤ e−
(2δn)2

2n = e−δ
2n/2

(b) Consider the quantity E[etX] and derive a Chernoff bound for Pr[X ≥ (1 + δ)(2n)] using
Markov’s inequality for the random variable etX .

3

Solution: we compute E[etX] as follows

E[etX] =
n∏
i=1

E[etXi]

=
∏ ∞∑

k=1

p(1− p)k−1etk

=
∏ ∞∑

k=1

(1/2)ketk

=
∏(∞∑

k=0

(
et

2

)k)
− 1

=
∏(

1

1− et/2

)
− 1

=

(
et

2− et

)n
Now we can use Markov’s inequality with the moment generating function to get a Chernoff
bound.

Pr[X ≥ (1 + δ)(2n)] = Pr
[
etX ≥ e2n(1+δ)t

]
≤ E[etX]

e2n(1−δ)t

=

[(
et

2− et

)
· e−2(1+δ)t

]n
=

[
e−(1+2δ)t

2− et

]n
Setting the derivative to zero, we find that

t = ln

(
1 + 2δ

1 + δ

)
and

Pr[X ≥ (1 + δ)(2n)] ≤
(

(1 + δ)2+2δ

(1 + 2δ)1+2δ

)n
.

(c) Which bound is better?

Solution: If δ is large, then (a) is better, if δ is small, then (b) is better.

We ignore the n, on the outside, and take logs. The lower the result, the better the bound.
We see that the log of probability given by (a) is ln(e−δ

2/2) = −δ2n/2. For (b) we must work
a little harder.

4

ln

(
(1 + δ)2+2δ

(1 + 2δ)1+2δ

)
= (1 + 2δ) ln

(
1− δ

1 + 2δ

)
+ ln(1 + δ)

= (1 + 2δ)

(
− δ

1 + 2δ
− δ2

2(1 + 2δ)2
− δ3

3(1 + 2δ)3
− · · ·

)
+ δ − δ2

2
+
δ3

3
− · · ·

≤
(
−δ − δ2

2(1 + 2δ)
− δ3

3(1 + 2δ)2

)
+

(
δ − δ2

2
+
δ3

3

)
= −δ2

(
1

2(1 + 2δ)
+

δ

3(1 + 2δ)2
+

1

2
− δ

3

)
≤ δ2

(
3 + 5δ + 2δ2

3(1 + 2δ)2

)

For small δ this is clearly < −δ2/2. However, if you make δ large (like 10) then

ln

(
(1 + δ)2+2δ

(1 + 2δ)1+2δ

)
= (1 + 2δ) ln

(
1− δ

1 + 2δ

)
+ ln(1 + δ)

≈ −2δ ln(1/2) + ln(δ)

≥ −δ
2

2

Problem 5. (Exercise 4.25 from MU - 10 points) In this exercise, we design a randomized algorithm
for the following packet routing problem. We are given a network that is an undirected connected
graph, G, where nodes represent processors and the edges between the nodes represent wires. We
are also given a set of N packets to route. For each packet we are given a source node, a destination
node, and the exact route (path in the graph) that the packet should take from the source to the
destination. (We may assume that there are no loops in the path.) In each time step, at most one
packet can traverse an edge. A packet can wait at any node during any time step, and we assume
unbounded queue sizes at each node.

A schedule for a set of packets specifies the timing for the movement of packets along their
respective routes. That is, it specifies which packet should move and which should wait at each
time step. Our goal is to produce a schedule for the packets that tries to minimize the total time
and the maximum queue size needed to route all the packets to their destinations.

(a) The dilation, d, is the maximum distance travelled by any packet. The congestion, c, is the
maximum number of packets that must traverse a single edge during the entire course of the
routing. Argue that the time required for any schedule should be at least Ω(c + d). (Hint:
Show that the time should be at least max{c, d} which is Ω(c+ d).)

5

Solution: Fix any schedule, and suppose the schedule has length T . By definition of dilation,
there exists a packet that travels a distance d, and it takes at least d time steps to travel a
distance d, so T ≥ d. Let e be the edge with congestion c. Since at each time step at most
one packet can pass through e, it must take c time steps for all c packets passing through e to
go through, so T ≥ c. Therefore, T ≥ max{c, d} = Ω(c+d) and this holds for every schedule.

(b) Consider the following unconstrained schedule, where many packets may traverse an edge dur-
ing a single time step. Assign each packet an integral delay chosen randomly, independently,
and uniformly from the interval [1, dαc/ log(Nd)e], where α is a sufficiently large constant. A
packet that is assigned a delay of x waits in its source node for x time steps; then it moves
on to its final destination through its specified route without ever stopping. Give an upper
bound on the probability that more than O(log(Nd)) packets use a particular edge e at a
particular time step t.

Solution: Fix a time step t and an edge e. At most c packets use the edge e at some time,
and we may assume WLOG that exactly c packages use the edge e at some time (since this
is the worst case). Let X be the r.v. for the number of packets traversing e at time t. We
write X =

∑
iXi , where the indicator r.v. Xi is 1 if packet i passes through e at time t,

and 0 otherwise. Clearly, E[Xi] = log(Nd)
αc , so E[X] = log(Nd)

α . Also, the Xi are independent
because the packet delays are independent. So we may apply the Chernoff bound in the form

Pr[X ≥ (1 + δ)µ] ≤ exp
(
− δ2

2+δµ
)

, with µ = log(Nd)
α and δ = bα− 1 to get

Pr [X ≥ b log(Nd)] ≤ exp

(
− (bα− 1)2

α(bα+ 1)
log(Nd)

)
(Here b is a constant that we can choose.) Now if we set (for example) b = 5 and α = 2 the
exponent in the above bound becomes 81

22 log(Nd) ≥ 3 log(Nd). Thus we have

Pr [X ≥ 5 log(Nd)] ≤ exp (−3 log(Nd)) =
1

(Nd)3

Hence, the probability that more than O(log(Nd)) packages use e at time step t is at most
1

(Nd)3
. [Note: We chose 1

(Nd)3
here for use in the next part. More generally, we can achieve an

upper bound of any poly
(

1
Nd

)
by replacing b and α with correspondingly larger constants.]

(c) Again using the unconstrained schedule of part (b), show that the probability that more
than O(log(Nd)) packets pass through any edge at any time step is at most 1/(Nd) for a
sufficiently large α.

Solution: We need to take a union bound over all edges e that are used and over all time
steps t. To do this, we need upper bounds on both the number of edges and the number of
time steps:

– Each packet uses at most d distinct edges, so the total number of edges used is at most
Nd.

– The total number of time steps is at most d+ αc
log(Nd) The congestion c is bounded by N ,

so this total number of time steps is at most d+ αN
log(Nd) ≤ d+N ≤ 2Nd, for sufficiently

large N . (Recall that α = 2 is a constant.)

6

Now, we may apply a union bound to deduce that the probability that there exists some e, t
such that more than 5 log(Nd) packets use the edge e at time step t is at mostNd·2Nd· 1

(Nd)3
≤

2
N . Therefore, with probability1−O(1/N), we obtain a schedule in the unconstrained model
with low congestion, namely one wherein at every time step, at most 5 log(Nd) packets
traverse any particular edge.

(d) Use the unconstrained schedule to devise a simple randomized algorithm that, with high
probability, produces a schedule of length O(c+ d log(Nd)) using queues of size O(log(Nd))
and following the constraint that at most one packet crosses an edge per time step. (By high
probability, we mean 1−O(1/N).)

Solution: Note that it suffices to handle the case where the schedule in the unconstrained
model has low congestion (i.e., at every time step, at most 5 log(Nd) packets traverse any
edge), since by part (c) this occurs with probability 1−O(1/N). (With probability O(1/N),
our schedule will do arbitrarily poorly, which is OK.) We turn such an unconstrained sched-
ule into a real schedule by replacing every time step in the unconstrained schedule by
s = 5 log(Nd) time steps in the real schedule; we want it to be the case that for each
i = 1, 2, . . ., the locations of the packets in the real schedule after the (is)th time step will be
the same as that in the unconstrained schedule after the ith time step. (This ensures that
there is no interference between steps in the unconstrained schedule, so the analysis of parts
(b) and (c) still holds.)

Since in the unconstrained schedule at most s packets traverse any particular edge in a single
time step, all of these packets can traverse this edge in s time steps in the real schedule
without violating the constraint that at most one packet crosses an edge per time step. Once
a packet crosses an edge, it waits at the other end of the edge until the next time step on the
unconstrained schedule. Clearly, we only need queues of size s = O(log(Nd) to implement
this scheme. The length of the unconstrained schedule is d+ αc

log(Nd) , so the length of the real

schedule is s times that, which is O(c+ d log(Nd)) (recall that α = 2 is a constant).

7

