Homework 7

Due: Thursday, October 25, 2012 by 9:30am

Instructions: You should upload your homework solutions on bspace. You are strongly encouraged to type out your solutions using $\square T_E X$. You may also want to consider using mathematical mode typing in some office suite if you are not familiar with $\square T_E X$. If you must handwrite your homeworks, please write clearly and legibly. We will not grade homeworks that are unreadable. You are encouraged to work in groups of 2-4, but you **must** write solutions on your own. Please review the homework policy carefully on the class homepage.

Note: You *must* justify all your answers. In particular, you will get no credit if you simply write the final answer without any explanation.

Problem 1. (Exercise 6.10 from MU - 6 points) A family of subsets \mathcal{F} of $\{1, 2, ..., n\}$ is called an *antichain* if there is no pair of sets A and B in \mathcal{F} satisfying $A \subset B$.

- (a) Given an example of \mathcal{F} where $|\mathcal{F}| = \binom{n}{|n/2|}$.
- (b) Let f_k be the number of sets in \mathcal{F} with size k. Show that

$$\sum_{k=0}^{n} \frac{f_k}{\binom{n}{k}} \le 1$$

(*Hint*: Choose a random permutation of the numbers from 1 to n, and let $X_k = 1$ if the first k numbers in your permutation yield a set in \mathcal{F} . If $X = \sum_{k=0}^{n} X_k$, what can you say about X?)

(c) Argue that $|\mathcal{F}| \leq \binom{n}{|n/2|}$ for any antichain \mathcal{F} .

Problem 2. (Exercise 6.14 from MU - 6 points) Consider a graph in $G_{n,p}$, with p = 1/n. Let X be the number of triangles in the graph, where a trianle is a clique with three edges. Show that

$$Pr(X \ge 1) \le 1/6$$

and that

$$\lim_{n \to \infty} \Pr(X \ge 1) \ge 1/7$$

(*Hint*: Use the conditional expectation inequality.)

Problem 3 (Exercise 6.18 from MU - 6 points) Let G = (V, E) be an undirected graph and suppose each $v \in V$ is associated with a set S(v) of 8r colours, where $r \geq 1$. Suppose, in addition, that for each $v \in V$ and $c \in S(v)$ there are at most r neighbours u of v such that c lies in S(u). Prove that there is a proper colouring of G assigning to each vertex v a colour from its class S(v) such that, for any edge $(u, v) \in E$, the colours assigned to u and v are different. You may want to let $A_{u,v,c}$ be the event that u and v are both coloured with colour c and then consider the family of such events.

Problem 4 (12 points) In this problem we will see that the value $p = \ln(n)/n$ is a threshold property that a random graph in the $G_{n,p}$ model has an isolated vertex, *i.e.* a vertex with no adjacent edges. That is, we will prove that

$$\lim_{n \to \infty} \Pr[G \text{ has an isolated vertex}] = \begin{cases} 0 & \text{ if } p = \omega(\frac{\ln(n)}{n}) \\ 1 & \text{ if } p = o(\frac{\ln(n)}{n}) \end{cases}.$$

- (a) Let X be the random variable denoting the number of isolated vertices in G. Write down the expectation of X as a function of n and p.
- (b) Show that $\mathbb{E}[X] \to 0$ for $p = \omega(\frac{\ln(n)}{n})$, and that $\mathbb{E}[X] \to \infty$ for $p = o(\frac{\ln(n)}{n})$.
- (c) Deduce from part (b) that $\Pr[G \text{ has an isolated vertex}] \to 0$ for $p = \omega(\ln(n)/n)$.
- (d) Compute Var(X) as a function of n and p.
- (e) Deduce from parts (b) and (d) that $\Pr[G \text{ has an isolated vertex}] \to 1$ for $p = o(\ln(n)/n)$.