
CS 174: Combinatorics and Discrete Probability Fall 2012

Homework 7 Solutions

Problem 1. (Exercise 6.10 from MU – 6 points) A family of subsets F of {1, 2, . . . , n} is called
an antichain if there is no pair of sets A and B in F satisfying A ⊂ B.

(a) Given an example of F where |F| =
(

n
bn/2c

)
.

Solution: Choose every subset of size bn/2c.

(b) Let fk be the number of sets in F with size k. Show that

n∑
k=0

fk(
n
k

) ≤ 1.

(Hint: Choose a random permutation of the numbers from 1 to n, and let Xk = 1 if the first
k numbers in your permutation yeild a set in F . If X =

∑n
k=0Xk, what can you say about

X?)

Solution: Following the hint, choose a random permutation of (1, . . . , n). Let Xk = 1 if the
first k numbers yield a set in F , and let X =

∑n
k=0Xk.

Note that Pr(Xk = 1) = fk
(nk)

. Furthermore, for only one value of k can Xk = 1, which means

that E[X] ≤ 1. Therefore,

E[X] =
n∑

k=0

E[Xk]

=
fk(
n
k

)
≤ 1

(c) Argue that |F| ≤
(

n
bn/2c

)
for any antichain F .

Solution: For a fixed n, the binomial coefficient is maximized at
(

n
bn/2c

)
. Therefore,

1(
n
bn/2c

) n∑
k=0

fk ≤
n∑

k=0

fk(
n
k

) ≤ 1

which implies that

n∑
k=0

fk ≤
(

n

bn/2c

)
The result follows since |F| =

∑n
k=0 fk.
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Problem 2. (Exercise 6.14 from MU – 6 points) Consider a graph in Gn,p, with p = 1/n. Let X
be the number of triangles in the graph, where a triangle is a clique with three edges. Show that

Pr(X ≥ 1) ≤ 1/6

and that
lim
n→∞

Pr(X ≥ 1) ≥ 1/7

(Hint: Use the conditional expectation inequality.)

Solution: Let C1, . . . , C(n3)
be an enumeration of all subsets of 3 vertices in the graph. Let

X =
∑(n3)

i=1Xi, where X−i is 1 if Ci is a triangle and 0 otherwise. We have E[Xi] = Pr[Xi = 1] = p3,
so E[X] =

(
n
3

)
p3. So by Markov’s inequality,

Pr[X ≥ 1] ≤
(
n

3

)
p3 =

(
n

3

)
(1/n)3 ≤ 1/6

To use the conditional expectation inequality, we mimic the argument from the previous part
to get

E[X|Xi = 1] = 1 +

(
n− 3

3

)
p3 +

(
n− 3

2

)
p3 +

(
n− 3

1

)
p2

and then show

Pr[X ≥ 1] ≥
(n3)∑
i=1

Pr[Xi = 1]

E[X|Xi = 1]

=

(
n
3

)
p3

1 +
(
n−3
3

)
p3 +

(
n−3
2

)
p3 +

(
n−3
1

)
p2

=

(
n
3

)
(1/n)3

1 +
(
n−3
3

)
(1/n)3 +

(
n−3
2

)
(1/n)3 +

(
n−3
1

)
(1/n)2

→ 1/6

1 + 1/6 + 0 + 0
as n→∞

= 1/7

Problem 3 (Exercise 6.18 from MU – 6 points) Let G = (V,E) be an undirected graph and suppose
each v ∈ V is associated with a set S(v) of 8r colours, where r ≥ 1. Suppose, in addition, that for
each v ∈ V and c ∈ S(v) there are at most r neighbours u of v such that c lies in S(u). Prove that
there is a proper colouring of G assigning to each vertex v a colour from its class S(v) such that,
for any edge (u, v) ∈ E, the colours assigned to u and v are different. You may want to let Au,v,c

be the event that u and v are both coloured with colour c and then consider the family of such events.

Solution: The solution to this problem is an application of the Lovaxa local lemma. Let us check
the three requirements necessary to apply the lemma:

(a) Pr(Au,v,c) ≤ Pr(u is color c | v is color c) Pr(v is color c) ≤ 1
8r ·

1
8r = 1

64r2
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(b) Au,v,c may only depend on events Au′,v′,c′ where either u = u′ or v = v′. Note that u has
at most 8r colours, and hence at most 8r2 neighbours with which it can share a colour (this
includes v). A symmetric argument holds for v. However, this means that the total number
of events that Au,v,c can be dependent on is at most 16r2 (note that this is despite the double
counting Au,v,c′).

(c) 4dp ≤ 4 · 16r2 · 1
64r2

= 1.

So applying the Lovasz local lemma, we have:

Pr

(⋂
u,v,c

Āu,v,c

)
> 0

In other words, there exists a coloring such that no neighboring vertices have the same color.

Problem 4 (12 points) In this problem we will see that the value p = ln(n)/n is a threshold
property that a random graph in the Gn,p model has an isolated vertex, i.e. a vertex with no
adjacent edges. That is, we will prove that

lim
n→∞

Pr[G has an isolated vertex] =

{
0 if p = ω( ln(n)n )

1 if p = o( ln(n)n )
.

(a) Let X be the random variable denoting the number of isolated vertices in G. Write down the
expectation of X as a function of n and p.

Solution: Let Xi be the r.v. indicating whether vertex i is isolated. Then

E[Xi] = (1− p)n−1

and by linearity of expectation, E[X] = n(1− p)n−1.

(b) Show that E[X]→ 0 for p = ω( ln(n)n ), and that E[X]→∞ for p = o( ln(n)n ).

Solution: Write p = a · lnn
n . Note that

E[X] = n(1− p)n−1

= n

(
1− a · lnn

n

)n−1

→ ne−a lnn

= n1−a

The case p = o
(
lnn
n

)
is equivalent to a = o(1), and thus

E[X] ∼ n1−o(1) →∞

The second case, p = ω
(
lnn
n

)
is equivalent to a = ω(1), and thus

E[X] ∼ n−(ω(1)−1) → 0
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(c) Deduce from part (b) that Pr[G has an isolated vertex]→ 0 for p = ω(ln(n)/n).

Solution: By Markov’s inequality we have Pr[X ≥ 1] ≤ E[X], which by part (b) goes to
zero in the case p = ω

(
lnn
n

)
. Hence Pr[X > 0]→ 0 as required.

(d) Compute Var(X) as a function of n and p.

Solution: For any i 6= j, E[XiXj ] = (1− p)2n−3 (there are 2n− 3 possible edges adjacent to
either i or j). Hence

E[X2] =
∑
i,j

E[XiXj ] = n(1− p)n−1 + n(n− 1)(1− p)2n−3

Therefore

Var[X] = E[X2]− E[x]2 = n(1− p)n−1 + n(1− p)2n−3(np− 1)

(e) Deduce from parts (b) and (d) that Pr[G has an isolated vertex]→ 1 for p = o(ln(n)/n).

Solution: By Chebyshev’s inequality,

Pr[X = 0] ≤ Pr[|X − E[X]| ≥ E[X]]

≤ Var[X]

E[X]2

=
1

E[X]
+

np− 1

n(1− p)

Now for p = o
(
lnn
n

)
we know from part (b) that E[X] → ∞, so the first term here goes to

zero. And the second term is np−1
n(1−p) ≤

p
1−p , which certainly goes to zero for p = o

(
lnn
n

)
.

Hence we have Pr[X = 0]→ 0, i.e. Pr[X > 0]→ 1 as required.
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