
CS 174: Combinatorics and Discrete Probability Fall 2012

Homework 9 Solutions

Problem 1. (Exercise 7.12 from MU – 6 points) Let Xn be the sum of n independent rolls of a
fair die. Show that, for any k ≥ 2,

lim
n→∞

Pr[Xn is divisible by k] =
1

k

Solution: Let Yt = Xt (mod k), meaning that Yt is the remainder of Xt divided by k. Then
Y0, Y1, ... is a Markov chain with k states, and Y0 = 0. The transition probabilities are

Pi,j =
1

6

6∑
a=1

I[i+ a = j (mod k)].

Xt is divisible by k if and only if Yt = 0. And we know that Pr[Yt = 0] = P t
0,0. This is a finite

Markov chain. This is clearly irreducible, since you can reach from state i to state j by rolling
j − i (mod k) 1s on the die. It is also aperiodic because from any state i, there is a path to i
of length k (k rolls of 1) and k − 1 (k − 2 rolls of 1, and 1 roll of 2). Thus, the chain is ergodic
and hence has a unique stationary distribution. It is easy to check that the uniform distribution is
indeed a stationary distribution. Therefore,

lim
n→∞

Pr[Xn is divisible by k] =
1

k

Problem 2. (Exercise 7.13 from MU – 6 points) Consider a finite Markov chain on n states with
stationary distribution π̄ and transition probabilities Pi,j . Imagine starting the chain at time 0
and running it for m steps, obtaining the sequence of states X0, X1, . . . , Xm. Here X0 is chosen
according to distribution π̄. Consider the states in reverse order, Xm, Xm−1, . . . , X0.

(a) Argue that given Xk+1, the state Xk is independent of Xk+2, Xk+3, . . . , Xm. Thus, the reverse
sequence is Markovian.

Solution: We begin by simply writing out the definition of conditional expectation:

Pr[Xk|Xk+1, ..., Xm] =
Pr[Xk, Xk+1, ..., Xm]

Pr[Xk+1, ..., Xm]

=
Pr[Xk] Pr[Xk+1|Xk] Pr[Xk+2, ..., Xm|Xk, Xk+1]

Pr[Xk+1] Pr[Xk+2, ..., Xm|Xk+1]

=
Pr[Xk] Pr[Xk+1|Xk] Pr[Xk+2, ..., Xm|Xk+1]

Pr[Xk+1] Pr[Xk+2, ..., Xm|Xk+1]

=
Pr[Xk] Pr[Xk+1|Xk]

Pr[Xk+1]

Since this is a function only of Xk and Xk+1, we have the desired Markovian dependency on
only the previous state.
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(b) Argue that for the reverse sequence, the transition probabilities, Qi,j , are given by

Qi,j =
πjPj,i

πi
.

Solution: Using the result for part (a), we substitute the stationary distribution in for the
marginals Pr[Xk = j] = πj and Pr[Xk+1 = j] = πj :

Pr[Xk = j|Xk+1 = i] =
πj Pr[Xk+1 = j|Xk = i]

πi
=
πjPj,i

πi
.

(c) Prove that if the original Markov chain is time reversible, so that πiPi,j = πjPj,i, then
Qi,j = Pi,j . That is, the states follow the same transition probabilities whether viewed in
forward or reverse order.

Solution: This follows directly from part (b), where we obtain

πiQi,j = πjPj,i,

which can only be true if Qi,j = Pi,j .

Problem 3. (Exercise 7.20 from MU – 6 points) We have considered the gambler’s ruin problem
in the case where the game is fair. Consider the case where the game is not fair; instead, the
probability of losing a dollar each game is 2/3 and the probability of winning a dollar each game is
1/3. Suppose you start with i dollars and finish either when you reach n or lose it all. Let Wt be
the amount you have gained after t rounds of play.

(a) Show that E[2Wt+1 ] = E[2Wt ].

Solution: We need to consider two cases: (i) When Wt = 0 or Wt = n. In this case,
Wt+1 = Wt, and hence, E[2Wt+1 ] = 2Wt . (ii) When 0 < Wt < n, we have the following.

E[2Wt+1 |Wt] =
2

3
2Wt−1 +

1

3
2Wt+1

=
1

3
2Wt +

2

3
2Wt

= 2Wt

Thus, in either case we have

⇒ E[2Wt+1 ] = E[E[2Wt+1 |Wt]] = E[2Wt ]

(b) Use part (a) to determine the probability of finishing with 0 dollars and the probability of
finishing with n dollars when starting at position i.

Solution: Let p be the probability of finishing with n dollars and 1 − p the probability of
finishing with 0. Let T be the stopping time (i.e. the first time we reach 0 or n dollars). By
the strong Markov property,
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E[2WT ] = E[2W0 ]

⇒ p2n + (1− p)20 = 2i

⇒ p(2n − 1) = 2i − 1

⇒ p =
2i − 1

2n − 1

Problem 4. (Exercise 7.22 from MU – 6 points) A cat and a mouse take a random walk on a
connected, undirected, non-bipartite graph G. They start at the same time on different nodes, and
each makes one transition at each time step. The cat eats the mouse if they are ever at the same
node at some time step. Let n and m denote, respectively, the number of vertices and edges of
G. Show an upper bound of O(m2n) on the expected time before the cat eats the mouse. (Hint:
Consider a Markov chain whose states are the ordered pair (a, b), where a is the position of the cat
and b is a position of the mouse.)

Solution: Following the hint, we formulate a new Markov chain with n2 states of the form (i, j) ∈
[1, n]2. Each node (i, j) in the new chain is connected to N(i)N(j) neighbors, where N(i) denotes
the number of neighbors of state i in the old Markov chain. Hence the number of edges in the new
chain comes to

2|E| =
∑
i

∑
j

N((i, j)) =
∑
i

∑
j

N(i)N(j) =

(∑
i

N(i)

)∑
j

N(j)

 = 4m2

By Lemma 16, if an edge exists between nodes u = (i1, j1) and v = (i2, j2), then hu,v ≤ 2|E| =
4m2.

In order to obtain the O(m2n) upper bound, we need to show that for any node (i, j), there
exists a path of length O(n) connecting it to some node of the form (v, v). In fact, we show that
there exists a length O(n) path between (i, j) and (i, i). Since the graph is undirected, the cat can
always go back to node i in two steps. At the same time, because the graph is connected, theres a
path of length k < n from j to i. If k is even, then the mouse will run into the cat. If k is odd,
then the mouse will get to node i when the cat is away. But since the chain is non-bipartite, there
must be a path of odd length from i back to itself; let the mouse follow this path, and it will run
into the cat on the next return to i. Thus the total length of this path from (i, j) to (i, i) is at most
3n. Each edge on this path requires at most 4m2 steps, thus the desired upper bound on the time
to collision is O(m2n) steps.

Problem 5. (Exercise 7.24 from MU – 6 points) The lollipop graph on n vertices is a clique on
n/2 vertices connected to a path on n/2 vertices. (See Figure 7.3 on pg. 186 of the text book.)
The node u is a part of both the clique and the path. Let v denote the other end of the path.

(a) Show that the expected covering time of a random walk starting at v is Θ(n2).

Solution: We need the expected time it takes to travel the stick part of the lollipop from v
to u (hv,u), and the expected cover time of the clique part of the lollipop starting from node
u (cu). Say there are k nodes in the stick part (excluding u), and k nodes in the ball part of
the graph (including u), so that the total number of nodes is n = 2k. hv,u is just the time it
takes to reach the kth node on a chain starting from 0, i.e., h0 in the chain for 2-SAT. So
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hv,u = k2.

cu, on the other hand, is upper bounded by the expected time it takes to travel to each of
the nodes in the clique and return to u.

cu ≤
∑

w∈clique

hu,w + hw,u.

Let w and x denote nodes in the clique other than u, and let i ∈ {1, 2, . . . , k} denote the
nodes on the stick, with 1 being u’s neighbor and k being synonymous with v. We can write
hu,w in terms of the following system of equations:

hu,w =
1

k
· 0 +

k − 2

k
hx,w +

1

k
h1,w + 1

hx,w =
1

k
· 0 +

k − 3

k − 1
hx,w +

1

k − 1
hu,w + 1

h1,w =
1

2
hu,w +

1

2
h2,w + 1

h2,w =
1

2
h1,w +

1

2
h3,w + 1

. . .

hk−1,w =
1

2
hk−2,w +

1

2
hk,w + 1

hk,w =
1

2
hk−1,w + 1

We obtain hk−i,w = hk−i−1,w +(2i+1), and hence h1,w = hu,w +2k−1. Solving the equations,
we get

hu,w =
k2 + 9k − 2

2k

To calculate
∑
hw,u, use the same proof technique as in Lemma 16.

2|E|
d(u)

= hu,u =
1

d(u)

∑
w∈N(u)

(1 + hw,u),

hence

∑
w∈N(u)

hw,u = 2|E| − k = 2(k(k − 1) + k)− k = 2k2 − k.

Therefore, we have
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cu ≤
∑

w∈clique

hu,w + hw,u ≤ (k − 1)
k2 + 9k − 2

2k
+ 2k2 − k.

Combining everything, we get

k2 = hv,u ≤ Cover time starting from v ≤ hv,u + cu = O(k2)

Hence the cover time starting from v is Θ(k2) = Θ(n2).

(b) Show that the expected covering time for a random walk starting at u is Θ(n3).

Solution: We’ve shown that it takes time Θ(k2) to cover the clique part of the graph starting
from u. We now show that hu,v = Θ(k3), which gives us the required result. We can write
down the following system of equations, using the same node naming convention as before:

hu,v =
k − 1

k
hw,v +

1

k
h1,v + 1

hw,v =
k − 2

k − 1
hw,v +

1

k − 1
hu,v + 1

hi,v =
1

2
hi−1,v +

1

2
hi+1,v + 1

We derive that hw,v = hu,v +k−1 and hk−i,v = i
i+1hk−i−1,v + i, and hence h1,v = k−1khu,v +

(k − 1). From this we get hu,v = k3.
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