
CS–174 Combinatorics & Discrete Probability, Spring 2007

Lecture Notes on Fingerprinting & Applications

May 3, 2007

Fingerprinting

Suppose we have two copies of a large database in locations that are connected by an expensive and error-
prone communication link. We wish to test the integrity of the copies, i.e., to check that both are the same.
The obvious solution of sending one copy of the database across the link and doing a direct comparision is
ruled out because of cost and reliability issues. In such situations, we would like to shrink our data down
to a much smallerfingerprint which is easier to transmit. Of course, this is useful only ifthe fingerprints of
different pieces of data are unlikely to be the same.

We model this situation with two spatially separated parties, Alice and Bob, each of whom holds ann-bit
number (wheren is very large). Alice’s number isa = a1a2 . . . an and Bob’s isb = b1b2 . . . bn. Our goal is
to decide ifa = b without transmitting alln bits of the numbers between the parties.

The Protocol:

Alice picks a prime number u.a.r. from the set{2, . . . , T}, whereT is a value to be determined. She computes
her fingerprint asFp(a) = a mod p. She then sendsp andFp(a) to Bob. Usingp, Bob computesFp(b) =
b mod p and checks whetherFp(b) = Fp(a). If not he concludes thata 6= b, else he presumes thata = b.

Observe that ifa = b then Bob will always be correct. However, ifb 6= a then there may be an error: this
happens iff the fingerprints ofa andb happen to coincide. We now show that, even for a modest value of T

(exponentially smaller thana andb), if a 6= b thenPr[Fp(a) = Fp(b)] is small.

First observe that, ifFp(a) = Fp(b), thena = b mod p, sop must divide|a − b|. But |a − b| is ann-bit
number, so the number of primesp that divide it is (crudely) at mostn (because each prime is at least 2).
Thus the probability of error is at mostn

π(T) , whereπ(x) is defined as the number of primes less than or
equal tox.

We now appeal to a standard result in Number Theory:

Prime Number Theorem:
π(x) ∼

x

ln x
asx → ∞.

Moreover,
x

ln x
≤ π(x) ≤ 1.26

x

ln x
∀x ≥ 17.

Thus we may conclude that

Pr[error] ≤
n

π(T)
≤

n ln T

T
.

SettingT = cn ln n for a constantc gives

Pr[error] ≤
n(lnn + ln ln n + ln c)

cn ln n
=

1

c
+ o(1).

Actually, we can improve this analysis slightly, using another fact from Number Theory: the number of
primes that divide any givenn-bit number is at mostπ(n) (which is a factorln n smaller than the very crude

bound ofn we used above). Thus we get the improved error bound

Pr[error] ≤
π(n)

π(T)
≤ 1.26

n ln T

T ln n
.

SettingT = cn now gives us an error probability of only

1.26

c

(

1 +
ln c

ln n

)

,

which is small even for modestc.

Since this algorithm has one-sided error, the error probability can be reduced as usual by repeated trials, i.e.,
sending multiple independent fingerprints.

The numbers transmitted in the above protocol are integers mod p, wherep = O(n). Hence the number of
bits transmitted is onlyO(log n), an exponential improvement over the deterministic scenario!

Example: If n = 223 (≈ 1 megabyte) andT = 232 (so that fingerprints are the size of a 32-bit word), then

Pr[error] ≤ 1.26
n ln T

T ln n
= 1.26 ·

223

232
·
32

23
< 0.0035.

The above protocol requires us to pick a random prime in{2, . . . , T}. A simple algorithm for this is to pick
a random number in the interval and check if it is a prime; if so, output it, else try again. The Prime Number
Theorem tells us that the probability of success in such a trial is at least 1

ln T
, so the expected number of

trials until we find a prime is at mostln T , which is small. (Recall thatln T = O(log n).) In the next lecture,
we shall see how to check efficiently whether a given number isa prime; this will actually involve another
important use of randomization.

Applications of Fingerprinting

1. Arithmetic modulo a random prime

In many applications, we need to do arithmetic on very large integers (so large that precision is lost or
overflow occurs). For example, these can occur as a result of evaluating a polynomial or a determinant.
Frequently all we need to know is whether two such large integers are equal or not (e.g., does a certain
polynomial evaluate to zero at some given point?) We can dealwith this problem using fingerprints in a very
simple way: just do all the arithmetic modulo a random primep. From our analysis above we know that, if
the integers haven bits, then the number of bits needed inp to ensure a correct answer with high probability
is only O(log n), which is exponentially less and probably small enough to avoid loss of precision.

2. Pattern matching

Suppose we have a long source textX = x1x2...xn and a shorter pattern textY = y1y2...ym with m < n.
We would like to determine whether or notY occurs as a contiguous substring ofX, i.e., whetherY =
X(j) ≡ xjxj+1...xj+m−1 for somej.

The standard deterministic algorithm that compares the pattern to the source text bit-by-bit until a match is
found or the end of the source is reached clearly runs inO(mn) time.

There are complicated deterministic algorithms due to Boyer/Moore and Knuth/Morris/Pratt that run in
O(m + n) time, but they are difficult to implement and have a rather large overhead.

We now present a very simple and practical randomized algorithm, due to Karp and Rabin, that also runs in
O(m+n) time. This algorithm computes a fingerprint ofY , and compares it to the fingerprints of successive
substrings ofX.

pick a random primep ∈ {2, ..., T}
computeFp(Y) = Y modp

for j = 1 to n − m + 1 do
computeFp(X(j))
if Fp(Y) = Fp(X(j))
then output “match?” and halt

output “no match!”

Error probability

This algorithm has one-sided error: it may output “match” when there is in fact no match. Following
the analysis of fingerprinting above, a simple upper bound onPr[Error] is n

π(m)
π(T) ; this follows from the

probability of error in the comparison betweenY and eachX(j) (which is π(m)
π(T)), together with a union

bound overj. We can do better by observing that, in order for a false matchto occur somewhere along
the string,p must divide|Y − X(j)| for somej, and thereforep must divide

∏

j |Y − X(j)|, which is an
mn-bit number. So, the bound on the error can be improved to

Pr[Error] ≤
π(mn)

π(T)
.

Thus, as above, if we chooseT = cmn for a reasonable constantc we will get a small error probability.

Running Time

To find the running time of the algorithm, we first note thatp has onlyO(log(mn)) = O(log n) bits, so
we may reasonably assume that arithmetic modp can be performed in constant time. First, the algorithm
computesFp(Y); sinceY is anm-bit number, this requiresO(m) time.

Next, we note thatX(j) and X(j + 1) differ in only the first and last bits, so we have the following
relationship:

X(j + 1) = 2(X(j) − 2m−1xj) + xj+m.

The fingerprint ofX(j + 1) can thus be computed as follows:

Fp(X(j + 1)) = 2(Fp(X(j)) − 2m−1xj) + xj+m modp.

This involves a constant number of arithmetic operations mod p, and hence takes constant time. The loop
iteratesn times, so the total running time isO(m + n), as claimed earlier.

Note that without the observation that we can computeFp(Xj+1) efficiently fromFp(X(j)), the running
time would beO(mn), which is no improvement on the naive algorithm!

Note also that this algorithm can be converted into a Las Vegas one (i.e., zero error probability but with only
expectedrunning timeO(n + m)) by checkingthat a match is correct before outputting it. Conceivably this
could requireO(mn) time in the worst case (if we were unlucky enough to choose a prime that gave a huge
number of false matches, because each match costsO(m) to check), but the expected running time is still
O(n + m).

Finally, we give a numerical example that might occur (e.g.)when searching for a pattern in a string of
biological data such as DNA. Taken = 212, m = 28, andT to be the machine word size,232. Then we have

Pr[Error] ≤
π(mn)

π(T)
≤ 1.26

mn

ln mn

ln T

T
= 1.26

220

20

32

232
≈ 0.0005.

