CS—174 Combinatorics & Discrete Probability, Spring 2007
L ecture Noteson Fingerprinting & Applications
May 3, 2007

Fingerprinting

Suppose we have two copies of a large database in locatiaharéh connected by an expensive and error-
prone communication link. We wish to test the integrity of ttopies, i.e., to check that both are the same.
The obvious solution of sending one copy of the databasesathe link and doing a direct comparision is
ruled out because of cost and reliability issues. In suakasidns, we would like to shrink our data down
to a much smallefingerprintwhich is easier to transmit. Of course, this is useful onkhd fingerprints of
different pieces of data are unlikely to be the same.

We model this situation with two spatially separated parti&lice and Bob, each of whom holds arbit
number (wheren is very large). Alice’s number ig = aqas . .. a, and Bob’s ish = b1by ... b,. Our goal is
to decide ifa = b without transmitting all: bits of the numbers between the parties.

The Protocaol:

Alice picks a prime number u.a.r. from the §2t. .. 7'}, whereT is a value to be determined. She computes
her fingerprint asFj,(a) = a mod p. She then sendsand F},(a) to Bob. Usingp, Bob computes’,(b) =
b mod p and checks whethdr,(b) = F,(a). If not he concludes that # b, else he presumes that= b.

Observe that it = b then Bob will always be correct. However,lif~£ a then there may be an error: this
happens iff the fingerprints af andb happen to coincide. We now show that, even for a modest vdliie o
(exponentially smaller tham andb), if a # b thenPr[F),(a) = F,(b)] is small.

First observe that, i¥},(a) = F,(b), thena = b mod p, sop must divide|a — b|. But |a — b| is ann-bit
number, so the number of primgghat divide it is (crudely) at most (because each prime is at least 2).
Thus the probability of error is at mo%, wherer(z) is defined as the number of primes less than or
equal tox.

We now appeal to a standard result in Number Theory:

Prime Number Theorem: .
m(x) ~ — asx — oo.

Inz
Moreover, . .
— < m(x) <1.26— Vx> 17.
Inz Inzx
Thus we may conclude that
Pr[errof < " ninT
r _—
—n(T)~ T

SettingT = cnInn for a constant gives

Prlerrof < n(lnn+Inlnn +Inc) 1 +o(1).
enlnn c

Actually, we can improve this analysis slightly, using drestfact from Number Theory: the number of
primes that divide any given-bit number is at most(n) (which is a factoin n smaller than the very crude

bound ofn we used above). Thus we get the improved error bound

m(n) ninT
P < —=<1.2 .
rlerrod < m(T) — 6Tlnn

SettingT = cn now gives us an error probability of only
1.26 (Inc >
—(1+—,
c Inn

Since this algorithm has one-sided error, the error praipaban be reduced as usual by repeated trials, i.e.,
sending multiple independent fingerprints.

which is small even for modest

The numbers transmitted in the above protocol are integedspmwherep = O(n). Hence the number of
bits transmitted is only) (log n), an exponential improvement over the deterministic séehar

Example: If n = 223 (= 1 megabyte) and’ = 232 (so that fingerprints are the size of a 32-bit word), then

223

ninT o6 2 0.0035
Tlnn 232 23 ' ‘

Prlerrof < 1.26
The above protocol requires us to pick a random primgin. ., T'}. A simple algorithm for this is to pick
a random number in the interval and check if it is a prime; jfadaput it, else try again. The Prime Number
Theorem tells us that the probability of success in suchahigiat Ieastﬁ, so the expected number of
trials until we find a prime is at mo&t 7', which is small. (Recall thdh 7' = O(log n).) In the next lecture,
we shall see how to check efficiently whether a given numbargeme; this will actually involve another
important use of randomization.

Applications of Fingerprinting
1. Arithmetic modulo a random prime

In many applications, we need to do arithmetic on very largegers (so large that precision is lost or
overflow occurs). For example, these can occur as a resultatfiating a polynomial or a determinant.
Frequently all we need to know is whether two such large #ne@re equal or not (e.g., does a certain
polynomial evaluate to zero at some given point?) We canwlilalthis problem using fingerprints in a very
simple way: just do all the arithmetic modulo a random prigmé&rom our analysis above we know that, if
the integers have bits, then the number of bits neededvito ensure a correct answer with high probability
is only O(log n), which is exponentially less and probably small enough tadaloss of precision.

2. Pattern matching

Suppose we have a long source t&xt 1 z-...x, and a shorter pattern text = y1ys...y.,, With m < n.
We would like to determine whether or nibt occurs as a contiguous substring Xf i.e., whethery” =
X(J) = xjTj41.--Tjrm—1 fOr somey.

The standard deterministic algorithm that compares theqpato the source text bit-by-bit until a match is
found or the end of the source is reached clearly rur3(imn) time.

There are complicated deterministic algorithms due to B&jmore and Knuth/Morris/Pratt that run in
O(m + n) time, but they are difficult to implement and have a rathegdasverhead.

We now present a very simple and practical randomized dlgoridue to Karp and Rabin, that also runs in
O(m+n) time. This algorithm computes a fingerprint}éf and compares it to the fingerprints of successive
substrings ofX.

pick a random prime € {2,...,T}
computeF,(Y) =Y modp
for j=1ton—m+1do
computeF, (X (j))
if £, (V) = Fp(X(5))
then output “match?” and halt
output “no match!”

Error probability

This algorithm has one-sided error: it may output “match”ewtthere is in fact no match. Following

the analysis of fingerprinting above, a simple upper bound®dgrror] is n%; this follows from the

probability of error in the comparison betwe&hand eachX (j) (which is 77;((2'3))) together with a union
bound overj. We can do better by observing that, in order for a false medabccur somewhere along
the string,p must divide|Y" — X ()| for somej, and thereforep must divide[[, |Y" — X (j)|, which is an

mmn-bit number. So, the bound on the error can be improved to

m(mn)
n(T)

Pr[Error] <

Thus, as above, if we choo§é= c¢mn for a reasonable constantve will get a small error probability.
Running Time

To find the running time of the algorithm, we first note thatas onlyO(log(mn)) = O(logn) bits, so
we may reasonably assume that arithmetic maén be performed in constant time. First, the algorithm
computest,(Y); sinceY is anm-bit number, this require®(m) time.

Next, we note thatX'(j) and X (5 + 1) differ in only the first and last bits, so we have the following
relationship:
X(G+1) =2X() — 2™ ;) + jem.

The fingerprint ofX (j + 1) can thus be computed as follows:
Fy(X(j + 1) = 2(F,(X(j)) — 2" '2;) + 4, modp.

This involves a constant number of arithmetic operationsl jjaand hence takes constant time. The loop
iteratesn times, so the total running time @3(m + n), as claimed earlier.

Note that without the observation that we can compseX ;) efficiently from F,(X (j)), the running
time would beO(mn), which is no improvement on the naive algorithm!

Note also that this algorithm can be converted into a Las ¥ege (i.e., zero error probability but with only
expectedunning timeO(n + m)) by checkingthat a match is correct before outputting it. Conceivabiy th
could require0D(mn) time in the worst case (if we were unlucky enough to chooseénagpthat gave a huge
number of false matches, because each match €usts to check), but the expected running time is still
O(n +m).

Finally, we give a numerical example that might occur (exghen searching for a pattern in a string of
biological data such as DNA. Take= 2'2, m = 2%, andT to be the machine word siz232. Then we have

m(mn) mn InT 220 32
<1.26 — =1260——5
(T) — Inmn T 20 232

Pr[Error] < ~ 0.0005.

)

