
Fall 2012

CS 174 : Lecture Notes
Min-Cut Algorithm

Let G = (V,E) be an undirected multigraph, i.e. there may be multiple edges between any two
vertices u, v ∈ V . However, there are no self loops in G.

Recall from the textbook, the procedure Edge-Contract(e) for some edge, e = (u, v), from G.
The procedure produces a resulting graph, G′ = (V ′, E′), where two end-points u and v of the edge
are merged into a single vertex, say ?, and any edge (w, u) or (w, v) in the original graph is replaced
by the edge (w, ?). Thus, the only edges in G that are not present in G′ are the edges between u
and v (there may be multiple because G is a multi-graph).

Consider the following recursive algorithm for min-cut. The parameter
√

2 in the algorithm
is somewhat optimized, but essentially could be replaced by any constant α with slightly worse
guarantees. We will not explicitly use bn/

√
2c, but just use n/

√
2 as if it were an integer. This

does not change the essence of the proof, but simplifies the notation considerably.

RecursiveMinCut(G = (V,E))

1. Let G1 = (V1, E1) be the graph obtained by n − (n/
√

2) edge-contract
operations on G.
Let C1 = RecursiveMinCut(G1)

2. Let G2 = (V2, E2) be the graph obtained by n − (n/
√

2) edge-contract
operations on G (independent of G1).
Let C2 = RecursiveMinCut(G2)

3. Return the cut among C1 and C2 that is of a smaller size.

First, we show that following:

Lemma 1. The depth of recursion for RecursiveMinCut, starting with a graph G = (V,E) is
2 log(|V |).

Proof. Every depth of recursion reduces the number of vertices by a factor 1/
√

2. Therefore, when
the depth is 2 log |V |, the number of vertices remaining is at most |V |(1/

√
2)2 log |V | = 1. Thus, the

depth of recursion can at most be 2 log |V |.

Let C ⊆ E be a specific min-cut in the graph G = (V,E). We show next that the probability
that the cut C is not destroyed before the recursive call is made is at least 1/2.

Lemma 2. The probability that a specific min-cut C is not destroyed after n−n/
√

2 edge contract
operations is at least

n√
2
·
(

n√
2
− 1

)
n · (n− 1)

Proof. This is along the lines of proof of Theorem 1.8 in Chapter 1 of the textbook. However,
instead of stopping when the graph has 2 vertices (in the textbook), we stop when the graph has
n/
√

2 vertices. The argument is identical.

1

For any graph, G = (V,E), let dG be the depth of recursion required for this graph for the
algorithm RecursiveMinCut. We know that dG ≤ 2 log |V |. Let pd be the minimum (over all possible
graphs) probability that the recursive min-cut algorithm succeeds in finding a min-cut for all graphs,
G, with dG ≤ d. We will show by induction that pd ≥ 1/(d+ 1).

Observe that p0 = 1, i.e. in the base case the algorithm always succeeds. Suppose it is the case
that pd−1 ≥ 1/d. Now consider an arbitrary graph which requires recursion depth d.

In the algorithm, RecursiveMinCut, let p be the probability that C1 is a min-cut. The probability
that C2 is a min-cut is also exactly p (since the process is identical). However, the event C1 being
a min-cut and C2 being a min-cut are independent. Thus, the probability that at least one of them
is a min-cut is 2p − p2. It is easy to show that 2p − p2 is an increasing function of p. Now, note
that p ≥ (1/2)pd−1, thus we have

pd = 2p− p2

≥ pd−1 −
1

4
p2d−1

≥ 1

d
− 1

4d2

≥ 1

d+ 1

Running Time

Thus, the probability that RecursiveMinCut succeeds for a graph G = (V,E) is at least 1/(2 log |V |+
1). Now, in order to guarantee that the algorithm succeeds with probability say 1 − 1/|V |2, it is
sufficient to run RecursiveMinCut on graph G = (V,E) independently (2 log |V |+1)2 times (Why?).

The running time of a single-run of RecursiveMinCut satisfies the following recursion.

T (|V |) = 2|V |(|V | − (|V |/
√

2)) + 2T (|V |/
√

2)

Using the master theorem, this gives us a running time T (|V |) = O(|V |2 log |V |). Thus, when the to-
tal running time (after running this algorithm (2 log |V |+1)2 times independently) isO(|V |2 log3 |V |),
which is much better than the O(|V |4 log |V |) bound if we run the algorithm in the book repreatedly
to get the same error rate, and is even better than the best deterministic runtime of O(|V |3)!

2

