Fall 2012

CS 174 : Lecture Notes
Min-Cut Algorithm

Let G = (V, E) be an undirected multigraph, i.e. there may be multiple edges between any two
vertices u,v € V. However, there are no self loops in G.

Recall from the textbook, the procedure Edge-Contract(e) for some edge, e = (u,v), from G.
The procedure produces a resulting graph, G' = (V' E’), where two end-points u and v of the edge
are merged into a single vertex, say x, and any edge (w,u) or (w,v) in the original graph is replaced
by the edge (w,x). Thus, the only edges in G that are not present in G’ are the edges between u
and v (there may be multiple because G is a multi-graph).

Consider the following recursive algorithm for min-cut. The parameter v/2 in the algorithm
is somewhat optimized, but essentially could be replaced by any constant a with slightly worse
guarantees. We will not explicitly use |n/v/2], but just use n/v/2 as if it were an integer. This
does not change the essence of the proof, but simplifies the notation considerably.

RecursiveMinCut(G = (V, E))

1. Let G; = (V1, E1) be the graph obtained by n — (n/v/2) edge-contract
operations on G.
Let C1 = RecursiveMinCut(G1)

2. Let Gy = (Vi, E3) be the graph obtained by n — (n/v/2) edge-contract
operations on G (independent of Gy).
Let Cy = RecursiveMinCut(G2)

3. Return the cut among C7 and C5 that is of a smaller size.

First, we show that following:

Lemma 1. The depth of recursion for RecursiveMinCut, starting with a graph G = (V,E) is
2log(|V1).

Proof. Every depth of recursion reduces the number of vertices by a factor 1/v/2. Therefore, when
the depth is 2log |V|, the number of vertices remaining is at most |V|(1/y/2)21°¢IV] = 1. Thus, the
depth of recursion can at most be 2log |V]. O

Let C C F be a specific min-cut in the graph G = (V, E). We show next that the probability
that the cut C' is not destroyed before the recursive call is made is at least 1/2.

Lemma 2. The probability that a specific min-cut C is not destroyed after n —n//2 edge contract
operations is at least

v ()
n-(n—1)

Proof. This is along the lines of proof of Theorem 1.8 in Chapter 1 of the textbook. However,
instead of stopping when the graph has 2 vertices (in the textbook), we stop when the graph has
n/+/2 vertices. The argument is identical. O



For any graph, G = (V, E), let dg be the depth of recursion required for this graph for the
algorithm RecursiveMinCut. We know that dg < 2log |V/|. Let pg be the minimum (over all possible
graphs) probability that the recursive min-cut algorithm succeeds in finding a min-cut for all graphs,
G, with dg < d. We will show by induction that pg > 1/(d + 1).

Observe that py = 1, i.e. in the base case the algorithm always succeeds. Suppose it is the case
that pg_1 > 1/d. Now consider an arbitrary graph which requires recursion depth d.

In the algorithm, RecursiveMinCut, let p be the probability that C; is a min-cut. The probability
that Cs is a min-cut is also exactly p (since the process is identical). However, the event C] being
a min-cut and Cs being a min-cut are independent. Thus, the probability that at least one of them
is a min-cut is 2p — p?. It is easy to show that 2p — p? is an increasing function of p. Now, note
that p > (1/2)pg—1, thus we have

pd = 2p — p*

Running Time

Thus, the probability that RecursiveMinCut succeeds for a graph G = (V, E) is at least 1/(21log |V|+

1). Now, in order to guarantee that the algorithm succeeds with probability say 1 — 1/|V|?, it is

sufficient to run RecursiveMinCut on graph G = (V, E) independently (2log |V|+1)? times (Why?).
The running time of a single-run of RecursiveMinCut satisfies the following recursion.

T(IV]) = 2[VI(IV] = (IVI/V2)) + 2T([V|/V2)

Using the master theorem, this gives us a running time T'(|V|) = O(]V|?*log |V'|). Thus, when the to-
tal running time (after running this algorithm (2log |V'[4+1)? times independently) is O(|V|?log® |V]),
which is much better than the O(|V|*log |V'|) bound if we run the algorithm in the book repreatedly
to get the same error rate, and is even better than the best deterministic runtime of O(|V|3)!



