Fall 2012

CS 174 : Lecture Notes Min-Cut Algorithm

Let G = (V, E) be an undirected multigraph, *i.e.* there may be multiple edges between any two vertices $u, v \in V$. However, there are no self loops in G.

Recall from the textbook, the procedure $\mathsf{Edge-Contract}(e)$ for some edge, e = (u, v), from G. The procedure produces a resulting graph, G' = (V', E'), where two end-points u and v of the edge are merged into a single vertex, say \star , and any edge (w, u) or (w, v) in the original graph is replaced by the edge (w, \star) . Thus, the only edges in G that are not present in G' are the edges between uand v (there may be multiple because G is a multi-graph).

Consider the following recursive algorithm for min-cut. The parameter $\sqrt{2}$ in the algorithm is somewhat optimized, but essentially could be replaced by any *constant* α with slightly worse guarantees. We will not explicitly use $\lfloor n/\sqrt{2} \rfloor$, but just use $n/\sqrt{2}$ as if it were an integer. This does not change the essence of the proof, but simplifies the notation considerably.

 $\mathsf{RecursiveMinCut}(G = (V, E))$

- 1. Let $G_1 = (V_1, E_1)$ be the graph obtained by $n (n/\sqrt{2})$ edge-contract operations on G.
 - Let $C_1 = \mathsf{RecursiveMinCut}(G_1)$
- Let G₂ = (V₂, E₂) be the graph obtained by n − (n/√2) edge-contract operations on G (independent of G₁).
 Let C₂ = RecursiveMinCut(G₂)
- 3. Return the cut among C_1 and C_2 that is of a smaller size.

First, we show that following:

Lemma 1. The depth of recursion for RecursiveMinCut, starting with a graph G = (V, E) is $2\log(|V|)$.

Proof. Every depth of recursion reduces the number of vertices by a factor $1/\sqrt{2}$. Therefore, when the depth is $2 \log |V|$, the number of vertices remaining is at most $|V|(1/\sqrt{2})^{2 \log |V|} = 1$. Thus, the depth of recursion can at most be $2 \log |V|$.

Let $C \subseteq E$ be a specific min-cut in the graph G = (V, E). We show next that the probability that the cut C is not destroyed before the recursive call is made is at least 1/2.

Lemma 2. The probability that a specific min-cut C is not destroyed after $n - n/\sqrt{2}$ edge contract operations is at least

$$\frac{\frac{n}{\sqrt{2}} \cdot \left(\frac{n}{\sqrt{2}} - 1\right)}{n \cdot (n-1)}$$

Proof. This is along the lines of proof of Theorem 1.8 in Chapter 1 of the textbook. However, instead of stopping when the graph has 2 vertices (in the textbook), we stop when the graph has $n/\sqrt{2}$ vertices. The argument is identical.

For any graph, G = (V, E), let d_G be the depth of recursion required for this graph for the algorithm RecursiveMinCut. We know that $d_G \leq 2 \log |V|$. Let p_d be the minimum (over all possible graphs) probability that the recursive min-cut algorithm succeeds in finding a min-cut for all graphs, G, with $d_G \leq d$. We will show by induction that $p_d \geq 1/(d+1)$.

Observe that $p_0 = 1$, *i.e.* in the base case the algorithm always succeeds. Suppose it is the case that $p_{d-1} \ge 1/d$. Now consider an arbitrary graph which requires recursion depth d.

In the algorithm, RecursiveMinCut, let p be the probability that C_1 is a min-cut. The probability that C_2 is a min-cut is also exactly p (since the process is identical). However, the event C_1 being a min-cut and C_2 being a min-cut are independent. Thus, the probability that at least one of them is a min-cut is $2p - p^2$. It is easy to show that $2p - p^2$ is an increasing function of p. Now, note that $p \ge (1/2)p_{d-1}$, thus we have

$$p_d = 2p - p^2$$

$$\geq p_{d-1} - \frac{1}{4}p_{d-1}^2$$

$$\geq \frac{1}{d} - \frac{1}{4d^2}$$

$$\geq \frac{1}{d+1}$$

Running Time

Thus, the probability that RecursiveMinCut succeeds for a graph G = (V, E) is at least $1/(2 \log |V| + 1)$. Now, in order to guarantee that the algorithm succeeds with probability say $1 - 1/|V|^2$, it is sufficient to run RecursiveMinCut on graph G = (V, E) independently $(2 \log |V| + 1)^2$ times (Why?).

The running time of a single-run of ${\sf RecursiveMinCut}$ satisfies the following recursion.

$$T(|V|) = 2|V|(|V| - (|V|/\sqrt{2})) + 2T(|V|/\sqrt{2})$$

Using the master theorem, this gives us a running time $T(|V|) = O(|V|^2 \log |V|)$. Thus, when the total running time (after running this algorithm $(2 \log |V|+1)^2$ times independently) is $O(|V|^2 \log^3 |V|)$, which is much better than the $O(|V|^4 \log |V|)$ bound if we run the algorithm in the book represented by to get the same error rate, and is even better than the best deterministic runtime of $O(|V|^3)$!