
CS 174 Fall 2012
Online Learning: Experts and Bandits

(Lecture Notes Based on earlier notes by Adam Kalai.)

1 A simple example

Consider the simple repeated decision-making problem. At times, t = 1, . . . , T , the decision maker
must make a prediction, yt, regarding an outcome in {0, 1} (e.g. whether or not it will rain today).
The decision-maker has access to n experts who will each state their opinion. However, she does
not know ahead of time the quality of the experts. Thus, the setting is: At time step t, each of the
n experts announce their pick, say expert i picks, ŷti ∈ {0, 1}, and the goal of the decision-maker
is to pick a value ŷt ∈ {0, 1}, using history. Then the true outcome, yt ∈ {0, 1} is revealed. The
number of mistakes made by the decision maker is M = |{t | ŷt 6= yt}|.

Question. Suppose that there was guaranteed to be an expert, that predicted correctly on all
rounds, what is the strategy that will minimize the number of mistakes the decision-maker made?

Consider the following simple strategy:

1. At each time-step, t, the decision-maker picks ŷt to be the majority value from the set
{ŷti | i ∈ Et}, where Et is the total set of experts, that are still in contention to be the best
expert at time t. At t = 1, E1 is the set of all experts. (Ties are broken arbitrarily.)

2. When the outcome is revealed, she permanently blacklists any expert who made a mistake.
Thus, Et+1 = {e ∈ Et | ŷte = yt}.

How do we count the total number of mistakes? Observe that every time the decision-maker
makes a mistake, she cuts in half her potential set of experts! This is because she always follows
the majority opinion. Thus, after at most log(n) mistakes, there will be only (the best) one expert
left. Thus, the decision-maker never makes more than log(n) mistakes.

2 Repeated n-Decision Game

The setting here is that the decision-maker has n ≥ 1 fixed decision options. Each period, each
decision pays off a bounded real-valued payoff, say in [−M,M] for some M ≥ 0. Hence, the
sequence of payoffs can be modelled by payoff vectors, p1,p2, . . . ,pT ∈ [−M,M]n. We allow the
decision-maker to choose a probability distribution over the decisions, i.e. , a member of

∆n = {x ∈ Rn | xi ≥ 0,
∑

xi = 1}.

For applications in which one needs to choose a single action, this can be simulated by the ran-
domised weighted majority, in which each period the decision maker chooses one of the decisions
according to her specified distribution.

For simplicity, let us assume that the number of periods, T , is known is advance. The decision-
maker chooses x1,x2, . . . ,xT ∈ ∆n. The environment chooses p1,p2, . . . ,pT ∈ [−M,M]n. The
decision-maker’s payoff on period t is xt · pt =

∑n
i=1 x

t
ip
t
i.

1

Note that we make no assumptions about the sequence, p1,p2, . . . ,pT ∈ [−M,M]n, other than
the fact that it is unknown but bounded. It can be arbitrary and changing. (We do not assume it
is drawn independently from some distribution.)

Each period, t = 1, 2, . . . , T :

1. The decision-maker (player 1) chooses xt ∈ ∆n, based on the history p1,p2, . . . ,pt−1.

2. The environment chooses a payoff vector, pt. The decision-maker receives payoff xt · pt, and
the entire vector pt is revealed to the decision maker.

Remark 1. This version is the perfect monitoring version, meaning that the decision-maker finds
out the payoffs of all the decisions each period. Later we will talk about an imperfect monitoring
version, in which the decision-maker finds out only the payoff of her choice that period.

Remark 2. The version is the mixed-decision version, in which the decision-maker outputs a
probability distribution over decisions and achieves exactly the expected payoff.

Remark 3. Note that in the above definition, the payoffs are not allowed to be adaptive in the sense
that they cannot depend on any randomized choices that the decision maker may make. However,
in the mixed-decision version, we will consider only deterministic algorithms for making decisions.
In this case, there is no need to consider adaptive payoffs.

The decision-maker’s regret is defined to be:

regret = max
x∈∆n

1

T

T∑
t=1

pt · x− 1

T

T∑
t=1

pt · xt.

This is the difference between her average payoff and the average payoff achievable by the best
single decision, x∗ ∈ ∆n, where the best is chosen with the benefit of hindsight. Note that this
definition does not take into account the fact that had the decision maker chosen x∗ each period,
then the environment might have altered its choices of pt. Many alternative notions of regret are
natural, but the nice thing about the above definition is that, in many cases, we can bound our
regret or expected regret.

2.1 Weighted Majority Theorem

The weighted majority algorithm is very simple. It is as follows:

Parameter: ε > 0

On period t = 1, 2, . . . , T :

• Let Pt = p1 + p2 + · · ·+ pt−1 be the past cumulative payoff
vector.

• Let xt =

(
eεP

t
1

Zt ,
eεP

t
2

Zt , . . . ,
eεP

t
n

Zt

)
, where Zt =

∑n
i=1 e

εP ti .

• (Play vector xt and observe payoff vector pt.)

Figure 1: The weighted majority algorithm, WM(ε).

2

Theorem 1. For any n ≥ 1, M ≥ 0, and for any p1,p2, . . . ,pT ∈ [−M,M]n, the weighted majority

algorithm (Fig. 1) run with ε = 1
2M

√
ln(n)
T achieves regret ≤ 4M

√
ln(n)
T .

We will now prove the weighted majority theorem. But, first we begin with some helpful
intuition.

For the repeated n-decision game, first consider the natural follow-the-leader strategy, in which
the decision maker uses, on each period, t, the single decision that would have worked best on

the previous periods. That is, xt ∈ ∆n that maximizes x ·
(∑t−1

t′=1 p
t′
)

. This may be a very poor

strategy in simple cases. For example, if we only have two options, n = 2, and p1 = (0.5,−0.5),p2 =
(−1, 1),p3 = (1,−1),p4 = (−1, 1), . . . ,pT = (−(−1)T , (−1)T), then this approach will have x2 =
(1, 0),x3 = (0, 1), . . . and so on, and the decision-maker would get a payoff of −1 each period, while
any single decision would achieve a payoff of roughly 0.

The difficulty is that the leader is changing each period. If it so happened that x1 = x2 = · · · =
xT in the above algorithm, then the decision-maker would have 0 regret. And if xt was close to
xt+1 for most periods, similarly the regret would be quite small. We formalize this statement as
the following lemma.

Lemma 1 (Stability Lemma). For any set S, and T ≥ 1, sequence of functions, f1, f2, . . . , fT :
S → R, and sequence x2, . . . ,xT+1, where xt ∈ S maximizes

∑t−1
t′=1 f

t′(x), then

T∑
t=1

f t(xt+1) ≥ max
x∈S

T∑
t=1

f t(x).

What the above lemma says is that the hypothetical be the leader algorithm that, on each
period t uses the decision that works best on periods 1, . . . , t, would have no regret. Of course,
it’s impossible to implement such a strategy since we don’t know pt, when we choose xt. But it
does imply that if xt is close to xt+1, for each t (i.e. the leader is stable), then following the leader,
i.e. using xt on period t would yield low regret.

Proof of Lemma 1. The proof follows by induction on T . The base case, T = 1 is trivial. Suppose
it holds for T − 1, and we want to show it for T . So, by induction hypothesis, we have,

T−1∑
t=1

f t(xt+1) ≥ max
x∈S

T−1∑
t=1

f t(x).

Now, maxx∈S
∑T−1

t=1 f t(x) =
∑T−1

t=1 f t(xT) ≥
∑T−1

t=1 (xT+1) (since xT was the maximizer of the
quantity on the left). Hence,

T∑
t=1

f t(xt+1) ≥
T∑
t=1

f t(xT+1) = max
x∈S

T∑
t=1

f t(x).

In general, however, the leader may change quite often, as in our example above. Hence, the
key idea is to add a regularization term to the maximization to make the leader more stable. That
is, rather than maximizing payoff so far, one maximizes payoff so far plus regularization. (Such
regularization is common in machine learning.) The following lemma says that if regularization
makes the decisions stable, then we will have low regret.

3

Lemma 2 (Stability-Regularization Lemma). For any set, S, and T ≥ 1, functions, r, f1, f2, . . . , fT :
S → R, and sequence, x1,x2, . . . ,xT+1, where xt ∈ S, maximizes r(x) +

∑t−1
t′=1 f

t′(x),

T∑
t=1

f t(xt) ≥ max
x∈S

T∑
t=1

f t(x)−

(
T∑
t=1

(f t(xt+1)− f t(xt))

)
− max

x,x′∈S

∣∣r(x)− r(x′)
∣∣ .

Proof. Let x∗ ∈ S maximize
∑T

t=1 f
t(x). Using Lemma 1,

r(x1) +

T∑
t=1

f t(xt+1) ≥ r(x∗) +

T∑
t=1

f t(x∗)

Adding and substracting,
∑T

t=1 f
t(xt) from both sides, and rearranging terms we get

T∑
t=1

f t(xt) ≥
T∑
t=1

f t(x∗)−

(
T∑
t=1

(f t(xt+1)− f t(xt))

)
+ r(x∗)− r(x1)

The conclusion now follows immediately.

The main missing ingredient now is to show that the weighted majority algorithm in fact
maximizes the cumulative payoff plus regularization term. In particular, the regularization function
is,

r(x) =
1

ε
H(x),

where H(x) is the entropy of the distribution x. (Note that in the weighted majority algorithm, we
are always picking x ∈ ∆n, and so x is always a valid distribution.) The entropy of a distribution
with support set of size n is defined as,

H(x) =
n∑
i=1

xi ln
1

xi
,

where 0 ln 1
0 = 0 by definition.

Remark 4. It is more appropriate to define entropy using log2. However, the definition we consider
here, using ln, will be useful for our calculations and in any case the change is only a constant
multiplicative factor.

Entropy is an elegant notion capturing how much uncertainty a distribution has. For example,
it is easy to check that the entropy of the uniform distribution over n items has entropy ln(n), while
the distribution which assigns probability 1 to any single decision has entropy 0. (See Chapter 9
of the MU book for more information about entropy.) We will show the following useful property:

Lemma 3. For any x ∈ ∆n, 0 ≤ H(x) ≤ ln(n).

Proof. Since, 0 ≤ xi ≤ 1, xi ln(1/xi) ≥ 0, thus H(x) ≥ 0. For the other direction, we will use
Jensen’s inequality. Note that, H(x) =

∑n
i=1 xi ln(1/xi). Observe that ln(·) is a concave function,

and that xi ≥ 0, and
∑n

i=1 xi = 1. Thus,

n∑
i=1

xi ln

(
1

xi

)
≥ ln

(
n∑
i=1

xi
1

xi

)
= ln(n).

4

Analysis of Weighted Majority

Now, we argue that when S = ∆n, f t(x) = pt · x and r(x) = 1
εH(x), then the update rule of

weighted majority is exactly a regularized maximizer.

Lemma 4. For any ε > 0, the xt of the weighted majority algorithm WM(ε) maximizes, 1
εH(x) +∑t−1

t′=1 p
t′ · x, over x ∈ ∆n.

Proof. By definition, we have for any x ∈ ∆n,

1

ε
H(x) +

t−1∑
t′=1

pt
′ · x =

n∑
i=1

(
1

ε
xi ln

1

xi
+ P ti xi

)
.

By simple algebra, the above is equal to,

n∑
i=1

1

ε

(
xi ln

1

xi
+ εxiP

t
i

)
=

1

ε

n∑
i=1

xi ln
eεP

t
i

xi
.

For the vector, x, chosen by the algorithm, the above expression is 1
ε

∑n
i=1 xi ln(Zt) = ln(Zt), since∑n

i=1 xi = 1. Again, using Jensen’s inequality, we have:

1

ε

n∑
i=1

xi ln
eεP

t
i

xi
≤ 1

ε
ln

(
n∑
i=1

xi
eεP

t
i

xi

)
=

1

ε
ln(Zt).

Hence, the weighted majority algorithm indeed maximizes the term in the statement of the lemma.

Next, we argue that the weighted majority algorithm is stable.

Lemma 5. For any ε,M > 0, t ≥ 1, and p1,p2, . . . ,pt ∈ [−M,M]n,∣∣pt · xt+1 − pt · xt
∣∣ ≤ 4εM2.

Proof. Note first that P t+1
i −M ≤ P ti ≤ P

t+1
i +M and hence,

eεP
t+1
i e−εM ≤ eεP ti ≤ eεP

t+1
i eεM .

The left-hand side above implies that Zt+1e−εM ≤ Zt, combined with the right hand side gives

xti =
eεP

t
i

Zt
≥ e−2εM eεP

t+1
i

Zt+1
,

for all 1 ≤ i ≤ n.
Finally, since e−s ≥ 1− s for all s, we have that xti ≥ (1− 2εM)xt+1

i .
Let λ = 2εM . First, if λ > 1, notice that the lemma is trivial because 4εM2 > 2M , and the

difference in payoff between two decisions can never be greater than 2M . Hence, WLOG, we may
assume that λ ∈ [0, 1]. Let zt ∈ Rn be the unique vector such that, xt = (1− λ)xt+1 + λzt.

Then, we claim that zt ∈ ∆n. The fact that zti ≥ 0 follows directly from the argument above.
The fact that

∑n
i=1 z

t
i = 1 follows from the fact that

∑n
i=1 x

t
i = 1 and

∑n
i=1 x

t+1
i = 1, and that xt

is a convex combination of xt+1 and zt.
Finally,

xt · pt − xt+1 · pt = −λxt+1 · pt + λzt · pt.
Since, y·pt ∈ [−M,M] for all y ∈ ∆n, the magnitude of the above quantity is at most 2λM = 4εM2,
as required.

5

Finally, we can apply the stability regularization lemma to bound the regret of weighted ma-
jority.

Proof of Theorem 1. The Stability-Regularization Lemma (Lem. 2), combined with Lemma 4, im-
plies that,

regret ≤ 1

T

T∑
t=1

(
xt+1 · pt − xt · pt

)
+

1

T
max

x,x′∈∆n

∣∣∣∣1εH(x)− 1

ε
H(x′)

∣∣∣∣ .
Since we have shown that 0 ≤ H(x) ≤ ln(n), we have,

1

T
max
x,x′

∣∣∣∣1εH(x)− 1

ε
H(x′)

∣∣∣∣ ≤ ln(n)

Tε
,

Lemma 5 above bounds the stability term. Putting these together gives,

regret ≤ 1

T

T∑
t=1

4εM2 +
ln(n)

Tε
= 4εM2 +

ln(n)

Tε
.

Setting ε = 1
2M

√
ln(n)
T gives the required result.

2.2 Applications

2.2.1 MinMax Theorem

A normal-form game G = (N,A = ×Ni=1Ai, u : A → RN) consists of an integer number of players,
N ≥ 1, action sets, Ai (not necessarily finite), the set of action profiles, A = A1 × A2 × · · · × AN ,
and a payoff function (also called the utility function), u : A→ RN , where,

u(a1, a2, . . . , aN) = (u1(a1, . . . , aN), . . . , uN (a1, . . . , aN)) .

This is meant to model a game in which each of the N players simultaneously pick an action,
ai ∈ Ai from their respective action sets. The payoff to player i is ui(a), where the action profile is
the vector of actions a = (a1, . . . , aN) ∈ A.

Mixed Strategies: A mixed strategy is a randomized strategy for playing the game. Let ∆i

denote the set of probability distributions over Ai. Let ∆ = ∆1 × ∆2 × · · · × ∆N . Each σi ∈
∆i is called a mixed strategy, and reflects a randomized choice of actions. A pure strategy is a
probability distribution that assigns probability 1 to one action. Given a mixed strategy profile
σ = (σ1, . . . , σN) ∈ ∆, the payoff function u is extended to ∆ by expected value.

ui(σ1, . . . , σN) = Ea1∼σ1,...,aN∼σN [ui(a1, . . . , aN)].

Here, each ai is drawn independently from its respective probability distribution.
Note that in the case where Ai is infinite, to be formally correct one would have to use measure

theory. We’ll stick to finite strategy sets in this class.

Zero-Sum Games: A constant-sum game, for constant k ∈ R, is simply a game where the sum
of the players’ payoffs is always k. If G = (N,A, u : A → RN) is a normal-form game, then this
condition is simply,

N∑
i=1

ui(a) = k,

6

for all a ∈ A. A zero-sum game is the special case of a constant-sum game where k = 0.

MinMax Theorem: We consider a two-person zero-sum game, G with action setsAi = {1, 2, . . . , ni}
and payoff (utility) functions ui : A1 × A2 → [−M,M], where M ≥ 0 is an upper bound on the
payoffs. (We can always assume that there is some upper bound on the payoffs in a finite game,
M = maxi,a1,a2 ui(a1, a2).)

The value of the game is easy to write down mathematically if one of the players moves first (the
first player announces her mixed strategy) and the other player goes second. The max-min value,
vi = maxσi∈∆i minσ−i∈∆−i ui(σi, σ−i) is how much player i can guarantee if she has to go first, while
the min-max value v̄i = minσ−i∈∆−i maxσi∈∆i ui(σi, σ−i) is how much player i can guarantee if she
gets to go second. So, it is not hard to see that vi ≤ v̄i, since it is an advantage to go second. Also,
v̄i = −v−i because what player i can guarantee going second is the opposite of what her opponent
can guarantee going first.

To prove the min-max theorem, i.e. that vi = v̄i, or equivalently, v1 + v2 = 0, we consider
playing a repeated game. Suppose we are given any game, G, with action sets Ai, mixed strategies,
∆i, and payoffs (utilities) ui : A1 ×A2 → R (extended to ui : ∆1 ×∆2 → R).

Consider the following mixed-strategy repeated game, ∆(G)T . In this game, each player i
chooses a mixed strategy σti ∈ ∆i each period t. For simplicity of the proof, we assume that this
mixed strategy is announced to the opponent.

A strategy in this game is a function fi : H → ∆i, where H = ∪T−1
t=0 ∆t is the set of histories,

saying what to do after each history of length t. The payoff to player i in the repeated game is
simply,

1

T

T∑
t=1

ui(h
t+1),

where h1 = (), ht+1 = ht, (f1(ht), f2(ht)).

Lemma 6. Suppose that player i runs WM with parameter ε = 1
M

√
logn
T to choose her mixed

strategies in ∆(G)T . Then the average payoff to player i is at least v̄i − 2M
√

2 logn
T .

Proof. The average payoff of player i is,

1

T

T∑
t=1

ui(σ
t
i , σ

t
−i).

The best she could have done had she used a fixed strategy in hindsight would be,

max
σi∈∆i

1

T

T∑
t=1

ui(σi, σ
t
−i) = max

σi∈∆i

ui(σi,
1

T

T∑
t=1

σt−i) ≥ v̄i.

The reason the equality holds is because utility is linear in both its arguments, i.e. randomly
choosing between T mixed strategies is equivalent to using the average mixed strategy. The reason
the inequality above holds is that she must get at least how much she can guarantee if going
second, because she has the benefit of hindsight here. Since, the weighted majority theorem (Thm.

1) says that her regret is at most 2M
√

2 logn
T , this means that her average payoff is at least v̄i −

2M
√

2 logn
T .

7

3 Multi-Armed Bandits

The multi-armed bandits (MAB) setting is similar to the repeated n-decision game, except that
one does not find out the entire payoff vector each period. Again, a decision-maker has n ≥ 1
fixed decision options. Each period, each decision pays off a bounded real-valued payoff, say in
[−M,M] for some M ≥ 0. Hence, the sequence of payoffs can be modelled by payoff vectors
p1,p2, . . . ,pT ∈ [−M,M]n. The decision-maker must choose a single-decision dt ∈ [n] on each
period t. The payoff for the decision-maker that period is ptdt ∈ [−M,M]. The main difference
in this setting and the repeated n-decision game is that the decision-maker only finds out her
payoff – she is not informed of the payoffs of other decisions. The reason this problem is called the
multi-armed bandit problem, is in analogy to a one armed bandit (a slot machine).

Again for simplicity, let us assume that the number of periods, T , is known in advance (though
this assumption may be removed). The decision-maker chooses d1, d2, . . . , dT ∈ [n]. The environ-
ment chooses p1,p2, . . . ,pT ∈ [−M,M]n. If the decision dt was chosen according to distribution,
xt ∈ ∆n, the decision-maker’s expected payoff on period t is xt · pt.

Note that we make no assumption about the sequence p1,p2, . . . ,pt ∈ [−M,M]n, other than
that it is unknown but bounded. It can be arbitrary and changing. (We do not assume it is drawn
independently from some distribution).

Each period, t = 1, 2, . . . , T :

• The decision-maker chooses xt ∈ ∆n, based on her previous payoffs and decisions d1, p1
d1 , d

2, p2
d2 , . . . , d

t−1, pt−1
dt−1 .

• The decision-maker receives payoff ptdt , and only ptdt is revealed to the decision-maker.

The decision-maker’s regret is defined to be:

regret = max
i∈[n]

1

T

T∑
t=1

pti −
1

T

T∑
t=1

ptdt .

This is the difference between her average payoff and the average payoff achievable by the best
single decision i∗ ∈ ∆n, where the best is chosen with the benefit of hindsight. Note that this
definition does not take into account the fact that if the decision-maker had chosen i∗ each period,
the environment might have altered its choices of pt.

3.1 An MAB Algorithm

The MAB algorithm is going to build off of the weighted majority algorithm (Alg. 1). The algorithm
has two parameters. The first, δ ∈ (0, 1) is the exploration parameter. The second, ε > 0, is the
same as that of the weighted majority.

Note that by construction, xt ∈ ∆n for each t.

Theorem 2. For any n, T ≥ 1,M ≥ 0, and for any p1,p2, . . . ,pt ∈ [−M,M]n, the MAB algorithm

(Fig. 2) run with δ =
√
n/T 1/4, ε = δ

2Mn

√
log(n)
T achieves, E[regret] ≤ 6M

√
n log(n)

T 1/4 .

Proof. Let d∗ ∈ [n] be the best decision in hindsight, i.e. one that maximizes, 1
T

∑T
t=1 p

t
d, for d ∈ [n].

Note that because, dt each round is chosen according to distribution, xt, we have, E[ptdt] =
E[xt · pt], where the expectation is taken over the randomness of the algorithm.

Hence, it suffices to show that,

1

T

T∑
t=1

ptd∗ − E

[
1

T

T∑
t=1

xt · pt
]
≤ 6M

√
n log(n)

T 1/4
.

8

Parameters: δ ∈ (0, 1), ε > 0

On period t = 1, 2, . . . , T :

• Let P̃t = p̃1 + p̃2 + · · ·+ p̃t−1 be the past estimated
cumulative payoff vector.

• For i = 1, 2, . . . , n, let xti = δ 1
n + (1− δ) e

εP̃ ti

Zt , where

Z̃t =
∑n

i=1 e
εP̃ ti .

• Choose dt ∈ [n] according to probability distribution, xt.

• Let p̃tdt =
pt
dt

xt
dt

and p̃ti = 0, for i 6= dt.

Figure 2: The MAB algorithm, MAB(δ, ε).

Define yti = eεP̃
t
i /Z̃t, so that xti = δ/n+ (1− δ)yti . Next, note that xti ≥ δ/n, for all i, t, so that p̃t ∈

[−M ′,M ′]n for M ′ = Mn
δ . Next, note that the sequence yt is exactly what the weighted majority

algorithm would use on the payoff sequence, p̃1, p̃2, . . . , p̃T , using the setting ε = 1
2M ′

√
log(n)
T , which

is the setting chosen in the weighted majority theorem (Thm. 1). Hence, we have with certainty,

1

T

T∑
t=1

p̃td∗ −
1

T

T∑
t=1

yt · p̃t ≤ 4M ′
√

log(n)

T

Next, we have,

1

T

T∑
t=1

xt · p̃t =
1

T

T∑
t=1

δ

n

n∑
i=1

˜̃pti + (1− δ) 1

T

T∑
t=1

yt · p̃t.

Hence,

1

T

T∑
t=1

p̃td∗ −
1

T

T∑
t=1

xt · p̃t ≤ − 1

T

T∑
t=1

δ

n

n∑
i=1

p̃ti + δ
1

T

T∑
t=1

yt · p̃t + 4M ′
√

log(n)

T
.

We also claim that, E[p̃ti] = pti for all t, i. This expectation is taken over the randomness of the

algorithm. This follows from the fact that E[p̃ti | xti] = Pr[i = dt]
pti
xti

+ Pr[i 6= dt] · 0 = pti. That is,

if we fix (condition upon) any particular xti, then E[p̃ti | xti] = pti. Hence, E[p̃ti] = pti. Similarly, we
also have E[xt · p̃t] = E[xt · pt] and E[yt · p̃t] = E[yt · pt].

Hence, in expectation,

1

T

T∑
t=1

ptd∗−E

[
1

T

T∑
t=1

xt · pt
]
≤ − 1

T

T∑
t=1

δ

n

n∑
i=1

pti+δ
1

T

T∑
t=1

E
[
yt · pt

]
+4M ′

√
log(n)

T
≤ 2δM+4M ′

√
log(n)

T
.

Now, for our choice of δ =
√
n/T 1/4, we have,

2δM + 4
Mn

δ

√
log(n)

T
= 2M

√
n

T 1/4
+ 4M

√
n log(n)

T 1/4
≤ 6M

√
n log(n)

T 1/4
.

This, is what we needed.

9

