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There are many situations in which the primality of a given integer must be determined. For example,
fingerprinting requires a supply of prime numbers, as does the RSA cryptosystem (where the primes should
typically have hundreds of bits).

A theoretical breakthrough in 2002, due to Agrawal, Kayal and Saxena has given us a deterministic poly-
nomial time algorithm for primality testing. However, in practice randomized algorithms are more efficient
and continue to be used. These algorithms date back to the 1970’s and caused a surge in the study of applied
number theory.

A Simple Deterministic Algorithm

Given an odd integern, we wish to determine whethern is prime or composite. Consider the following
deterministic algorithm:

for a = 2, 3, ..., b√nc do
if a|n
then output “composite” and halt

output “prime”

This algorithm is obviously correct. However, because the for-loop hasO(
√

n) iterations, the algorithm
does not have running time polynomial in the number of input bits. (Consider the case wheren is an integer
with hundreds or thousands of bits; then

√
n is an enormous number!) Other, more sophisticated algorithms

based on prime number sieves are a bit more efficient but stillsuffer from a similar drawback.

Randomized Algorithms

Our first randomized algorithm is based on the following standard theorem:

Fermat’s Little Theorem: If p is prime, thenap−1 = 1 mod p for all a ∈ {1, ..., p − 1}.

In particular, for a given integern, if there exists ana ∈ {1, ..., n − 1} such thatan−1 6= 1 mod n, then
surelyn is composite. This fact suggests the following algorithm, known as “Fermat’s Test”:

pick a ∈ {1, ..., n − 1} uniformly at random
if gcd(a, n) 6= 1
then output “composite” and halt
else ifan−1 6= 1 mod n
then output “composite”
elseoutput “prime”

Computinggcd(a, n) can be done in timeO(log n) by Euclid’s algorithm, andan−1 can be computed in
O(log2 n) time by repeated squaring, so this algorithm runs in time polylogarithmic inn (i.e., polynomial
in the input size). It is also extremely efficient in practice.



Error probability

Clearly the algorithm is always correct whenn is prime. However, whenn is composite it may make an
error if it fails to find a “witness,” i.e., a numbera such thatan−1 6= 1 mod n. Unfortunately, there are
composite numbers, known as “Carmichael numbers,” that have no witnesses. The first three CN’s are 561,
1105, and 1729. [Exercise: Prove that 561 is a CN. Hint:561 = 3×11×17.] These numbers are guaranteed
to fool Fermat’s Test.

However, it turns out that CN’s are theonly bad inputs for the algorithm, as we now show. In what follows,
we use the notationZn to denote the additive group of integers modn, andZ

∗
n the multiplicative group of

integers coprime ton (i.e., withgcd(a, n) = 1).

Theorem: If n is composite and not a Carmichael number, thenPr[Error] ≤ 1
2 .

Proof: Let Sn = {a ∈ Z
∗
n : an−1 = 1 mod n}, i.e.,Sn is the set ofa ∈ Z

∗
n that arenot witnesses. Clearly

Sn is a subgroup ofZ∗
n (because it contains1 and is closed under multiplication). Moreover, it is aproper

subgroup sincen is not a CN and therefore by definition there is at least one witnessa /∈ Sn. By Lagrange’s
Theorem (a standard theorem from Group Theory), the size of any subgroup must divide the size of the
group, so we may conclude that|Sn|

|Z∗

n|
≤ 1

2 .

Fortunately, CN’s are rare: there are only 255 of them less than108. For this reason, Fermat’s Test actually
performs quite well in practice. Indeed, even the simplifieddeterministic version which performs the test
only with a = 2 is sometimes used to produce “industrial grade” primes. This simplified version makes
only 22 errors in the first 10,000 integers. It has also been proved for this version that

lim
b→∞

Pr[Error on randomb-bit number] → 0.

For values ofb of 50 and 100, we get Pr[Error] ≤ 10−6 and Pr[Error] ≤ 10−13 respectively. However, as in
many other situations considered in this course, we don’t want to assume anything about the input (such as,
that it is random) and would like to have an algorithm that is guaranteed to have small error probability on
everyinput.

Dealing with Carmichael numbers

We will now present a more sophisticated algorithm (usuallyattributed to Miller and Rabin) that deals with
Carmichael numbers. First observe that, ifp is prime, the groupZ∗

p is cyclic: Z
∗
p = {g, g2, · · · , gp−1 = 1}

for some generatorg ∈ Z
∗
p. (Actually this holds forn ∈ {1, 2, 4} and forn = pk or n = 2pk where

p is an odd prime andk is a non-negative integer.) Note that thenZ
∗
p
∼= Zp−1. For example, here is the

multiplication table forZ∗
7, which has 3 and 5 as generators:

Z
∗
7 1 2 3 4 5 6

1 1 2 3 4 5 6
2 2 4 6 1 3 5
3 3 6 2 5 1 4
4 4 1 5 2 6 3
5 5 3 1 6 4 2
6 6 5 4 3 2 1

Definition: a is a quadratic residue if ∃ x ∈ Z
∗
p such thata = x2 mod p. We say thatx is a square root

of a.

Thus a quadratic residue is just a perfect square inZ
∗
p. The following claim follows immediately from the

cyclic structure ofZ∗
p (exercise):



Claim: For a primep,

(i) a = gj is a quadratic residue iffj is even (i.e., exactly half ofZ∗
p are quadratic residues).

(ii) Each quadratic residuea = gj has exactly two square roots, namelyg
j

2 andg
j

2
+ p−1

2 .

As an example, from the above table it can be seen that 2, 4, and1 are quadratic residues inZ∗
7. We obtain

the following corollary, which will form the basis of our primality test:

Corollary: If p is prime, then 1 has no non-trivial square roots inZ
∗
p, i.e., the only square roots of 1 inZ∗

p

are±1.

In Z
∗
n for compositen, there may be non-trivial roots of 1: for example, inZ35, 62 = 1.

We can now present our improved primality test. The idea is tosearch for non-trivial square roots of 1.
Specifically, assume thatn is odd, and not a prime power. (We can detect prime powers in polynomial time
and exclude them: Exercise!). Thenn − 1 is even, and we can writen − 1 = 2rR with R odd. We search
by computingaR, a2R, a4R, · · · , a2rR = an−1 (all mod n). Each term in this sequence is the square of
the previous one, and (assuming thata fails the Fermat Test, in which case we would be done anyway) the
last term is 1. Thus if the first 1 in the sequence is preceded bya number other than−1, we have found a
non-trivial root and can declare thatn is composite. More specifically the algorithm works as follows:

for input n.
pick ana ∈ {1, ..., n − 1} uniformly at random
if gcd(a, n) 6= 1 then ouput “composite” and halt
computebi = a2iR mod n, i = 0, 1, · · · r
if br[= an−1] 6= 1 then output “composite” and halt
else ifb0 = 1 then output “prime” and halt
elselet j = max{i : bi 6= 1}
if bj 6= −1 mod n then output “composite”
elseoutput “prime”

For example, for the Carmichael numbern = 561, we haven − 1 = 560 = 24 × 35. If a = 2 then the
sequence computed by the algorithm isa35 mod 561 = 263, a70 mod 561 = 166, a140 mod 561 = 67,
a280 mod 561 = 1, a560 mod 561 = 1. So the algorithm finds that67 is a non-trivial square root of1 and
therefore concludes that561 is not prime.

It remains to show that the error probability is bounded whenn is composite (so that the witness property
of a = 2 in the above example is in fact not a fluke).

Analysis

If an−1 6= 1 modn then we know thatn is composite, otherwise the algorithm continues by searching for a
nontrivial square root of 1. It examines the descending sequence of square roots beginning atan−1 = 1:

an−1, a(n−1)/2, a(n−1)/4, . . . , aR.

There are three cases to consider:

(i) The powers are all equal to 1.

(ii) The first power (in descending order) that is not 1 is−1.

(iii) The first power (in descending order) that is not 1 is a nontrivial root of 1.



In the first two cases the algorithm fails to find a witness for the compositeness ofn, so it guesses thatn is
prime. In the third case it has found some power ofa that is a nontrivial square root of 1, soa is a witness
thatn is composite.

The key fact to prove is that, ifn is composite, then the algorithm is quite likely to find a witness:

Theorem: If n is odd, composite, and not a prime power, thenPr[a is a witness] ≥ 1
2 .

To prove this claim we will use the following definition and lemma.

Definition: Call s = 2iR a bad power if∃x ∈ Z
∗
n such thatxs = −1 modn.

Lemma: For any bad powers, Sn = {x ∈ Z
∗
n : xs = ±1 modn} is a proper subgroup ofZ∗

n.

We will first use the Lemma to prove the Theorem, and then finishby proving the Lemma.

Proof of Theorem: Let s∗ = 2i∗R be the largest bad power in the sequenceR, 2R, 22R, . . . , 2rR. (We
know s∗ exists becauseR is odd, so(−1)R = −1 and henceR at least is bad.)

Let Sn be the proper subgroup corresponding tos∗, as given by the Lemma. Consider any non-witnessa.
One of the following cases must hold:

(i) aR = a2R = a4R = . . . = an−1 = 1 modn

(ii) a2iR = −1 modn, a2i+1R = . . . = an−1 = 1 modn (for somei).

In either case, we claim thata ∈ Sn. In case (i),as∗ = 1 modn, soa ∈ Sn. In case (ii), we know that2iR
is a bad power, and sinces∗ is the largest bad power thenas∗ = ±1 modn and soa ∈ Sn. Therefore, all
non-witnesses must be elements of the proper subgroupSn. Using Lagrange’s Theorem just as we did in
the analysis of the Fermat Test earlier, we see that

Pr[a is not a witness] ≤ |Sn|
|Z∗

n|
≤ 1

2
.

This completes the proof of the Theorem.

We now go back and provide the missing proof of the Lemma.

Proof of Lemma: Sn is clearly closed under multiplication and hence a subgroup, so we must only show
that it isproper, i.e., that there is some element inZ

∗
n but not inSn. Sinces is a bad power, we can fix an

x ∈ Z
∗
n such thatxs = −1. Sincen is odd, composite, and not a prime power, we can findn1 andn2 such

thatn1 andn2 are odd, coprime, andn = n1 · n2.

Sincen1 andn2 are coprime, the Chinese Remainder Theorem implies that there exists a uniquey ∈ Zn

such that

y = x modn1;

y = 1 modn2

We claim thaty ∈ Z
∗
n \ Sn.

Sincey = x modn1 andgcd(x, n) = 1, we knowgcd(y, n1) = gcd(x, n1) = 1. Also, gcd(y, n2) = 1.
Together these givegcd(y, n) = 1. Thereforey ∈ Z

∗
n.



We also know that

ys = xs modn1

= −1 modn1 (∗)
ys = 1 modn2 (∗∗)

Supposey ∈ Sn. Then by definition,ys = ±1 modn.

If ys = 1 modn, thenys = 1 modn1 which contradicts(∗).

If ys = −1 modn, thenys = −1 modn2 which contradicts(∗∗).

Therefore,y cannot be an element ofSn, soSn must be a proper subgroup ofZ
∗
n. This completes the proof

of the Lemma.


