
Machine Learning (AIMS) - Week 5, Michaelmas Term 2018

Lecture : Multi-armed Bandits

Lecturer: Varun Kanade

Scribed by Shaan Desai

These notes are a rough draft. Many thanks to Shaan Desai for scribing. A lightly edited and
slightly more proof-read set will be posted in due course.

1 Introduction

Set of states and a decision maker
E.g.
state is current state of the video game, agent takes an action and you move to a new state
and you get a reward.
Agent takes action at at time t
and gets reward rt
depending on action, you can go to any random state (if stochastic).
Underlying assumption of Markovian.
Goal: Maximize cumulative reward!
MAB is simplest form, there are no movements form state to state. Trivial system where you
have single state. Rewards don’t depend on past actions.

1.1 Bandits Overview

Bandits with IID rewards
We have a time horizon T ate each round t: 1. agent picks an action/arm at ∈ A

|A| = k

2. receive and observe reward rt ∈ [0, 1]

1.2 Stochastic vs adversarial

stochastic - IID draw from distribution across time for each arm adversarial - gives us a
reward (what does it mean to maximize in this setting)
Maximize the overall reward across the time horizon - make IID assumption that for all a ∈ A
there is a distribution Da over [0, 1] and rt,a ∼ Da (independent across time)
Action a, µa bernoulli reward model in this case, as long as support is bounded. Even if
support is not bounded (sub gaussian) low probability mass away from mean. Good
concentration of averages is wanted.
Can generalize to more reward distributions.

1.3 applications

Well studied problem, e.g. drug trials - every time you get a patient with disease you want to
choose the best treatment as soon as possible. e.g online predictions - maximize revenue by ad
clicks. choose many ads and clicks are pulls of the arm.

1

1.4 Notation

Action - A time - t, T # of arms - K # rounds - T mean reward of action a - µa best mean
reward - µ∗ δ(a) = µ∗ − µ(a) reward gap (suboptimality of arm a) a∗ any optimal action
Cumulative Regret

R(t) = µ∗t−
t∑

s=1

µas

regret is always positive, we dont want it to grow as a function of t. Want the average regret
to grow slowly:

R(t)/t→ 0

as
t→ inf

maxa∈A
∑

rt,a −
∑

rt,at

LHS - best action in hindsight RHS - actual reward accumulated
in adversarial it is hard to know which action is best
in stochastic setting:

2 Uniform exploration

want to find the best arm which involves exploration, spend too much time exploring - more
danger accumulating regret! trade off between the two.

2.1 Algorithm

Fix param N
Pull all arms N times µ̂ = 1/N

∑
rt,a

pick ā = argmaxµ̂
play ā for remaining T - KN steps

2.2 Hoeffding bound/Proof

Let X1, ...XN be IID RVs taking values in [0,1] with E[X1] = µ
then

P (| 1
n

∑
xi − µ| > t) ≤ 2e−2nt2

Union Bound: P (AUB) < P (A) + P (B)
Arm a: εa the event that after N draws:

|µ̂a − µa| ≥
√

2logT

N

ε = Uεa

P (εa) ≤ 2e−2NlogT/N = 2e−4logT = 2/T 4

P (ε) ≤ 2K/T 4

expected regret is very small. Condition on E not occuring. Suppose algo picks

ā! = a∗

2

µ̂ā ≥ µ̂a∗

some algebra:

µ̂ā ≤ µ̂∗a + 2

√
2logT

N

also:

µā ≥ µ∗a − 2

√
2logT

N

∆(ā) ≤ 2

√
2logT

n

Regret :
∑

∆(at) total regret ≤ KN + 2T
√

2logT
N KN is exploration phase, just accumulate

lots of regret. Then only exploit! Need to choose the right N,

N = (
2T
√

2logT

K
)2/3

can substitute above into regret above.
total regret ≤ 2K1/3T 2/3logT 1/3

quick notes from questions:
ā : assumed maximum of µ̂a probability that E doesn’t happen is at most 1 E(regret) = P
(regret—event happens)(event happens) + P(regret—doesnt happen)P(doesnt happen)
Issues with algo: stop exploring, need to know how to pull each arm I don’t know how long
i’m going to play one way is to pretend what T is, double estimate of T after each run

3 ε greedy

for each t, with probability εt pick a uniform random action w probability 1 -εt pick the best
action so far
explore in the beginning and let it decay with time

εt ∼ t−1/3

E[Regret] = O(T 2/3(KlogT)1/3)

can we improve on this?
lets not just pick a random action, might want to be smarter.
Adaptive exploration algorithms
Exploration in phases - successive elimination
we have:

µ̂a

lies in an interval
length of interval: √

logT

Na

overlap of mu’s determines whether we drop the arm or not
If for arm a, ∃ arm a’ s.t:

µ̂a +

√
2logT

Na
≤ µ̂′a −

√
2logT

N ′a

3

then eliminate a
run through all the arms, cycle through arms and keep eliminating
Regret = O(

√
KTlogT)

4 UCB - upper confidence bound

for each t,
pick a ∈ argmax(ˆµa(t) + rt(a))
if a is played Na,t times before time t

µ̂a(t) = 1/Nt(a)
∑

ra,si

rt(a) =

√
2logT

Nt(a)

be optimistic
proving that UCB works!

P (| ˆµt(a)− µa| ≥ rt(a)) ≤ 2/T 4

rt(a) =
√

2logT/Nt(a)

rewards table across time rt,j
Nt(a) ≤ T
Condition on this!

P (| ˆµt(a)− µa| ≥ rt(a)|Nt(a) = K) ≤ 2/T 4

p(ε) ≤ 2K/T 3

Fix some time t Algorithm picks some at

µ̂t(at) + rt(at) ≥ µ̂t(a∗) + rt(a
∗)

UCB
µ̂t(at) + rt(at) ≤ µ(at) + 2rt(at)

mu hat is lowest value of true
µ̂t(a

∗) + rt(a
∗) ≥ µ(a∗)

Delta(at) = µ(a∗)− µ(at) ≤ 2rt(at)

Regret =
∑T

t=1 ∆(at) =
∑K

a=1

∑NT (a)
s=1 2

√
2logT
S

I know:

K∑
a=1

NT (a) = T

≤ 2
∑K

a=1

√
2logTNT (a)

on the assumption that
∑

1/sqrti ∼ k
√
n

use concavity

≤ 200
√

2log(T)KT

sqrt KT is a limitation, this is the holy grail.

4

