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What is machine learning?
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What is machine learning?

What is artificial intelligence?

“Instead of trying to produce a programme to
simulate the adult mind, why not rather try to
produce one which simulates the child’s? If this were
then subjected to an appropriate course of education
one would obtain the adult brain.”

Turing, A.M. (1950). Computing machinery and intelligence. Mind, 59, 433-460.



What is machine learning?

Definition by Tom Mitchell

A computer program is said to learn from experience E with respect to
some class of tasks T and performance measure P, if its performance at
tasks in T, as measured by P, improves with experience E.
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What is machine learning?

Definition by Tom Mitchell

A computer program is said to learn from experience E with respect to
some class of tasks T and performance measure P, if its performance at
tasks in T, as measured by P, improves with experience E.

Face Detection
» E:images (with bounding boxes) around faces
» T:given an image without boxes, put boxes around faces

» P:number of faces correctly identified
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Course Information

Website
Www.CS.0X.ac.uk/people/varun.kanade/teaching/ML-AIMS-MT2018/

Lectures
Mon-Thu: 10h30 - 12h30; Fri: 9h-11h (Lecture Room 7 all days)

Practicals
Mon-Thu: 15h-17h (?)
Demonstrators: Philip Lazos, David Martinez

Textbooks

Kevin Murphy - Machine Learning: A Probabilistic Perspective
» Online access through Bodleian library

Other posted online material



A few last remarks about this course

As ML developed through various disciplines - CS, Stats,
A Neuroscience, Engineering, etc., there is no consistent usage

of notation or even names among the textbooks. At times

you may find inconsistencies even within a single textbook.

You will be required to read, both before and after the lectures. | will post
suggested reading on the website.

Resources:

» Wikipedia has many great articles about ML and background material
> Online videos: Andrew Ng on coursera, Nando de Freitas on youtube, etc.
> Many interesting blogs, podcasts, etc.
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Some Machine Learning Applications



Application: Boston Housing Dataset

Numerical attributes

>
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Crime rate per capita
Non-retail business fraction
Nitric Oxide concentration
Age of house

Floor area

Distance to city centre
Number of rooms

Categorical attributes

>
>

On the Charles river?
Index of highway access (1-5)

Source: UCI repository

Predict house cost



http://archive.ics.uci.edu/ml/datasets/Housing

Application: Object Detection and Localisation

vV vV v v Y
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200-basic level categories

Here: Six pictures containing airplanes and people
Dataset contains over 400,000 images
Imagenet competition (2010-)

All recent successes through very deep neural networks!



Supervised Learning

Training data has inputs x (numerical, categorical) as well as outputs y
(target)

Regression: When the output is real-valued, e.g., housing price
Classification: Output is a category

» Binary classification: only two classes e.g., spam

» Multi-class classification: several classes e.g., object detection



Unsupervised Learning : Genetic Data of European Populations
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Source: Novembre et al., Nature (2008)


http://www.nature.com/nature/journal/v456/n7218/full/nature07331.html
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Unsupervised Learning : Genetic Data of European Populations
A

Experience (E)
Task (T)

Performance (P)

Source: Novembre et al., Nature (2008)

Dimensionality reduction - Map high-dimensional data to low dimensions

Clustering - group together individuals with similar genomes


http://www.nature.com/nature/journal/v456/n7218/full/nature07331.html

Unsupervised Learning : Group Similar News Articles

‘Google News - Mozilla Firefox (Private Browsing)
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Group similar articles into categories such as politics, music, sport, etc.

In the dataset, there are no labels for the articles



Active and Semi-Supervised Learning

Active Learning

> Initially all data is unlabelled
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» How to use the two together to improve

Semi-supervised Learning
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Collaborative Filtering : Recommender Systems

Movie / User \ Alice Bob Charlie Dean Eve
The Shawshank Redemption 7 9 9 5 2
The Godfather 3 ? 10 4 3
The Dark Knight 5 9 ? 6 ?

Pulp Fiction ? 5 ? ? 10
Schindler’s List ? 6 ? 9 ?

Netflix competition to predict user-ratings (2008-09)

NETFLIX

Any individual user will not have used most products

Most products will have been use by some individual



Reinforcement Learning

v

Automatic flying helicopter; self-driving cars

» Cannot conceivably program by hand

v

Uncertain (stochastic) environment

v

Must take sequential decisions

v

Can define reward functions

v

Fun: Playing Atari breakout! [video]
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