

Problem Sheet 1

1 Nearest Neighbour Classification

In class we studied linear regression, where we model the output $y = \mathbf{w} \cdot \mathbf{x} + \text{noise}$, where \mathbf{w} is the parameter vector to be learnt and \mathbf{x} is the input. Nearest neighbour (NN) is a different approach to learning from data. Suppose we are given m points $(\mathbf{x}_1, y_1), \ldots, (\mathbf{x}_m, y_m)$; for a parameter k and given a new point \mathbf{x}^* , the k-NN approach does the following: find $\mathbf{x}_{j_1}, \ldots, \mathbf{x}_{j_k}$ the k-closest points to \mathbf{x}^* , then compute

$$\hat{y}^* = \sum_{l=1}^k \alpha_{j_l} y_{j_l},$$

where α_{j_l} are weights inversely proportional to the distance between **x** and **x**_{j_l}.

- 1. What advantage does the k-NN approach offer over linear regression?
- 2. How many parameters does the nearest neighbour model have? How much memory do you need to store the model? What is the computational cost of producing \hat{y}^* ?
- 3. In this part, we'll look at the setting where the vectors \mathbf{x} are points on the boolean hypercube, *i.e.*, $\mathbf{x} \in \{0, 1\}^n$. Fix $\mathbf{x}^* = (0, 0, \dots, 0)$ to be the origin and imagine that data consists of points drawn uniformly at random from the boolean hypercube. What is the distribution of the Hamming distance of data points from \mathbf{x}^* ? What happens as $n \to \infty$? (*Hint*: Use the central limit theorem.)
- 4. Let us now fix some numbers. Suppose the dimension of the data n = 10,000; let $\mathbf{x}^* = (0,0,\ldots,0)$ and suppose we generated m = 10,000 data points. What do you expect the distance of \mathbf{x}^* from the nearest data-point to be? the furthest? How large does m need to be to get points that are reasonably close to \mathbf{x}^* , say within Hamming distance 50?

Remark: You do not have to write precise numbers or even mathematical expressions for the answers to part 4 above. Make sure you understand the behaviour qualitatively. The phenomenon explored in the last two parts of the question is referred to as the *curse of dimensionality*.

2 Normalization constant for a 1D Gaussian

The normalization constant for a zero-mean Gaussian is given by

$$Z = \int_{-\infty}^{\infty} \exp\left(-\frac{x^2}{2\sigma^2}\right) dx.$$

Machine Learning Hilary Term 2016 Week 3

To compute this, consider its square

$$Z^{2} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \exp\left(-\frac{x^{2} + y^{2}}{2\sigma^{2}}\right) dxdy.$$

Let us change variables from cartesian (x, y) to polar (r, θ) using $x = r \cos \theta$ and $y = r \sin \theta$. Since $dxdy = rdrd\theta$ (recall that r is the determinant of the Jacobian in 2D) and $\cos^2\theta + \sin^2\theta = 1$, we have

$$Z^{2} = \int_{0}^{2\pi} \int_{0}^{\infty} r \exp\left(-\frac{r^{2}}{2\sigma^{2}}\right) dr d\theta$$

Evaluate this integral and hence show $Z = \sqrt{2\pi\sigma^2}$.

Hint 1: Separate the integral into a product of two integrands, the first of which (involving $d\theta$) is constant, so is easy.

Hint 2: If $u = e^{-r^2/2\sigma^2}$ then $du/dr = -\frac{1}{\sigma^2}re^{-r^2/2\sigma^2}$, so the second integral is also easy (since $\int u'(r)dr = u(r)$).

3 Reducing the cost of linear regression for large n, small m

The ridge method is a regularized version of least squares with objective function:

$$\min_{\mathbf{w}\in\mathbb{R}^n} \|\mathbf{y} - \mathbf{X}\mathbf{w}\|_2^2 + \lambda \|\mathbf{w}\|_2^2$$

Here λ is a scalar, the input matrix $\mathbf{X} \in \mathbb{R}^{m \times n}$ and the output vector $\mathbf{y} \in \mathbb{R}^m$. The parameter vector $\mathbf{w} \in \mathbb{R}^n$ is obtained by differentiating the cost function, yielding the *normal equations*

$$(\mathbf{X}^T\mathbf{X} + \lambda \mathbf{I}_n)\mathbf{w} = \mathbf{X}^T\mathbf{y}_n$$

where \mathbf{I}_n is the $n \times n$ identity matrix. The predictions $\hat{\mathbf{y}} = \hat{\mathbf{y}}(\mathbf{X}_*)$ for new test points $\mathbf{X}_* \in \mathbb{R}^{m^* \times n}$ are obtained by evaluation the hyperplane

$$\hat{\mathbf{y}} = \mathbf{X}_* \mathbf{w} = \mathbf{X}_* (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I}_n)^{-1} \mathbf{X}^T \mathbf{y} = \mathbf{H} \mathbf{y}.$$

The matrix \mathbf{H} is known as the *hat matrix* because it puts a "hat" on y.

- 1. Show that the solution can be written as $\mathbf{w} = \mathbf{X}^T \tilde{\mathbf{w}}$, where $\tilde{\mathbf{w}} = \lambda^{-1} (\mathbf{y} \mathbf{X} \mathbf{w})$.
- 2. Show that $\tilde{\mathbf{w}}$ can also be written as follows: $\tilde{\mathbf{w}} = (\mathbf{X}\mathbf{X}^T + \lambda \mathbf{I}_m)^{-1}\mathbf{y}$ and, hence the predictions can be written as follows:

$$\hat{\mathbf{y}} = \mathbf{X}_* \mathbf{w} = \mathbf{X}_* \mathbf{X}^T \tilde{\mathbf{w}} = [\mathbf{X}_* \mathbf{X}^T] ([\mathbf{X} \mathbf{X}^T] + \lambda \mathbf{I}_m)^{-1} \mathbf{y}$$

(This an *awesome trick* because if m = 20 patients with n = 10,000 gene measurements, the computation of $\tilde{\mathbf{w}}$ only requires inverting the $m \times m$ matrix, while the direct computation of \mathbf{w} would have required the inversion of an $n \times n$ matrix.)

4 Logical Gates Using Perceptrons

Recall that a perceptron with input features x_1, \ldots, x_n , weights w_1, \ldots, w_n and bias w_0 outputs the value:

$$y = \begin{cases} 1 & \text{if } w_0 + \sum_{i=1}^n w_i x_i \ge 0\\ 0 & \text{otherwise} \end{cases}$$

- 1. Suppose there are at most two inputs and the inputs always take binary values, *i.e.*, $x_i \in \{0,1\}$. Show how to construct AND, OR and NOT gates by suitably adjusting weights.
- 2. The constructions for AND and OR gates required only the bias term w_0 to be negative, all other weights were positive. Can you achieve a similar construction for the NOT gate? Why?
- 3. Can you construct an XOR (exclusive or) gate? If not, give reasons.
- 4. Often, instead of using a hard threshold we would like to use a continuous approximation. Recall the hyperbolic tangent function $\tanh(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$. We consider another type of *artificial neuron* whose output is defined as

$$y = \tanh\left(w_0 + \sum_{i=1}^n w_i x_i\right).$$

Suppose you treat outputs above 0.99 as true and those below -0.99 as false. Show that similar constructions to ones you had earlier can still be used to construct logic gates.