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Outline

Today we’'ll discuss classification using logistic regression.

» Discriminative vs Generative Models
» Likelihood of Logistic Regression
» Using convex optimization to the obtain MLE

» Logistic Regression in torch



Classification : Generative Models

How are the inputs, tail length and height,
distributed given the class?

Model Pr(x | y = zebra)
Model Pr(x | y = donkey)

Example: Model both distributions are
multivariate normal with same covariance
matrix but different mean
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Discriminative Approach

Don't try to model the inputs x at all
Model the output y given the input x and the parameters for the model w

y ~ p(x,w)



Discriminative Approach

Don't try to model the inputs x at all
Model the output y given the input x and the parameters for the model w

y ~ p(x,w)

Pros and cons for both approaches (see Murphy Chapter 8.6)

Focus on discriminative classification



Logistic Regression: Sigmoid Function

The sigmoid function, or o, (a.k.a. logistic or logit) is defined as
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Binary Classification: Logistic Regression

As in the case of linear regression, we model y given x € R™ and
parameters w € R”

Linear model parametrized by w € R™ composed with sigmoid filter

We have,
Pr(y =1|x,w) = o(x"w)



Binary Classification: Logistic Regression

As in the case of linear regression, we model y given x € R™ and
parameters w € R”

Linear model parametrized by w € R™ composed with sigmoid filter

We have,
Pr(y =1|x,w) = o(x"w)

For prediction:
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Binary Classification : Logistic Regression
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Bernoulli Random Variables

Bernoulli random variable X takes value in {0, 1}. We parametrize using
6 € [0,1].

p(1]0) =0

p(0]6) =119



Bernoulli Random Variables

Bernoulli random variable X takes value in {0, 1}. We parametrize using
6 € [0,1].

p(1]6) =0
p(0]6)=1-106

More succinctly, we can write

p(a|6) = 6°(1 - 6)'



Bernoulli Random Variables

Bernoulli random variable X takes value in {0, 1}. We parametrize using
6 € [0,1].

p(1]6) =0
p(0]6)=1-106

More succinctly, we can write

p(a|6) = 6°(1 - 6)'

Logistic Regression
y given x and parameter w is modelled as Bernoulli variable

y ~ Bernoulli(o(x” w))



Likelihood of Logistic Regression

under the logistic regression model

Given data D = {(x, y:))ij~; we can compute the likelihood of observing y



Likelihood of Logistic Regression

Given data D = {(x, y:))ij~; we can compute the likelihood of observing y
under the logistic regressmn model

p(y | X,w) = HBernoulli(yi | o(x] w))

i=1

Yi 1 1-y;
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Likelihood of Logistic Regression

Given data D = {(x, y:))ij~; we can compute the likelihood of observing y
under the logistic regressmn model

ply | X, w) = [ [ Bernoulli(y; | o(x] w))

i=1

Yi 1 1-y;
() ()
Pl 1de > W 1de W

Let’s look at the negative log likelihood for a single data point (x;, v;)

L(w;xi, ;) = — log(p(yi | o(x] w)))
— (yilog(m:) + (1 — yi) log(1 — m;))



Gradient and Hessian of NLL

The negative log likelihood is given by

m

L(w) = NLL(y | X,w) = = > (yi log(mi) + (1 — ) log(1 — m:))

=1



Gradient and Hessian of NLL

The negative log likelihood is given by

m

L(w) = NLL(y | X,w) = = > (yi log(mi) + (1 — ) log(1 — m:))
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The gradient and the Hessian (with respect to w) can be computed as:

g=VwL = sz mi—yi) =X (7w —y)

HZVi,L Zm 1—7rzxx =X dlag(m(l ;)X



Gradient and Hessian of NLL

The negative log likelihood is given by

m

L(w) = NLL(y | X,w) = = > (yi log(mi) + (1 — ) log(1 — m:))

=1

The gradient and the Hessian (with respect to w) can be computed as:

g=VwlL = sz T — Yi) —XT(7r—y)

HZVi,L Zm 1—7rzxx =X dlag(m(l ;)X

Homework: Show that H is positive definite.

NLL is convex and has a global minimum



Iteratively Reweighted Least Squares (IRLS)

Apply Newton's method

g =X"(m —y)=-X"(y —m)
H; = XTS;X



Iteratively Reweighted Least Squares (IRLS)

Apply Newton's method

g =X"(m —y)=-X"(y —m)
H; = XTS;X

Newton’s update says:

-1
Wil = we — Hy gy

wi 4+ (XT8: X)X  (y — )

= (X8, X) 'XT(S:Xw; +y — ) = (XTS:X) H(X'Sszs)



Iteratively Reweighted Least Squares (IRLS)

Apply Newton's method

g =X"(m —y)=-X"(y —m)
H; = XTS;X

Newton’s update says:

Wil = Wi — H;lgt
=wi + (XT8:X) ' X (y — m0)
= (X8, X) 'XT(S:Xw; +y — ) = (XTS:X) H(X'Sszs)

This is a least square solution for the system

m
Z St,i(x;rw - Zt,i)2
i=1



Multi-class, Softmax Formulation, Multinoulli

Logistic Regression as a Neural Network

"Kevin Murphy's usage



Softmax in Torch

nn.SoftMax()

T
Input —e—
Output —e—




Likelihood for multi-class

Classes: {1,...,C}
Indicator function:
1 ify=c
I, = .
) {0 otherwise

The parameters W is now an x C matrix

For a single data point (x, y) the likelihood is:

p(y | x, W) = Hﬂ'

And the negative log likelihood is

L(Wv X, y) = Z Hc(y) IOg(ﬂ-c)



Multiclass Logistic Regression in Torch

example-logistic-regression.lua

require ’nn’; require ’optim’;

model = nn.Sequential()

ninputs = 10; noutputs = 3
model:add(nn.Linear(ninputs, noutputs))
model:add(nn.LogSoftMax())

criterion = nn.ClassNLLCriterion()

-- define some input and target

-- to evaluate model

model:forward(input)

-- to evaluate loss
criterion:forward(model:forward(input), target)
-- to compute gradients

model:backward(input, criterion:backward(model.output, target))




