
Machine Learning - Michaelmas Term 2016

Lecture 3 : Maximum Likelihood

Lecturer: Varun Kanade

In this lecture, we’ll look at the linear model from a probabilistic perspective. Previously,
we added a noise term ε to the linear model as a necessary correction for the case where the
observed data does not exactly satisfy a linear relationship (which will almost always be the
case). In this lecture, we see how the language of probability can be used to explicitly model
this error term as noise generated from some distribution. We’ll then develop tools to estimate
the appropriate parameters for the model from this probabilistic perspective.

1 Probability Review

We’ll very briefly discuss some concepts from probability theory below. For further details
please refer to (Murphy, 2012, Chap 2).

1.1 Covariance and Correlation

Let X and Y be two real-valued random variables. The covariance is a measure of linear
relationship between the two random variables. Formally, the covariance cov(X,Y ) is defined
as

cov(X,Y ) = E
[
(X − E [X]) · (Y − E [Y ])

]
= E [XY ]− E [X] · E [Y ] (1)

Covariance depends on the scale of the random variables. For example, if X measures the
distance of a commute and Y the time required to undertake it, then if the distance is measured
in metres as opposed to kilometres, then the covariance cov(X,Y ) may vary by a factor of one
thousand. The Pearson correlation coefficient normalises this so that the correlation between
any two random variables is always between −1 and +1. The correlation coefficient corr(X,Y )
is defined as follows:

corr(X,Y ) =
cov(X,Y )√

var(X) · var(Y )
(2)

Figure 1 shows different pairs of random variables (X,Y ) and their correlation coefficients.
Independent random variables indeed have 0 correlation as can be seen in Figure 1(a). However,
the converse it not true. Random variables having 0 correlation can be very much dependent
(see Fig. 1(d)). As an extreme example of this, if X is distributed uniformly on [−1, 1] and
Y = X2, then the cov(X,Y ) = 0, however clearly X and Y are not independent!

For a random variable x ∈ RD, the covariance matrix contains the covariance between
all pairs of components. The diagonal terms contains the variance of each component. One
can similarly write out a correlation matrix, which contains pairwise correlations instead of
covariances; in this case the diagonal will have all entries equal to 1.

cov(x) = E
[
(x− E[x])(x− E[x])T

]
=


var(X1) cov(X1, X2) · · · cov(X1, XD)

cov(X2, X1) var(X2) · · · cov(X2, XD)
...

...
. . .

...
cov(XD, X1) cov(XD, X2) · · · var(XD)

 .
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(a) (b) (c) (d)

Figure 1: Four pairs of random variables and their correlation coefficients.

1.2 The Gaussian Distribution

The density function of a univariate Gaussian (or normal) distribution with mean µ and variance
σ2 is given by

p(x) =
1√
2πσ

exp

(
−(x− µ)2

2σ2

)
(3)

We denote this distribution by N (µ, σ2) and denote X ∼ N (µ, σ2) to denote that the random
variable X is distributed according the normal distribution with mean µ and variance σ2.

A multivariate Gaussian distribution in D dimensions has density function given by:

p(x) =
1

(2π)D/2|Σ|1/2
· exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
(4)

In this case, µ ∈ RD is the mean and Σ is the covariance matrix.

1.3 The Laplace Distribution

The univariate Laplace distribution with parameters µ and b is defined by the density function.

Lap(x | µ, b) =
1

2b
· exp

(
−|x− µ|

b

)
(5)

The mean of the Lap(· | µ, b) is µ and the variance is 2b2.

1.4 Maximum Likelihood Principle

Suppose we are given some observations x1, x2, . . . , xN drawn independently from some unknown
distribution. For some distribution p, we define the likelihood of observing x1, . . . , xN as the
probability of making these observations assuming that they had been generated according to
p. Let us assume that p has some parametric form, for example, if p is a univariate Gaussian
then p is entirely determined by the parameters µ and σ2. Let θ denote the set of parameters
determining p. Then, we can express the likelihood of observing the data x1, . . . , xN under the
distribution p with parameters θ as follows:

p(x1, . . . , xN | θ) =

N∏
i=1

p(xi | θ)

2



x1 x2x3
µ = 2µ = 0

Figure 2: Maximum likelihood example

Since the observations x1, . . . , xN are independent, the joint distribution of the N observations is
simply the product of the distribution of every observation. The maximum likelihood principle
states that the parameters θ which have the highest likelihood should be picked.

To make this concrete, suppose you were given three points x1 = 0.3, x2 = 1.4 and x3 = 1.7,
with the promise that they were either generated according to the normal distribution N (0, 1)
or N (2, 1). Which of the two would you say is more likely? We can write the likelihood as
above and compare the two probabilities and respond with whichever is higher.

In this example, it is easy to see this just using a picture (see Fig 2). We see that point x1 is
as far from µ = 0 as x3 is from µ = 2, and similarly x3 is as far from µ = 0 as x1 is from µ = 2.
Thus, only x2 will determine which of the two probabilities is more likely. In this case, since
x2 is closer to µ = 2 than µ = 0, we can conclude that N (2, 1) is more likely to generate these
points. This only worked since both N (0, 1) and N (2, 1) had the same variance, otherwise we’d
have had to do the calculations!

2 Linear Regression and Maximum Likelihood

Let us return to the linear model we studied in the previous lecture. We assumed that the
output variable was a linear function of the input variables plus a noise term.

y = w0x0 + w1x1 + · · ·+ wDxD + ε (6)

In the above expression, we’ve assumed that there is an extra input (or feature) x0 which always
takes the value 1, so that the constant term in the linear model does not have to be treated
separately.

We model y (or alternatively the noise term ε) explicitly as a random variable. In particular,
we’ll model y as a random variable with mean w · x. More formally,

E
[
y | w,x

]
= wTx (7)

Thus, y given the inputs x and parameters w is modelled as a random variable with mean w ·x.
In fact, we can further model y using a specific distribution. Let us model y conditioned on x
and w as a Gaussian random variable with mean w · x and variance σ2. Thus, in the language
of probability, this linear model (with Gaussian noise) is expressed as

p(y | w,x) = N (wTx, σ2) = wTx +N (0, σ2) (8)

Alternatively, we can just think of modelling the noise term as a Gaussian random variable with
mean 0 and variance σ2.

Remark 1. Throughout this lecture, we shall make no attempt to model the distribution over the
inputs x1, . . . ,xN . Indeed, for simplicity we may as well think of them as fixed. The probabilistic
model is only for the distribution of the output y given the input x and the model parameters
w. This is referred to as the discriminative framework. (When the inputs are also modelled as
coming from a probability distribution, it is referred to as the generative framework.)
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Figure 3: (a) Probabilistic version of the linear model with Gaussian noise. (b) Predictions
using the maximum likelihood estimates.

Maximum Likelihood of Linear Regression with Gaussian Noise

Let us now turn to computing the likelihood of the observed data 〈(xi, yi)〉Ni=1 under the linear
model with Gaussian noise. For every observation we have,

yi = w · xi + εi

where εi ∼ N (0, σ2). We will make the assumption that the εi for i = 1, . . . , N are all indepen-
dent random variables.

Before computing the likelihood mathematically, let us focus attention on Figure 3(a). The
probabilistic interpretation of the linear model states that we actually expect the observations
to deviate from the linear function (line) according to a normal distribution. In this example,
the likelihood is given by the product of the lengths of the magenta segments (which are the
values of the probability density function). The maximum likelihood estimate seeks to fit a line
that maximises this product. On the other hand, the least squares estimate was minimising the
sum of the squares of the residuals (the blue segments).

Now, let us write the likelihood of observing the data mathematically. Since, we only model
the outputs y1, . . . , yN probabilisticially, we have

p
(
y1, . . . , yN | x1, . . . ,xN ,w, σ

)
=

N∏
i=1

p
(
yi | xi,w, σ

)
by independence

According to the model yi ∼ wTxi +N (0, σ2)

p
(
y1, . . . , yN | x1, . . . ,xN ,w, σ

)
=

N∏
i=1

1√
2πσ2

exp

(
−(yi −wTxi)

2

2σ2

)

=

(
1

2πσ2

)N/2
exp

− 1

2σ2
·
N∑
i=1

(yi −wTxi)
2


We want to find parameters w and σ that maximise the likelihood. Since the logarithm,

log : R+ → R is an increasing function, we can instead maximise the log-likelihood which can
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be expressed in a slightly more convenient form.

LL(y1, . . . , yN | x1, . . . ,xN ,w, σ) = −N
2

log(2πσ2)− 1

2σ2

N∑
i=1

(yi −wTxi)
2

We can express everything in vector notation,

LL(y | X,w, σ) = −N
2

log(2πσ2)− 1

2σ2
(Xw − y)T(Xw − y)

Alternatively, we can minimise the negative log-likelihood

NLL(y | X,w, σ) =
1

2σ2
(Xw − y)T(Xw − y) +

N

2
log(2πσ2)

Recall the objective function we used for the least squares estimate in the previous lecture

L(w) =
1

2N
(Xw − y)T(Xw − y)

For minimizing with respect to w, the two objectives L(w) and NLL(w) are the same upto
a constant additive and multiplicative factor! Thus, we know that the maximum likelihood
estimate for w is given by,

wML =
(
XTX

)−1
XTy

We can also find the maximum likelihood estimate for σ. An exercise on sheet 2 is to show that
the MLE for σ is given by

σ2ML =
1

N
(XwML − y)T(XwML − y)

Prediction

Having obtained the maximum likelihood estimates (MLEs) wML and σ2ML, on a new point xnew,
we can use these to make a prediction and also give confidence intervals (see Figure 3(b)).

ŷnew = wML · xnew

p(ynew | xnew,wML) = ŷnew +N (0, σ2ML)

Discussion

In this lecture, we viewed the linear model through a proababilistic framework, where the noise
term is modelled explicitly according to a probability distribution. We made the choice to model
this as a Gaussian random variable with mean 0 and variance σ2; but of course, as we shall see
shortly other choices are possible.

Once this model is expressed in the language of probability, we can apply the maximum
likelihood principle which seeks to find parameters that maximise the likelihood of the observa-
tions under the chosen model. In order to find the MLE wML for linear regression with Gaussian
noise, the optimisation problem turned out to be exactly the same as that for obtaining the
least squares estimate. Using this, we are also able to obtain the MLE for σ. Thus, in a way
this can be seen as a justification of the least squares approach, although, it still remains to be
justified that a Gaussian random variable is a suitable choice for modelling noise.
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Figure 4: For linear regression, the least squares estimate and the MLE (with Gaussian noise)
are not robust to outliers.
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Figure 5: Laplace and Gaussian distribution with the same mean and variance.

2.1 Outliers and the Laplace Noise Model

Recall that in the previous lecture, we saw that the least squares estimate is very sensitive to
outliers (see Fig. 4). As the maximum likelihood estimate under the Gaussian noise model results
in the same estimate for the parameters w, this too must be sensitive to noise! Probabilistically,
we may view this as follows: the Gaussian distribution has very light ‘tails’, i.e., there is very
little probability mass a couple of standard deviations away from the mean. Thus under this
model outliers are very very unlikely and so the model will not treat them as such and try to
fit a model that accounts for them rather than ignoring them. Instead, we can model the noise
using a distribution that has heavier tails. of which the Laplace distribution is one. Figure 5
shows the Laplace distribution and the Gaussian distribution with the same mean and variance.
Although, it is a bit hard to see, from the zoomed in version it is clear that the tails of the
Laplace distribution are heavier. Recall that the Laplace distribution with parameters µ and b
is given by,

Lap(x | µ, b) =
1

2b
exp

(
−|x− µ|

b

)
We can express the linear model with Laplace noise as:

p(y | w,x) = Lap(y | w · x, b) = w · x + Lap(ε | 0, b)
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As in the case of the Gaussian noise model, we can write the likelihood, log-likelihood and
negative log-likelihood for the Laplace noise model.

p(y1, . . . , yN | x1, . . . ,xN ,w, b) =
N∏
i=1

1

2b
exp

(
−|yi −wTxi|

b

)

=
1

(2b)N
exp

−1

b

N∑
i=1

|yi −wTxi|


As in the case of the Gaussian noise model, we look at the negative log-likelihood

NLL(y | X,w, b) =
1

b

N∑
i=1

|yi −wTxi|+N log(2b)

We can see that the maximum likelihood estimate (in the Laplace noise model) is that which
minimises the average absolute difference between the predictions and the observed outputs.
This is exactly what we discussed in the previous lecture as a means to handle data with outliers.
Recall, that there is no closed form expression for the solution to this optimisation problem.
We shall study algorithms to solve this problem next week. Deriving the MLE for b is left as
an exercise.

3 Information, Entropy, KL Divergence

We’ll briefly discuss the connections between some of the concepts introduced in this lecture
to those in information theory. Obviously, give that the goal of machine learning is to extract
meaninful patterns out of data, it is no surprise that there are deep connections between machine
learning and information theory. Exploring these in detail is beyond the scope of this course,
but the interested student may refer to the book by MacKay (2003) or Jaynes (2003).

3.1 Entropy

Let X be a random variable that takes values from a finite set according to distribution p.1

Then then entropy of X is defined as

H(X) = −
∑
x

p(x) log p(x) (9)

The entropy is a measure of uncertainty of a random variable. If X takes values over a finite set
of size n, then X has maximum entropy if it is distributed according to the uniform distribution
over these n elements. It has minimum entropy if all the probability mass is concentrated on
one of these elements, i.e., in effect it is not a random variable at all, but a constant.

Let us focus on the case of Bernoulli random variables. A Bernoulli random variable is
defined by a parameter θ ∈ [0, 1] and takes value 1 with probability θ and 0 with probability
1− θ. This can be expressed succintly as

p(x | θ) = θx(1− θ)1−x

In this case, let us write the entropy in terms of the parameter θ and use logarithm base 2 for
convenience.

H(X) = −θ log2(θ)− (1− θ) log2(1− θ)
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Figure 6: Entropy of the Bernoulli random variable as a function of θ

Figure 6 plots the entropy as a function of θ. We see that the entropy has a maximum value
of 1 for θ = 1/2 and minimum value of 0 at θ ∈ {0, 1}. One way to think of entropy is how much
information is obtained when the outcome of an experiment is revealed. For example, if Alice
has an unbiased coin, then if she tosses it and reports the outcome we get one bit of information.
On the other hand if she has a coin that always lands on heads, we get no additional information
by being told the outcome of the coin toss, because it was something we could have predicted
ourselves with complete certainty!

3.2 Kullback-Leibler Divergence

Let p and q be distributions over some finite set and suppose that the support of p is contained
in the suport of q.1 The Kullback-Leibler (or KL) Divergence between two distributions p and
q is defined as follows

KL(p‖q) =
∑
x

p(x) log

(
p(x)

q(x)

)
=
∑
x

p(x) log(p(x))−
∑
x

p(x) log(q(x)) = −H(p) +H(p, q)

HereH(p) = −
∑
x

p(x) log p(x) is the entropy of the distribution p andH(p, q) = −
∑
x

p(x) log q(x)

is called the cross-entropy. The cross entropy accounts of the expected number of bits required
to encode an observation from p if the encoding scheme was based on q. Thus, the KL-divergence
KL(p‖q) gives the expected excess bits required to encode an observation from p if the encoding
scheme was based on q.

The KL divergence satisfies the following two properties:

1. KL(p‖q) ≥ 0

2. KL(p‖q) = 0 if and only if p = q

It is worth mentioning that the KL-divergence is not a distance; in particular, it is not
symmetric. For example, even when the support of p and q is the same, so that both KL(p‖q)
and KL(q‖p) are defined, they need not be equal.

1This can be extended to continuous-valued random variables by using the integral instead of the sum and
replacing the probability mass function by the density function.
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Figure 7: Maximum Likelihood Estimates and KL-divergence: The data is generated according
to the distribution shown by the thick red line. The figure also shows three possible Gaus-
sian distributions (dashed). The goal is to find the Gaussian distribution that maximises the
likelihood of the observed data.

Relation to Maximum Likelihood

Let us now see how the maximum likelihood estimate relates to these notions from information
theory. Suppose we get data x1, . . . xN from some unknown distribution p (not necessarily of
any particular parametric form). However, we wish to fit a distribution that does have some
parametric form (say for example Gaussian) that best explains the data. In particular, we
will derive the maximum likelihood estimate for the parameters of distributions of a certain
parametric form.

Figure 7 shows the actual generating distribution (in thick red). It also shows three possible
Gaussian distributions with different means and variances (dotted). Suppose, we want to find
maximum likelihood estimate for these parameters.

The mathematical derivation below is more general. It just assumes that the family of
distributions we consider are parameterized by some parameters θ. In particular, q(· | θ) is the
distribution that we use to model the data and we derive the maximum likelihood estimate for
θ.

θ̂ML = argmax
θ

N∏
i=1

q(xi | θ)

= argmax
θ

N∑
i=1

log(q(xi | θ))

= argmax
θ

1

N

N∑
i=1

log(q(xi | θ))−
1

N

N∑
i=1

log(p(xi)) (10)

= argmin
θ

1

N

N∑
i=1

log

(
p(xi)

q(xi | θ)

)
(11)

−→
N→∞

argmin
θ

∫
log

(
p(x)

q(x|θ)

)
p(x)dx = KL(p‖qθ) (12)

Above in Step (10) we replace the sum by the average and added an extra term that does
not depend on θ, neither of these operations affects the argmax; in Step (11), we switched the
signs and hence changed the argmax to argmin; finally, Step (12) states that in the limit of
getting infinite quantities of data, where xi ∼ p, the average can be replaced by the expectation
under the distribution p. This last term is nothing but the KL-divergence KL(p‖qθ). Thus,
the maximum likelihood estimate can be viewed as finding parameters (from some family of
distributions) that minimises the KL-divergence between the true distribution generating the
data and the modelled distribution from this family. Alternatively, the MLE can be viewed

9



as finding the distribution from a parametric family that has least KL-divergence between the
empirical distribution over the data and this particular parametric distribution.

Remark 2. This section covered somewhat advanced topics and is not examinable. It is intro-
duced to show connections between machine learning methods and information theory.
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