
Machine Learning - Michaelmas Term 2016

Lecture 8 : Classification: Logistic Regression

Lecturer: Varun Kanade

In the previous lecture, we studied two different generative models for classification—Näıve
Bayes and Gaussian Discriminant Analysis. Today, we’ll study a discriminative model called
Logistic Regression.1

1 Logistic Regression

In its most basic form, logistic regression is a method for binary classification, i.e., when there
are only two classes. In such a setting it is mathematically convenient to label these classes as
0 and 1 (as we’ll do in this lecture), or −1 and 1 (as we’ll do in the next lecture). However, it
is important to bear in mind that this is purely a mathematical convenience.

Logistic Regression is a discriminative model, i.e.,, we only model the conditional distribu-
tion over the output y, given the inputs x and model parameters w,

p(y | w,x) (1)

The specific form of this model is the following. Let us suppose that the inputs are x ∈ RD.
Furthermore, we’ll assume that an extra column has been added, say x0 = 1, for each datapoint
so that we do not need to handle the constant term explicitly. Then the logistic regression
model for the conditional distribution over y, given x and w is:

p(y | w,x) = Bernoulli(σ(w · x)), (2)

where σ : R → (0, 1) is the sigmoid function given by σ(t) = 1
1+e−t . (Note that as t → −∞,

σ(t) → 0 and as t → ∞, σ(t) → 1.) We encountered this function in the previous lecture;
the shape of the function is shown in Figure 1. Recall that σ maps R → (0, 1), so σ(t) can
be interpreted as a probability. Thus in (2), y is modelled as Bernoulli random variable with
expectation σ(w · x). Recall, that a Bernoulli random variable with mean (parameter) θ, takes
the value 1 with probability θ and the value 0 with probability 1− θ.

As a result, the specific functional form of the model, σ(w·x) can be interpreted as estimating
the probability that the class label is 1.2

1.1 Prediction Using Logistic Regression

Let us suppose that we have estimated the model parameters and now wish to predict the class
for a new input xnew. The model specifies the probability that the class label is 1,

p(ynew = 1 | xnew,w) = σ(w · xnew) =
1

1 + exp(−w · xnew)
(3)

1As if it weren’t bad enough, that a generative model has the word discriminant in its name, as in the
case of Gaussian Discriminant Analysis (i.e., QDA and LDA), despite being a method for classification, logistic
regression has ‘regression’ in its name. The reason why this is will soon be clear.

2In fact this functional form is one of a family of models referred to as generalised linear models. These are
models where the expected output is modelled as a linear function composed with a univariate function, i.e.,
E[y | x,w, f] = f(w · x) for f : R → R. These models can be used to capture (limited) non-linearities without
resorting to basis function expansion and are also used for regression problems; logistic regression may be viewed
as one of these models, although it is almost exclusively used for classification. As an aside, to further confuse
matters, there is a thing called general linear models (not generalised) that are different from generalised linear
models!

1

−4 −2 0 2 4
0

0.5

1

t

Figure 1: The sigmoid function.

(a) (b)

Figure 2: (a) Scatter plot of the data and the contour of the the class labels. The data marked
by ‘*’ markers represent mistakes made by the logistic regression classifier. (b) The same data
but projected in three dimensions (the z values of datapoints are irrelevant and chosen to make
the errors more visible); the plot also shows the shape of the function σ(w · x)

Notice the similarity of this prediction rule with the one we used in the case of LDA with two
classes. The prediction rule has exactly the same functional form, however, the method used
to obtain model parameters are very different. In order to make an actual class prediction, we
can simply threshold at 1

2 , thus we have:

ŷnew = 1(σ(w · xnew) ≥ 1

2
) = 1(w · xnew ≥ 0) (4)

From the functional form above, it is clear that the separating boundary is linear (a hyperplane
in high dimensions). Figure 2 shows the separating boundary as well as the shape of the function
σ(w · x) for a logistic regression model trained on a simple synthetic dataset.

1.2 Likelihood of Logistic Regression

Let us now write the likelihood of observing the data D = 〈(xi, yi)〉Ni=1 in terms of the parameters
w. Since this is a discriminative model, we are not concerned with modelling the distribution
over the inputs xi, but can in fact think of them as fixed. The only randomness is in the
observed values of yi. (Also, we’ve assumed that there is a constant 1 feature in the input, so
we will not model the bias/constant term separately.)

We can write the likelihood of observing the outputs y given the model parameters w and

2

the inputs X as:

p(y | X,w) =
N∏
i=1

σ(wTxi)
yi · (1− σ(wTxi)

1−yi (5)

Recall that the matrix X is constructed by choosing its ith row to be xT
i . To keep notation

tidy, we’ll use µi = σ(wTxi). As always, it’ll be more convenient to deal with the negative
log-likelihood than the likelihood itself. The negative log-likelihood can be expressed as:

NLL(y | X,w) = −
N∑
i=1

(
yi lnµi + (1− yi) ln(1− µi)

)
(6)

Let us first look at the contribution made by a single datapoint (xi, yi) to the negative log-
likelihood. Since µi = σ(xi, yi) this quantity is given by:

NLL(yi | xi,w) = −(yi logµi + (1− yi) log(1− µi))

The form of this expression is reminiscent of the cross-entropy (discussed in Lecture 3). In fact
it is exactly the cross entropy, where the observation yi is deterministically either 0 or 1, and
µi represents the probability that model estimates the outcome as 1. Let us consider the case
when yi = 1; since µi ∈ (0, 1), NLL(yi | xi,w) = −yi logµi in this case. Thus as µi → 1, we
have NLL(yi | w,xi)→ 0 and as µi → 0, NLL(yi | w,xi)→∞. Thus, there is a hefty penalty
for being overconfident about a wrong prediction!

1.2.1 Iteratively Reweighted Least Squares

Let us now return to the question of estimating the parameters w by minimising the negative
log-likelihood given in (6). We will be a bit short on details for computing the gradient and the
Hessian; this is left as an exercise on Problem Sheet 3. The gradient and the Hessian of the
NLL are given below:

∇wNLL(y | X,w) =

N∑
i=1

xi(µi − yi) = XT(µ− y) (7)

Hw = XTSX (8)

where S is a diagonal matrix, with Sii = µi(1− µi).
Let us verify that the Hessian is positive semi-definite. Recall that a D×D symmetric matrix

A is positive semi-definite, if for every z ∈ RD, zTAz ≥ 0. In the case of the Hessian defined
in (8), let z′ = Xz, so that zTHwz =

∑D
i=1 Sii(z

′
i)
2. Since Sii = µi(1 − µi) for µi ∈ (0, 1), this

term must be non-negative. (If N > D and X has rank D, then in fact, in this case Hw is postive
definite, i.e., zHwz ≥ 0 and equality holds if and only if z = 0. Clearly

∑D
i=1 Sii(z

′
i)
2 = 0 if

and only if z′ = 0; since X has rank D and N > D, z′ = 0 if and only if z = 0.) Since, the
Hessian is positive semi-definite everywhere, we know that the negative log-likelihood NLL is a
convex function of w. Thus, we can estimate w using standard convex optimisation methods
(although if X does not have rank D, we may be in a degenerate case).

If the dimension D is modest, then we can apply Newton’s method to estimate w. Let wt

be the estimated parameters after t Newton steps. Let us denote the gradient and the Hessian
at this point by gt and Ht, where

gt = XT(µt − y) = −XT(y − µt)

Ht = XTStX

3

Figure 3: Multiclass Logistic Regression

As per the Newton update rule, we have:

wt+1 = wt −H−1t gt

= wt + (XTStX)−1XT(y − µt)

= (XTStX)−1XTSt(Xwt + S−1t (y − µt))

= (XTStX)−1XTStzt

Where zt = Xwt + S−1t (y − µt). Then wt+1 is a solution of the following problem:

minimise
w

N∑
i=1

St,ii(zt,i −wTxi)
2 (9)

It is for this reason that this method is called the iteratively reweighted least squares method.

2 Multiclass Logistic Regression

Let us now consider a ‘logistic regression’-like model when there are more than two classes. We’ll
consider some alternative approaches in the next lecture that use binary classifiers generically
to obtain multi-class classifiers. However, in the case of logistic regression, it is relatively easy
to modify the model to handle more than two classes.

Let us suppose that we have C classes denoted by {1, . . . , C}. We’ll have a set of parameter
wc ∈ RD for every c ∈ C. We can express these as a D × C matrix W, where the cth column
of W is wc. Then the discriminative model is defined by the conditional distribution over the

4

input y, given W and x as,

p(y = c | x,W) =
exp(wc · x)∑C

c′=1 exp(wc′ · x)
(10)

Note that the RHS of the above equation is simply a softmax. We can view the softmax as
a function that maps a vector (with positive or negative entries) to a probability distribution
as follows: Let a ∈ RD be a some vector then,

softmax([a1, . . . , aD]T) =

[
ea1

Z
, . . . ,

eaD

Z

]T
, (11)

where Z =
∑D

i=1 e
ai . Thus, we can simply rewrite (10) as

p(y | x,W) = softmax
(

[w1 · x, . . . ,wC · x]T
)

(12)

Note that the decision boundaries between different classes are still linear (see Fig. 3).
As in the case of (binary) logistic regression, we can write out the negative log-likelihood,

show that it is convex and use a convex optimisation approach to estimate the parameters W.
The details are given in Murphy (2012, Chap. 8.3.7). However, we’ll omit the details here.
We’ll return to much more general models that use the softmax and the sigmoid in the context
of neural networks.

3 Discussion

In these two lectures, we’ve seen generative and discriminative models for logistic regression. In
general there is no clear way of deciding which type of model is preferable; there are advantages
and disadvantages to both approaches. Refer to Murphy (2012, Chap. 8.6) for a detailed
comparison of the two approaches.

It is worth pointing out that may ideas in machine learning are can be applied in different
contexts. For example, it is possible to use basis function expansion and regularization methods
for logistic regression, as we did in the case of linear regression. (In fact regularisation may be
necessary if the data itself is linearly separable. Why?) So if we are faced with a classification
problem, where we believe that the clasification boundaries should be non-linear, we could
perform polynomial (or kernel-based) basis expansion and use `1 or `2 regularisation if we
believe that there is a risk of overfitting.

References

Kevin P. Murphy. Machine Learning : A Probabilistic Perspective. MIT Press, 2012.

5

