

Problem Sheet 1

1 Nearest Neighbour Classification

In the lectures, we studied the perceptron, a linear classifier of the form $y = \operatorname{sign}(\mathbf{w} \cdot \mathbf{x} + w_0)$, where $\operatorname{sign}(z) = 1$ if $z \geq 0$ and $\operatorname{sign}(z) = 0$ otherwise. The parameters to be learnt are \mathbf{w} and w_0 . The "Nearest neighbour classifier" (NN) is a different approach to learning from data. Suppose we are given N points $(\mathbf{x}_1, y_1), \ldots, (\mathbf{x}_N, y_N)$ where $y_i \in \{0, 1\}$; for a parameter k and given a new point \mathbf{x}^* , the k-NN approach does the following: find $\mathbf{x}_{j_1}, \ldots \mathbf{x}_{j_k}$ the k-closest points to \mathbf{x}^* , then output \widehat{y}^* as the majority label from the set $\{y_{j_1}, \ldots, y_{j_k}\}$, i.e., the most commonly occurring label among the k-nearest neighbours.

- 1. What advantage does the k-NN approach offer over a linear classifier like the perceptron?
- 2. How many parameters does the nearest neighbour model have? How much memory do you need to store the model? What is the computational cost of predicting the label \hat{y}^* ?
- 3. In this part, we'll look at the setting where the vectors \mathbf{x} are points on the boolean hypercube, *i.e.*, $\mathbf{x} \in \{0,1\}^D$. Fix $\mathbf{x}^* = (0,0,\ldots,0)$ to be the origin and imagine that data consists of points drawn uniformly at random from the boolean hypercube. What is the distribution of the Hamming distance of data points from \mathbf{x}^* ? What happens as $D \to \infty$? (*Hint*: Use the central limit theorem.)
- 4. Let us now fix some numbers. Suppose the dimension of the data D=10,000; let $\mathbf{x}^*=(0,0,\ldots,0)$ and suppose we generated N=10,000 data points. What do you expect the distance of \mathbf{x}^* from the nearest data-point to be? the furthest? How large does N need to be to get points that are reasonably close to \mathbf{x}^* , say within Hamming distance 50?

Remark: You do not have to write precise numbers or even mathematical expressions for the answers to part 4 above. Make sure you understand the behaviour qualitatively. The phenomenon explored in the last two parts of the question is referred to as the *curse of dimensionality*.

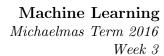
2 Normalization constant for a 1D Gaussian

The normalization constant for a zero-mean Gaussian is given by

$$Z = \int_{-\infty}^{\infty} \exp\left(-\frac{x^2}{2\sigma^2}\right) dx. \tag{2.1}$$

To compute this, consider its square

$$Z^{2} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \exp\left(-\frac{x^{2} + y^{2}}{2\sigma^{2}}\right) dx dy.$$
 (2.2)



Let us change variables from cartesian (x, y) to polar (r, θ) using $x = r \cos \theta$ and $y = r \sin \theta$. Since $dx dy = r dr d\theta$ (recall that r is the determinant of the Jacobian matrix in 2D) and $\cos^2 \theta + \sin^2 \theta = 1$, we have

$$Z^{2} = \int_{0}^{2\pi} \int_{0}^{\infty} r \exp\left(-\frac{r^{2}}{2\sigma^{2}}\right) dr d\theta \tag{2.3}$$

Evaluate this integral and thus show that $Z = \sqrt{2\pi\sigma^2}$.

Hint 1: Separate the integral into a product of two integrands, the first of which (involving $d\theta$) is constant, so is easy.

Hint 2: If $u = \exp\left(-\frac{r^2}{2\sigma^2}\right)$ then $\frac{du}{dr} = -\frac{r}{\sigma^2} \cdot \exp\left(-\frac{r^2}{2\sigma^2}\right)$, so the second integral is also easy (since $\int u'(r) dr = u(r)$).

3 Reducing the cost of linear regression for large D, small N

The ridge method is a regularized version of least squares with objective function:

$$\min_{\mathbf{w} \in \mathbb{R}^D} \|\mathbf{y} - \mathbf{X}\mathbf{w}\|_2^2 + \lambda \|\mathbf{w}\|_2^2$$
 (3.1)

Here λ is a scalar, the input matrix $\mathbf{X} \in \mathbb{R}^{N \times D}$ and the output vector $\mathbf{y} \in \mathbb{R}^{N}$. The parameter vector $\mathbf{w} \in \mathbb{R}^{D}$ is obtained by differentiating the cost function, yielding the normal equations

$$(\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I}_D) \mathbf{w} = \mathbf{X}^T \mathbf{y}, \tag{3.2}$$

where \mathbf{I}_D is the $D \times D$ identity matrix. The predictions $\hat{\mathbf{y}} = \hat{\mathbf{y}}(\mathbf{X}_*)$ for new test points $\mathbf{X}_* \in \mathbb{R}^{N^* \times D}$ are obtained by evaluating the hyperplane

$$\widehat{\mathbf{y}} = \mathbf{X}_* \mathbf{w} = \mathbf{X}_* (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I}_D)^{-1} \mathbf{X}^T \mathbf{y} = \mathbf{H} \mathbf{y}.$$
 (3.3)

The matrix \mathbf{H} is known as the *hat matrix* because it puts a "hat" on y.

- 1. Show that the solution can be written as $\mathbf{w} = \mathbf{X}^T \widetilde{\mathbf{w}}$, where $\widetilde{\mathbf{w}} = \lambda^{-1} (\mathbf{y} \mathbf{X} \mathbf{w})$.
- 2. Show that $\widetilde{\mathbf{w}}$ can also be written as follows: $\widetilde{\mathbf{w}} = (\mathbf{X}\mathbf{X}^T + \lambda \mathbf{I}_N)^{-1}\mathbf{y}$ and, hence the predictions can be written as follows:

$$\widehat{\mathbf{y}} = \mathbf{X}_* \mathbf{w} = \mathbf{X}_* \mathbf{X}^T \widetilde{\mathbf{w}} = [\mathbf{X}_* \mathbf{X}^\mathsf{T}] ([\mathbf{X} \mathbf{X}^T] + \lambda \mathbf{I}_N)^{-1} \mathbf{y}.$$
(3.4)

(This an awesome trick because if N=20 patients with D=10,000 gene measurements, the computation of $\widetilde{\mathbf{w}}$ only requires inverting the $N\times N$ matrix, while the direct computation of \mathbf{w} would have required the inversion of a $D\times D$ matrix.)

Machine Learning

Michaelmas Term 2016

Week 3

4 Logical Gates Using Perceptrons

Recall that a perceptron with input features x_1, \ldots, x_D , weights w_1, \ldots, w_D and bias w_0 outputs the value:

$$y = \begin{cases} 1 & \text{if } w_0 + \sum_{i=1}^D w_i x_i \ge 0\\ 0 & \text{otherwise} \end{cases}$$
 (4.1)

- 1. Suppose there are at most two inputs and the inputs always take binary values, *i.e.*, $x_i \in \{0,1\}$. Show how to construct AND, OR and NOT gates by suitably adjusting weights.
- 2. The constructions for AND and OR gates required only the bias term w_0 to be negative, all other weights were positive. Can you achieve a similar construction for the NOT gate? Why?
- 3. Can you construct an XOR (exclusive or) gate? If not, give reasons.
- 4. Often, instead of using a hard threshold we would like to use a continuous approximation. Recall the hyperbolic tangent function $\tanh(z) = \frac{e^z e^{-z}}{e^z + e^{-z}}$. We consider another type of artificial neuron whose output is defined as

$$y = \tanh\left(w_0 + \sum_{i=1}^{D} w_i x_i\right). \tag{4.2}$$

Suppose you treat outputs above 0.99 as true and those below -0.99 as false. Show that similar constructions to the ones you had earlier can still be used to construct logic gates.