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Machine Learning in Action



https://www.betafaceapi.com/demo.html
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https://www.betafaceapi.com/demo.html

Machine Learning in Action

832.4,125.6 age : 57 (60%), beard : no, expression : neutral, gender : male (39%), glasses
-1.35 deg : no, mustache : no, race : white

59 x 59

score: 1.44

1078.7, 165.6 age : 54 (60%), beard : no (86%), expression : smile, gender : female, glasses
-8.05 deg : no, mustache : no, race : black (91%)

61 x 61

score: 0.72



https://www.betafaceapi.com/demo.html

Is anything wrong?




Is anything wrong?

(See Guardian article)


https://www.theguardian.com/science/head-quarters/2016/sep/19/the-thatcher-illusion-are-faces-special

What is machine learning?
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What is machine learning?

Data Algorithm Model
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What is machine learning?

What is artificial intelligence?

“Instead of trying to produce a programme to
simulate the adult mind, why not rather try to
produce one which simulates the child’s? If this were
then subjected to an appropriate course of education
one would obtain the adult brain.”

Turing, A.M. (1950). Computing machinery and intelligence. Mind, 59, 433-460.



What is machine learning?

Definition by Tom Mitchell

A computer program is said to learn from experience E with respect to
some class of tasks T and performance measure P, if its performance at
tasks in T, as measured by P, improves with experience E.

Face Detection
» E:images (with bounding boxes) around faces
» T:given an image without boxes, put boxes around faces

» P:number of faces correctly identified



An early (First?) example of automatic classification

Ronald Fisher: Iris Flowers (1936)

» Three types: setosa, versicolour, virginica

» Data: sepal width, sepal length, petal width, petal length

versicolour virginica
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An early (First?) example of automatic classification
Ronald Fisher: Iris Flowers (1936)

» Three types: setosa, versicolour, virginica
» Data: sepal width, sepal length, petal width, petal length

» Method: Find linear combinations of features that maximally
differentiates the classes

versicolour virginica



Frank Rosenblatt and the Perceptron

» Perceptron - inspired by neurons @ @ @ @

» Simple learning algorithm
» Built using specialised hardware w1 Wy

sign(wo + wiz1 + -+ - + waxs)




Perceptron Training Algorithm
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Course Information

Website
Www.CS.0X.ac.uk/people/varun.kanade/teaching/ML-MT2016/

Lectures
Mon, Wed 17h-18h in L2 (Mathematics Institute)

Classes
Weeks 2%, 3,5, 6, 8.
Instructors: Abhishek Dasgupta, Brendan Shillingford, Christoph Haase, Jan Buys
and Justin Bewsher

Practicals
Weeks 4, 6, 7, 8.

Demonstrators: Abhishek Dasgupta, Bernardo Pérez-Orozco and Francisco
Marmolejo

Office Hours
Tue 16h-17h in #449 (Wolfson)



Course Information

Textbooks
Kevin Murphy - Machine Learning: A Probabilistic Perspective
Chris Bishop - Pattern Recognition and Machine Learning

Hastie, Tibshirani, Friedman - The Elements of Statistical Learning

Assessment
Sit-down exams. Different times for M.Sc. and UG

Piazza
Use for course-related queries

Sign-up at piazza.com/ox.ac.uk/other/mlmt2016



Is this course right for you?

A

Machine learning is mathematically rigorous making use of
probability, linear algebra, multivariate calculus, optimisation
etc.

Lots of equations, derivations, not “proofs”
Try Sheet 0 (optional class in Week 2)

For M.Sc./Part C students:

» Deep Learning for Natural Language Processing
» Advanced Machine Learning a.k.a. Computational Learning Theory



Practicals

You will have to be an efficient programmer
Implement learning algorithms discussed in the lectures
We will use python v2.7 (anaconda, tensorflow)

Familiarise yourself with python and numpy by Week 4



A few last remarks about this course

As ML developed through various disciplines - CS, Stats,
A Neuroscience, Engineering, etc., there is no consistent usage

of notation or even names among the textbooks. At times

you may find inconsistencies even within a single textbook.

You will be required to read, both before and after the lectures. | will post
suggested reading on the website.

Resources:

» Wikipedia has many great articles about ML and background
» Online videos: Andrew Ng on coursera, Nando de Freitas on youtube, etc.
» Many interesting blogs, podcasts, etc.



Learning Outcomes

On completion of the course students should be able to

» Describe and distinguish between various different paradigms of
machine learning, particularly supervised and unsupervised learning

» Distinguish between task, model and algorithm and explain advantages
and shortcomings of machine learning approaches

» Explain the underlying mathematical principles behind machine learning
algorithms and paradigms

» Design and implement machine learning algorithms in a wide range of
real-world applications (not to scale)



Machine Learning Models and Methods

k-Nearest Neighbours
Linear Regression
Logistic Regression
Ridge Regression
Hidden Markov Models
Mixtures of Gaussian
Principle Component Analysis
Independent Component Analysis
Kernel Methods
Decision Trees
Boosting and Bagging
Belief Propagation
Variational Inference
EM Algorithm
Monte Carlo Methods
Spectral Clustering
Hierarchical Clustering
Recurrent Neural Networks

Linear Discriminant Analysis
Quadratic Discriminant Analysis
The Perceptron Algorithm
Naive Bayes Classifier
Hierarchical Bayes
k-means Clustering
Support Vector Machines
Gaussian Processes
Deep Neural Networks
Convolutional Neural Networks
Markov Random Fields
Structural SVMs
Conditional Random Fields
Structure Learning
Restricted Boltzmann Machines
Multi-dimensional Scaling
Reinforcement Learning
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https://www.youtube.com/watch?v=mlXzufEk-2E 

Application: Boston Housing Dataset

Numerical attributes

>

>

>

Crime rate per capita
Non-retail business fraction
Nitric Oxide concentration
Age of house

Floor area

Distance to city centre
Number of rooms

Categorical attributes

>

>

On the Charles river?
Index of highway access (1-5)

Source: UCl repository

Predict house cost

20


http://archive.ics.uci.edu/ml/datasets/Housing

Application: Object Detection and Localisation

v

v

v

ol W s b Tl

200-basic level categories

Here: Six pictures containing airplanes and people
Dataset contains over 400,000 images
Imagenet competition (2010-16)

All recent successes through very deep neural networks!

21



Supervised Learning

Training data has inputs x (numerical, categorical) as well as outputs y
(target)

Regression: When the output is real-valued, e.g.,housing price
Classification: Output is a category

» Binary classification: only two classes e.g.,spam

» Multi-class classification: several classes e.g.,object detection

22



Unsupervised Learning : Genetic Data of European Populations
A

Experience (E)
Task (T)

Performance (P)

Source: Novembre et al.,, Nature (2008)

Dimensionality reduction - Map high-dimensional data to low dimensions

Clustering - group together individuals with similar genomes

23


http://www.nature.com/nature/journal/v456/n7218/full/nature07331.html

Unsupervised Learning : Group Similar News Articles

‘Google News - Mozilla Firefox (Private Browsing)
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Group similar articles into categories such as politics, music, sport, etc.

In the dataset, there are no labels for the articles
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Active and Semi-Supervised Learning

Active Learning

» Initially all data is unlabelled

o
a)
©
[©]
-~
c
©
E
=]
=
o
Y
%]
o
c
5
O
E
=
o
‘=
o
=
o
=)
£
c
—
©
(]
-
A

n
o+
(5]
©
v
£
o
wv

Q—OmS 0wy w v

o~ =t — —
\pd) A
s M~ — %

b sl o vl

O~ Mo~ o

[O~dH Ty 0N 4

» Limited labelled data, lots of unlabelled data
» How to use the two together to improve

Semi-supervised Learning
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Collaborative Filtering : Recommender Systems

Movie / User \ Alice Bob Charlie Dean Eve
The Shawshank Redemption 7 9 9 5 2
The Godfather 3 ? 10 4 3
The Dark Knight 5 9 ? 6 ?

Pulp Fiction ? 5 ? ? 10
Schindler’s List ? 6 ? 9 ?

Netflix competition to predict user-ratings (2008-09)

NETFLIX

Any individual user will not have used most products

Most products will have been use by some individual



Reinforcement Learning

v

Automatic flying helicopter; self-driving cars

v

Cannot conceivably program by hand

v

Uncertain (stochastic) environment

v

Must take sequential decisions

Can define reward functions

v

v

Fun: Playing Atari breakout! [video]
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https://www.youtube.com/watch?v=V1eYniJ0Rnk

Cleaning up data

Spam Classification
» Look for words such as Nigeria, millions, Viagra, etc.
» Features such as the IP, other metadata
» If email addressed by to user personally

Getting Features
» Often hand-crafted features by domain experts
» In this course, we mainly assume that we already have features
» Feature learning using deep networks

28



Some pitfalls

Sample Email

“To build a spam classifier, we check if at least two words such as Nigeria,
millions, etc. appear in the message. If that is the case, we mark the email as
spam.”

Training vs Test Data

» Future data should look like past data

» Not true for spam classification. Spammers will try adversarially to
break the learning algorithm.

29



Cats vs Dogs

30



Next Time

Linear Regression

» Brush up your linear algebra and calculus!

31
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